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Abstract. Adding mineral fertilizers and nutrients is a common practice in conventional farming and is fun-
damental to maintain optimal yield and crop quality; nitrogen is the most applied fertilizer and is often used
excessively, leading to adverse environmental impacts. To assist farmers in optimal fertilization and crop man-
agement, non-invasive geophysical methods can provide knowledge about the spatial and temporal distribution
of nutrients in the soil. In recent years, electromagnetic induction (EMI) has been widely used for field charac-
terization, to delineate soil units and management zones, or to estimate soil properties and states. Additionally,
ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) have been used in local studies to
measure changes in soil properties. Unfortunately, the measured geophysical signals are confounded by horizon-
tal and vertical changes in soil conditions and parameters, and the individual contributions of these conditions
and parameters are not easy to disentangle. Within fields, and also between fields, fertilization management
might vary in space and time, and, therefore, the differences in pore fluid conductivity caused directly by fer-
tilization or indirectly by different crop performance make the interpretation of large-scale geophysical surveys
over field borders complicated. To study the direct effect of mineral fertilization on the soil electrical conduc-
tivity, a field experiment was performed on 21 bare-soil plots with seven different fertilization treatments. As
fertilizers, calcium ammonium nitrate (CAN) and potassium chloride (KCl) were chosen and applied in three
dosages. Soil water content, soil temperature, and bulk electrical conductivity were recorded continuously over
450 d. Additionally, 20 EMI, 7 GPR, and 9 ERT surveys were performed, and on days of ERT measurements, soil
samples for nitrate and reference soil electrical conductivity measurements were taken. The results showed that
(1) the commonly used CAN application dosage did not impact the geophysical signals significantly. (2) EMI
and ERT were able to trace back the temporal changes in nitrate concentrations in the soil profile over more
than 1 year. (3) Both techniques were not able to trace the nitrate concentrations in the very shallow soil layer of
0–10 cm, irrespective of the low impact of fertilization on the geophysical signal. (4) The results indicated that
past fertilization practices cannot be neglected in EMI studies, especially if surveys are performed over large
areas with different fertilization practices or on crops grown with different fertilizer demands or uptakes.

1 Introduction

To meet the challenges of a growing world population and to
cope with the negative impacts of climate change, it is impor-
tant to develop innovative and sustainable agricultural man-
agement strategies that increase crop yields while maintain-
ing healthy soils (Shah and Wu, 2019). Mineral nitrogen (N)
or potassium fertilization is thereby essential in conventional

farming to ensure high yields and optimal crop quality. Ad-
ditionally, care must be taken to maintain optimal timing and
the right amounts of fertilizers to avoid pollution of ground-
water and surface water (Galloway et al., 2004; Bouwman
et al., 2005; Olatuyi et al., 2012) and to reduce emissions
to the atmosphere, which could negatively affect the climate
(Butterbach-Bahl et al., 2013). The plant-specific nitrogen
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demand depends on the crop, while the required fertilization
amounts also depend on the nitrogen replenishment from the
soil (Drücker, 2016). Therefore, for sustainable agriculture
with improved plant performance, it is highly important to
develop tools for soil nitrogen mapping and monitoring in
which measurements are not restricted to the soil surface but
rather provide information on local heterogeneities within
the root zone and estimate the available fertilizer present in
the soil profile. As stated by Kuang et al. (2012), precision
agriculture explicitly considers field heterogeneities of soil
properties and crop status by dividing the field into small-
scale areas with the same properties and/or crop develop-
ment. This allows specific management of these sub-areas
depending on their needs in terms of soil management (e.g.,
tillage or plant to be grown), fertilization, pest control, and
irrigation (Hinck et al., 2016; Koch et al., 2023).

Among the agrogeophysical methods, electromagnetic in-
duction (EMI) has been proven to be an excellent method
to delineate crop management zones. For example, Hedley
et al. (2004) performed EMI surveys of a pastoral–cropping
farming system over a year and used these data to delin-
eate zones of different apparent soil electrical conductivity
(ECa). Further, the authors compared those zones with soil
units of a conventional soil map, and the results indicated
that the ECa map related well to soil textural classes, al-
lowing accurate grouping of different soil types. King et al.
(2005) focused their study on the evaluation of yield maps
and EMI data to determine management zones within fields.
The results showed that the management zones identified by
both methods provided useful information for the provisional
delineation of soil type boundaries and crop management
zones. A comparable study was performed by Serrano et al.
(2022), who used EMI data and altimetry surveys in six ex-
perimental pasture fields to establish maps with three homo-
geneous management zones (HMZs) (low, intermediate, and
high potential). The normalized difference vegetation index
(NDVI) obtained from a proximal optical sensor and soil and
biomass sampling were used to validate these HMZs. A fur-
ther advancement was proposed by Brogi et al. (2019), who
used EMI data and a supervised classification scheme to es-
tablish, together with soil profile information and soil tex-
tural data, a high-resolution soil map of a small agricultural
area in Germany. In a follow-up paper, Brogi et al. (2021)
used this map to simulate crop growth in the area and com-
pared the simulation results with simulations based on avail-
able soil maps. For the validation of the simulation results,
leaf area index (LAI) data from remote sensing were used.
The findings indicated that the EMI-based soil map demon-
strated superior performance compared to the conventional
soil maps utilized in the study area. Recently, new avenues
have been opened with regard to the use of EMI, where ei-
ther new interpretation approaches have been employed or
EMI data have been combined with other non-invasive sen-
sor data. For example, in a study by O’Leary et al. (2024),
EMI data gathered were clustered with a neural network to

demonstrate the correlation between soil electrical conduc-
tivity with soil texture. The results showed that the clustering
outperformed the classical simple correlations between mea-
sured EMI and soil texture. As an example for sensor combi-
nation, van Hebel et al. (2021) combined ground-based EMI
and aerial crop data (NDVI) from drones to delineate field-
specific management zones, which they interpreted with soil
attribute measurements of soil texture, bulk density, and soil
water content. Finally, they compared those zones with dif-
ferent yield and nitrate concentrations in the soil after potato
(Solanum tuberosum L.) cultivation.

Although all these studies successfully demonstrated the
potential to derive soil properties or to delineate soil or crop
management zones by means of geophysical methods such
as EMI, EMI measurements also have limitations as the mea-
surement of the apparent electrical conductivity (ECa) is im-
pacted by soil temperature (e.g., Corwin and Lesch, 2005),
soil mineral surface polarization (chargeability) (Saey et al.,
2013), profile soil water content (e.g., Huang et al., 2016),
and pore water salinity (Triantafilis et al., 2003). Soil tem-
perature effects on the EMI signal have been widely studied,
and correction formulas have been proposed by, e.g., Corwin
and Lesch (2003) for EMI data measured at different times
and with variable temperatures. Additionally, differences in
soil particle properties (e.g., clay content) and/or soil water
content (SWC) are often the targets under investigation in
EMI surveys in non-saline soils (Kachanoski et al., 1988; Tri-
antafilis and Lesch, 2005; Saey et al., 2009; Robinson et al.,
2012; Rudolph et al., 2016). However, confounding factors
such as the impact of changes in pore water conductivity re-
sulting from differences in fertilization or fertilizer uptake on
different crop performances have mostly been neglected.

Commonly used organic or inorganic fertilizer releases
charged molecules or ions (e.g., NH+4 , NO−3 , Ca+2 , or dis-
solved organic carbon (DOC)) into the soil, affecting the
soil electrical conductivity and, therefore, also the EMI sig-
nal. For example, Eigenberg et al. (2002) observed that ap-
plied compost, manure, and mineral N fertilizer resulted in
consistently higher electrical conductivities in arable fields
and indicated the potential of EMI methods to provide reli-
able indicators of soluble-N gains and losses. Eigenberg and
Nienaber (2003) performed EMI measurements to identify
areas of nutrient buildup beneath an abandoned compost site,
and the resulting ECa maps – or, to be precise, the struc-
tures with high ECa – were in good agreement with the for-
mer row locations of the compost. Hereby, the identified his-
torical compost rows showed significantly increased soluble
salts (1.6 times greater), NO−3 (6.0 times greater), and Cl−

(2.0 times greater) compared with the area between the rows.
Additionally, the authors also used yearly repeated EMI mea-
surements to display annual changes associated with nutri-
ent movement and transformations. In conclusion, Eigenberg
and Nienaber (2003) stated that the correlation between EMI
measurements and soil core analyses for NO−3 , N, Cl−, and
EC provided ancillary support for the EMI methods. Kauf-
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Figure 1. (a) Overview of the Selhausen test site (map adapted from ©Google Earth, 2017). The location of the weather station is marked
with a blue circle, while the pre-experimental EMI survey area is shown by the violet plane. In the lower right of panel (a) is the location
of the test site in Germany, marked with a red dot. EMI-measured ECa maps [mSm−1] for (b) horizontal-loop HCP, 0.71 m mode, and
(c) vertical-loop VCP, 0.71 m mode. The pink box in panel (a) and the black rectangles in panels (b) and (c) indicate the domain in which
the field trial covering the 21 plots is set up.

mann et al. (2019) showed, based on EMI measurements in
long-term field experimental sites with different fertilization
and irrigation, the legacy effect on EMI data, offering new
potential in detecting and understanding the effects of agri-
cultural management. Recently, Blanchy et al. (2020) used
time-lapse EMI and electrical resistivity tomography (ERT)
measurements to demonstrate their applicability to study-
ing water content changes induced by different commonly
applied agricultural practices, such as the introduction of
cover crops, compaction, irrigation, tillage, and N fertiliza-
tion. The results showed that different N application rates had
a significant effect on the yield and leaf area index but only
ephemeral effects on the dynamics of electrical conductivity,
mainly after the first fertilizer application. As the EMI signal
was mainly impacted directly after N fertilization, one can
suggest the hypothesis that even common fertilization rates
directly impact the measured ECa signal substantially.

Even if there are indications that commonly used fertiliza-
tion rates impact EMI ECa measurements to an extent that is
not negligible in the interpretation, comprehensive studies of
the impact of varying fertilizer applications on EMI are cur-
rently lacking. Therefore, we intend, in this study, to close
this gap by analyzing the effect of different N and potas-

sium fertilization rates on the measured EMI signal using
time-lapse data measured over differently fertilized bare-soil
plots. For a better interpretation, the EMI measurements were
accompanied by ERT and ground-penetrating radar (GPR)
measurements as those systems can provide additional in-
formation on water content (GPR) or highly resolved verti-
cal EC information (ERT). For ground-truthing, soil samples
were taken, and the nitrate content and soil bulk electrical
conductivity (ECsoil

e ) were measured at the times of the geo-
physical surveys. Finally, sensors automatically recorded the
bulk soil EC, soil water content, and soil temperature at dif-
ferent depths to help in interpreting the measured geophysi-
cal data.

2 Materials and methods

2.1 Selhausen test site

The experiment was conducted at the test site Selhausen,
Germany (Fig. 1), which is part of the TERENO (TERrestrial
ENvironmental Observatories) Eifel–Lower Rhine observa-
tory in North Rhine-Westphalia, Germany (Pütz et al., 2016;
Bogena et al., 2018). The site consists of Quaternary sedi-
ments covered by loess and is located at a transition zone be-
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Figure 2. (a) Sketch of the experimental setup with control treatment (and the different dosages of calcium ammonium nitrate (N) and
potassium chloride (KCl)). Small letters – a, b, and c – indicate dosages. ERT and GPR lines are indicated with the dashed red lines, and
the location of the in situ soil sensors is indicated with a black dot. The upper transect is transect 1, and the lower transect is transect 2.
(b) An image from the installation setup of the soil sensor data measuring soil water content, soil electrical conductivity, and soil temperature
measurements (red square marks a defect sensor).

tween the upper and lower terraces of the Rhine–Meuse river
system. The main textural fraction, accounting for 55 %–
67 % across all horizons, is silt (Weihermüller et al., 2007).
Annual precipitation is 715 mm, and mean annual tempera-
ture is 10.2 °C (Rudolph et al., 2015). The groundwater depth
shows seasonal fluctuation, but no groundwater was detected
in the first 3 m of the subsurface. In the last years, several
geophysical studies have been performed at this test site (e.g.,
Jonard et al., 2011; Busch et al., 2014; von Hebel et al., 2014;
Kaufmann et al., 2020), and, based on these previous geo-
physical studies, a location at the lower terrace was chosen
to be best suited for the experiment as low natural soil hetero-
geneity was expected there (blue box in Fig. 1a). In order to
prove low soil heterogeneity and uniformity in soil ECa, an
EMI survey was performed on 2 March 2017 (results shown
in Fig. 1b and c). Based on those maps, the experimental
plots were established in the southern end of the field site,
characterized by low variability in soil ECa (black box in
Fig. 1b and c).

2.2 Field experiment

To measure the effect of different fertilizers and dosages
over time on the EMI-measured ECa data, a field experi-
ment with seven different treatments was established. The
treatments consisted of a control (no fertilizer applied), two
different commercial fertilizers, calcium ammonium nitrate
(CAN) with 26 % N content, and potassium chloride (KCl)
with 40 %K. For the CAN and KCl treatments, three dif-
ferent dosages (normal (a), double (b), and 10-fold (c))

were selected. A normal N fertilization level was defined as
190 kgNha−1, resulting in application dosages of 0.67, 1.33,
and 6.67 kg per plot for (a), (b), and (c), respectively. KCl
had equal dosages for (a) and (b), but for treatment (c), the
amount had to be reduced to 5.33 kg per plot as this was the
maximum amount to be diluted in the water used for irriga-
tion. Each of the seven treatments was triplicated and ran-
domly assigned to the 21 plots of 9 m2 (3 m× 3 m) in size.
Plots were separated by 1 m from each other (see Fig. 2a).
The fertilizers were dissolved in water (10 to 30 L depending
on fertilizer dosage) and homogeneously applied with com-
mercial watering cans on 3 April 2017. This date is later used
as reference day 0, and all following days are denoted in days
after fertilization (DAF). To monitor the effect of fertilization
over time, 20 EMI measurements were conducted over a pe-
riod of 485 d (DAF 485) (see Table 1). As mentioned, GPR
and ERT measurements were also performed to support the
interpretation of the fertilizer effects on the EMI-measured
ECa.

For a permanent record of SWC [m3 m−3], soil tempera-
ture [°C] and bulk electrical conductivity [mSm−1], 20 sen-
sors (5TE, 5TM, and ECH2O-TE) from Decagon Devices
Inc. (Pullman, WA, USA) were installed (Fig. 2b). The in-
stallation depths of the sensors were 10, 20, 30, 40, and
60 cm, whereby four sensors were always installed at each
depth, with a separation of 10 cm. As not all sensors measure
ECsoil

e , care was taken to install at least two sensors capable
of measuring EC at each depth. The sensor data were logged
hourly and daily averaged afterwards. To avoid any N losses
by plant uptake, the plots had to be cleared of vegetation.
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Table 1. Overview of all measured parameters and methods.

Measured parameters Temporal resolution Spatial resolution

Climate data Air temperature [°C]
Precipitation [mm]

Continuous measurements
Daily average

Reference location – see Fig. 1

Soil sensors Soil water content [m3 m−3]
Soil temperature [°C]
Soil bulk electrical conductivity
(ECeref) [mSm−1]

Continuous measurements
Daily average

Reference location – see Fig. 1
Sensor depths: 10, 20, 30, 40, and
60 cm

Soil sampling Nitrate content (NO−3 ) [mgkg−1]
Soil bulk electrical conductivity
(ECeSoil) [mSm−1]

Total of nine dates One auger per plot,
seven depths
(0–10, 10–20, 20–30, 30–40, 40–
60, 60–80, 80–100 cm)

EMI Apparent electrical conductivity
(ECaEMI) [mSm−1]
with six configurations:
VCP 0.32, VCP0.71, VCP1.18,
HCP0.32, HCP0.71, HCP1.18
(orientation+ coil separation in m)

Frequently until DAF 130,
afterwards on same dates as soil
samples
Total of 20 dates

Four measurements per plot

ERT Inverted electrical conductivity
(ECERT) [mSm−1]

Total of nine dates Two profiles for every 30 m
(two reputations per treatment)
Seven depths for correlation:
0–10, 10–20, 20–30, 30–40, 40–60,
60–80, 80–100 cm

GPR Relative comparison Total of seven dates Three transects every 30 cm

Therefore, the area was treated three times with glyphosate-
containing pesticide. One application took place before the
trial, one took place in June 2017, and the last one took place
in June 2018.

2.3 Climate data

Air temperature and precipitation directly affect soil temper-
ature and SWC and, therefore, indirectly affect the geophys-
ical signals measured. Climatic conditions were recorded
by the nearby TERENO climate station SE_BK_002 (http:
//teodoor.icg.kfa-juelich.de, last access: 21 March 2025),
located about 50 m south of the experimental plots (see
Fig. 1a). For a better illustration, the air temperature is plot-
ted as the daily mean, and the precipitation is provided as
the daily sum in millimeters (Fig. 3). Overall, the tempera-
ture followed a typical seasonal pattern, with air temperatures
ranging from −5 to 30 °C. In the first 90 d, dry weather con-
ditions with low precipitation were observed. To accelerate
the downward leaching of the fertilizers, an additional irriga-
tion of 39 mm was applied on 10 July 2017 (DAF 98, high-
lighted in black). After the irrigation, precipitation increased
and remained normal until summer 2018 (DAF 430).

2.4 Geophysical data acquisition and data processing

2.4.1 Electromagnetic induction (EMI)

EMI measures the apparent electrical conductivity ECa as
a weighted average value over the vertical bulk electri-
cal conductivity distribution within a certain depth volume
(Keller and Frischknecht, 1966). The weight average per
depth (Fig. 4a), depends mainly on the coil separation s and
orientation (McNeill, 1996). Coils can be either oriented ver-
tical co-planar (VCP), which results in more sensitivity to
shallow soil depths, or horizontal co-planar (HCP) resulting
in increased sensitivity at greater depths (Fig. 4b). The so-
called depth of investigation (DOI) is defined as the depth
interval in which up to 70 % of the relative response func-
tion accumulates. For the VCP and the HCP, this is at around
0.75 and 1.5 times s, respectively (McNeill, 1980). By in-
vestigating the relative sensitivity curves for VCP and HCP
orientation normalized to the coil separation s, it is clear that
the VCP mode is most sensitive to the shallow surface and
becomes less sensitive with increasing depth. In contrast, the
HCP mode is less sensitive to shallow surface and peaks at a
depth of around 0.4 times the coil separation s (Fig. 4a).

The EMI measurements were carried out with a rigid-
boom multi-configuration CMD-MiniExplorer (GF Instru-
ments, Brno, Czech Republic) mounted on a crutch. This
system measures with 30 kHz and has three receiver coils
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Figure 3. Daily precipitation and daily mean air temperature measured by TERENO climate station SE_BDK_002. The EMI, GPR, and
ERT measurement and ground-truth sampling are indicated by pink squares, black stars, and blue boxes, respectively.

Figure 4. (a) Sensitivity response function after McNeill (1980) for the VCP and HCP EMI configurations, with relative depth normalized
by the coil separation. (b) Sketch of a multi-coil MiniExplorer instrument, housing one transmitter and three receiver coils.

(s= 0.32, 0.71, and 1.18 m) and was used in VCP and HCP
configuration. The depth of investigation ranged from 0–25
up to 0–118 cm. On all measurement days, the 21 plots were
measured four times at different locations within the plots to
exclude potential small heterogeneities within a plot. There-
fore, the instrument was rotated by 45° horizontally around
the plot center (see Fig. 5b). Each measurement was aver-
aged over 100 readings while keeping the instrument station-
ary and directly on the surface (Fig. 5b). All EMI data were
processed with custom-made MATLAB codes. As raw EMI
measurements are often prone to systematic errors (e.g., Geb-
bers et al., 2009; Nüsch et al., 2010), the raw ECaEMI values
were only used for qualitative analyses over time for the same
configuration.

2.4.2 Electrical resistivity tomography (ERT)

ERT measures the soil electrical resistivity using galvanic
coupling. While, at two electrodes, the current is injected into
the ground, the electrical potential difference is measured be-

tween two other electrodes. The measured apparent resistiv-
ity is an average resistivity over a certain depth and space,
depending on the electrode spacing used for the measure-
ment. By measuring different combinations along a transect
and following data inversion, a 2D profile of the soil resis-
tivity can be achieved (Binley et al., 2015). In this study, the
ERT data were converted to their reciprocal soil electrical
conductivity for final analysis and plotting.

The ERT measurements were carried out on nine dates
along the same two transects as used for the GPR measure-
ments (see Fig. 2). Therefore, two 30 m long transects were
acquired using an electrode spacing of 25 cm and a dipole–
dipole setup. Measurements were recorded by a Syscal Pro
ERT system (IRIS Instruments, Orlean, France) (see Fig. 5a).
Measured data were inverted using the open-access software
BERT (https://www.pygimli.org/, last access: 1 December
2018, Rücker et. al, 2017) with a predefined mesh.
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Figure 5. (a) ERT setup of one transects across seven plots and (b) EMI point measurement at one of the treatment plots.

2.4.3 Ground-penetrating radar (GPR)

GPR emits electromagnetic (EM) waves, which are reflected
or refracted in the soil with changes in either the soil di-
electric permittivity or the electrical conductivity. The dielec-
tric permittivity and electrical conductivity can be related to
the propagation and the attenuation of the EM wave, respec-
tively. As the fertilizer increases the electrical conductivity
of the subsurface, it is expected that we would see differ-
ences in the GPR-measured signal attenuation and ampli-
tudes. One common GPR measurement setup is the common-
offset profiling (COP), where transmitter and receiver anten-
nae are moved along defined profiles with a constant spac-
ing between the antennae. This method allows us to identify
structures in the subsurface. To convert the data measured
in time to depth, the measured profiles can be time-to-depth
corrected with literature values or point measurements (Jol,
2009).

On 7 different days (see Fig. 3), two transects spanning
plot 1 to 7 and plot 15 to 21 (see Fig. 2) were measured
with 500 MHz pulseEKKO GPR antennas from Sensors &
Software Inc. (Mississauga, Canada). The 30 m long pro-
files were measured with a common offset of 0.23 m between
the transmitter and the receiver. The data are standardly pro-
cessed (dewow applied, time zero correction, and gain); cut
at 1 m depth; and, as an additional step, Hilbert envelope
transformed to better visualize amplitude and, hence, electri-
cal conductivity changes. More details about the GPR post-
processing can be found in Dal Bo et al. (2019).

2.4.4 Temperature correction of EMI and ERT data

To account for temperature effects on the electrical conduc-
tivity and to compare the measurements over time, inverted
ERT (ECERT) and EMI (ECaEMI) data were standardized to
a reference soil temperature of 25 °C using the approach of
Corwin and Lesch (2005):

EC25 = ECT ·
(

0.4470+ 1.4034e(−T/26.815)
)
, (1)

where ECT is the electrical conductivity measured at a par-
ticular soil temperature T in °C. In our case, the soil temper-

ature of the in situ sensors was used, while the temperature at
60 cm depth was assumed to be valid for deeper depths too.
For the ECaEMI values, the soil temperature was a weighted
average based on the depth sensitivity of the EMI configura-
tion (Blanchy et al., 2020).

2.5 Soil sampling and chemical analysis

For validation purposes, soil samples were collected over
the time of the experiment on the same dates as the ERT
and GPR measurements were conducted, resulting in nine
ground-truth sampling days (see Table 1). The samples were
extracted with a Pürckhauer auger to a maximum depth of
100 cm. The soil cores were divided into predefined depth
intervals of 0–10, 10–20, 20–30, 30–40, 40–60, 60–80, and
80–100 cm. The soil was stored in plastic bags at a tem-
perature of 4 °C and then was dried for 48 h at 105 °C and
homogenized. The ECsoil

e was measured with a mixture of
one part soil and five parts distilled water. Note that the ob-
tained ECsoil

e values are already temperature corrected. Ni-
trate content (NO−3 [mgkg−1]) was measured photometrical
according to DIN 38405-9 (Deutsches Institut für Normung,
2011) based on a mixture of one part soil to three parts dis-
tilled water. The photometrically measured liquid concentra-
tion was back-calculated to the weight of the extracted soil
and normalized to mgNO−3 kg−1 soil. The nitrate concentra-
tion was only measured for plots where nitrate fertilizer has
been added, and, due to the expected slow vertical transloca-
tion of the fertilizer after application only, the shallow sam-
ples were measured on the first sampling dates.

2.6 Statistical analysis

All obtained nitrate contents and ECsoil
e , ECaEMI, and ECERT

data were assigned to the corresponding plot number and
DAF. For the ERT data, the inverted conductivity was ex-
tracted from the profiles for each plot and depth interval
(same depth interval as soil samples). For this, the ERT data
were extracted from the profile data over the defined sam-
pling intervals. For the EMI data, measurements in both VCP
and HCP mode were considered. As a first analysis step,
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Figure 6. Daily mean (a) soil temperature [°C], (b) volumetric soil water content [m3 m−3], and (c) soil temperature corrected (25 °C) soil
bulk electrical conductivity ECeref [mSm−1] for the depths 10, 20, 30, 40, and 60 cm.

it was checked if the seven treatments differed significantly
compared to the control for each individual measurement day
using a Mann–Whitney U test, with a Kruskal–Wallis H test
to identify significant differences between means at a prob-
ability of p< 0.05. Additionally, the mean (µ) and standard
deviation (σ ) per plot were calculated, and, out of this, the
coefficient of variation (CV; CV= σ/µ) was calculated to
check the variation within the treatments. The Pearson cor-
relation coefficient r was used to describe the correlation be-
tween soil characteristics and geophysical values. The tables
corresponding to the statistical analysis can be found in the
Supplement.

3 Results and discussion

3.1 Soil sensor data

The soil temperature follows the typical seasonal pattern over
all depths (see Fig. 6a). At the start of the experiment, SWC
(see Fig. 6b) was in the range of 0.26 to 0.29 m3 m−3, but,
as a consequence of low rainfall and warm weather condi-
tions, the soil dried out subsequently, and SWC decreased
to 0.21 m3 m−3 at 10 cm depth on DAF 60–85. After irriga-
tion on 10 July 2017 (DAF 98), SWC at all depths rapidly
increased and remained relatively stable until DAF 420. As
can be seen, most dynamics were in the shallow sensors (10–
30 cm) measuring small fluctuation caused by rain events and

dry downs, but a large drop around DAF 330 is also de-
tectable, which is associated with snow coverage in the field.
Because of the heatwave in summer 2018, SWC decreased
from DAF 420 until the end of the experiment. The soil dried
out the most at shallow depths, with a minimum SWC of
0.16 m3 m−3.

The ECeref showed similar behavior compared to the SWC
sensor data, including the decrease during the two drought
periods. The two deeper sensors (40 and 50 cm) remained
almost stable between 20–25 mSm−1 throughout the entire
year. Note that the sensors were installed outside the plot ex-
periments and, therefore, only reflect the EC situation of the
control plots.

3.2 Geophysical measurements

3.2.1 Changes across treatments

In a first step, we compare the measured GPR and ERT data
across the different treatments exemplarily for transect 2 (see
Fig. 2). Before the application of the fertilizers (DAF 0), a
relatively homogeneous subsurface with two layers can be
identified for both the ERT and GPR data, as shown in Fig. 7a
and g, which agrees well with the EMI mapping, which was
performed prior to the plot setup (Fig. 1b and c).

In the ERT transect, a low-conductivity layer of 5–
10 mSm−1 up to a maximum depth of 50 cm overlying an
intermediate EC layer with small internal variation can be
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Figure 7. (a–f) Selected inverted ERT profiles (not temperature corrected) showing the effect of fertilization over time on the ECERT values.
The location of the different plots is indicated at the top of the figure (see Fig. 2 for more information). (g–i) GPR common offset profiling
(COP) data for selected dates. The top pictures in the right row show the radargrams, where high and low amplitudes are indicated by white
and black colors. Below are the corresponding Hilbert envelope images of the same measurement day.

observed. The shallow low-electrical-conductivity layer can
be associated with the plough horizon, which normally has a
lower porosity as the underlying layer (Jeřábek et al., 2017).
After fertilization, a clear change in the ECERT values across
the transect is detectable (Fig. 7b). As expected, the largest
changes can be observed for the plots with the highest dosage
(the 10-fold dosage of N and KC1 – treatments Nc and
KClc) applied. The ERT images at DAF 35, 66, and 135
showed an increase in ECERT of up to 100 mSm−1 up to a
depth of approximately 40 cm (Fig. 7b–d). Over time, the
higher ECERT values move downward and reached a depth
of 100 cm on DAF 485, with an ECERT of about 60 mSm−1

(Fig. 7e and f). In contrast, the low dosages (normal recom-
mended N dosage) of N and KCl (KCla and Na) showed only
minor changes over time in the ERT-derived EC, while the
doubled dosages (KClb and Nb) indicate changes in ECERT

until DAF 135 at shallow depths; furthermore, at later times,
the values are smeared over the depth, and no clear effect
is optically visible. The reference plot remained relatively
stable over time and showed only minor changes, which are
mainly related to changes in SWC as a result of precipitation
and evaporation.

In the GPR profile gathered before fertilizer application
(Fig. 7g), a homogeneous subsurface can also be seen, al-
though small variation in the envelope amplitude in the

first 5 ns can be detected. Here, it has to be noted that the
GPR signal is attenuated fast because of the high clay con-
tent of the soil, and, therefore, deeper subsoil information
cannot be obtained, and the information is mainly restricted
to the first 20 cm of the ground. Nevertheless, changes in the
radargram over time can be detected. For example, on DAF
66, a very strong effect of the high fertilization dosage (KClc
and Nc) can be seen at the location, not only in the GPR
radargram but also in the calculated Hilbert envelop images
(Fig. 7h). In contrast, on DAF 400 (Fig. 7i), the GPR tran-
sect is almost homogenous, as it was before the fertilizer ap-
plication, indicating that the fertilizers have been leached to
deeper zones and cannot be captured by the GPR or that the
concentrations have been diluted to such an extent that they
were not detectable anymore. Although amplitude changes
were detectable for the high fertilizer application dosages,
GPR data were not further interpreted as it was found to be
difficult to disentangle various effects on the GPR data (e.g.,
SWC changes) without additional information about those
changes and more advanced data processing such as full-
waveform inversion (Liu et al., 2018) or multi-offset GPR
(Kaufmann et al., 2020).
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3.2.2 Spatial and temporal changes at the point scale

For a more detailed analysis, the temperature-corrected EC
values based on the EMI and ERT data, as well as the
soil samples, were sorted by depth and treatment over time,
and all treatment replicates were averaged (arithmetic mean)
and are discussed in the following. In Table S1, significant
(p< 0.05) differences in terms of the treatments compared
to the control are also listed.

EMI measurements

Prior to fertilization on 3 April 2017 (DAF 0), ECaEMI for
the shallowest depth of investigation (VCP 0.32 m DOI= 0–
0.25 m) was the lowest at 10.4 mSm−1, and ut was the high-
est for the deepest configuration (HCP 1.18 m DOI= 1.78 m)
at 21.8 mSm−1, indicating a higher SWC in the deeper soil
profile (Fig. 8). After fertilization, a clear trend in the mea-
sured ECaEMI can be seen, except for the deepest sensing
configuration (HCP 1.18 m), with increased ECaEMI com-
pared to the control. In particular, the increased ECaEMI of
the higher dosages (b and c treatments) for the two shallow
measurement configurations VCP 0.32 m and HCP 0.32 m
(DOI= 0.45 m) is quite large, with up to 40 mSm−1. For the
deeper configuration and later times, only the high dosages
of N and KCl showed elevated ECaEMI. After fertilization,
ECaEMI increased to its highest values on DAF 49, with
a noticeable drop afterwards, explainable by the low SWC
and corresponding lower soil bulk electrical conductivity
(ECsoil

e ), as shown in Fig. 6c. After the irrigation and precipi-
tation, ECaEMI increased again and remained high until DAF
195. A smaller drop in ECaEMI can be observed on DAF 310
for VCP 0.32; HCP 0.32; and, to a lesser extent, VCP 0.71,
whereby this drop is earlier in time compared to the sharp
drop in SWC and ECsoil

e as found in the sensor data depicted
in Fig. 6c. A more detailed examination of the sensor data
reveals a slight decline in SWC at a depth of 20 cm, which
appears to be linked to a brief period of reduced SWC and a
corresponding decrease in electrical conductivity in ECaEMI.

Over the complete time span, the coefficient of variance
was, for all treatments and configurations, except for a few
outliers, below 0.4, whereby, for the smallest coil configu-
ration (VCP and HCP 0.32), in general, more spread (be-
tween 0.2 and 0.4) is present than in the other configura-
tions (mainly below 0.2). Additionally, for ECaEMI, signif-
icance in terms of the differences between the treatments and
the control was calculated, and it can be seen that ECaEMI

for the normal dosage (Na) never differed significantly from
the control. In contrast, for KCla, low significant differences
(p> 0.2) were present between DAF 20 and 135, except for
the days with low SWC (DAF 66–91) for the VCP configu-
ration. Additionally, in the double-dosage treatment (b), sig-
nificantly higher differences can be observed within the KClb
treatment compared to for Nb. Hereby, Nb is mainly signifi-
cantly different compared to the control at p< 0.05, whereas,

for KClb, it is mainly different at p< 0.01 after DAF 35 and
until DAF 193 for all three VCP configurations and for HCP
0.32 and HCP 0.71. Only the dates between DAF 66 to 91
for the double treatment (Nb) are not significantly differ-
ent from the control, with those dates being associated with
low SWC in the shallow soil. In contrast, plots treated with
KClb are less affected by the SWC drop and were still sig-
nificantly different compared to the control. For the deepest
sensing configuration, HCP 1.18, no significant difference
was measured at any time of the experiment. The highest
dosage (Nc and KClc) differed significantly (p< 0.01) for all
three VCP configurations and for HCP 0.32. For HCP 0.71,
high to medium significant (p< 0.5) differences compared to
the control were found, except for DAF 66 for KClc, whereas
the deepest sensing configuration, HCP 1.18, only started to
differ significantly after DAF 102 (except for DAF 135) for
Nc and after DAF 310 for KClc. This pattern indicates that
the fertilizer slowly moved downwards over time. This analy-
sis used non-calibrated EMI data because they are classically
available and are the easiest and fastest to be acquired. How-
ever, such EMI data cannot be used to invert depth-specific
bulk EC, which could improve the analysis.

ERT measurements

In comparison to the non-calibrated and non-inverted EMI
data, depth-specific data can be obtained for the ERT as
shown in Fig. 7 for the intervals 0–10, 10–20, 20–30, 30–60,
60–80, and 80–100 cm. Overall, the ERT-derived electrical
conductivity followed a similar trend to the EMI data, espe-
cially for both high dosages (Nc and KClc) applied, whereby
one can notice that ECERT is mostly affected by the fertil-
ization application in the top layers over all sampling dates.
It is also clearly visible that the downward movement of the
fertilizers over time can be detected and can be easily fol-
lowed for the high dosage (Nc), where ECERT was highest
for early measurement days in the top layer up to a depth of
30 cm, whereas, for the later measurement days (DAF 310
and after), ECERT was higher for the layer 10–20 cm com-
pared to that measured for the first layer (0–10 cm). Note
that the control plot did show smaller changes in measured
ECERT over time, with these changes only being caused by
changes in SWC. Even though the daily covariance was rel-
atively low (> 0.4, except for a few outliers) over the course
of the experiment, for the highest dosage (Nc and KClc),
the largest spread in EC data over depth can be observed.
Also, for ECERT, significance in terms of the differences be-
tween the treatments and the control was observed. For the
normal dosage (Na) only a few significant (p< 0.05) differ-
ences were present directly after the fertilization application
on DAF 8 at a depth between 20–40 cm and between 80–
100 cm. For the deeper depth, a significant difference was
found for DAF 102–193. For Nb, KCla, and KClb, similar
patterns were observed, with highly significant differences
at shallow depths (0–10 cm) on DAF 36; at 10–40 cm from
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Figure 8. Changes in ECaEMI over times for the six different EMI configurations; values represent the mean per treatment, and the crossbar
indicates the standard deviation. Colors represent the different fertilizer treatments. Note that, for better visualization, different limits in the
y axis are used.

DAF 36 to DAF 193, except on DAF 66 at a depth of 40 cm;
and at 60–100 cm between DAF 102 and 193. After DAF
193, no significant difference compared to the control was
found for the normal and double dosages (except at 10 cm
on DAF 193 for Nb). For the highest dosage (Nc and KClc),
for depths between 30–100 m, highly significant differences
(p< 0.01) with respect to the control were observed from
DAF 36 until the end of experiment (DAF 485); for the shal-
low depth (0–20 cm), no significant difference was found on
DAF 310 and 400. However, for DAF 410 and 465, signifi-
cant differences were present again for the application with
the 10-fold dosage.

Similarly to the EMI results, the ERT data showed down-
ward leaching of the fertilization over time, but this was bet-
ter depth resolved compared to the data obtained by means of
EMI. This result is to be expected as ERT is capable of ver-
tically resolving EC differences with high spatial resolutions
and with low EC differences, as stated by Garré et al. (2011).
In contrast, for the normal and double dosages, the fertilizer
leached deeper than 20 cm within the first 2 months, lead-
ing to dispersion of the masses and concentrations (Ellsworth
and Jury, 1991) and, therefore, also to lower impacts on the
gathered geophysical signals. As a consequence of further
translocation, spreading of the fertilizer plume and the differ-
ence compared to the control became statistically irrelevant

(similarly to that which is shown for the EMI results). How-
ever, this also showed that normal fertilization rates clearly
impact geophysical measurements, at least at a certain time
after application. Therefore, this effect should not be ne-
glected if geophysical measurements are performed over dif-
ferent fields not managed the same way; if different areas
within a single field are fertilized differently; or if plants take
up different amounts of fertilizer due to variable plant growth
induced by, e.g., non-homogeneous water supply. Finally, we
can conclude that both EMI and ERT measurements showed
fewer differences between the treatments and the control on
days with low SWC (for example, DAF 66 or 193), which is
in line with previous findings by Schmäck et al. (2022). As
a consequence, this means that optimal SWC conditions are
required for EMI and ERT surveys to identify differences in
fertilization states of the soils, whereby the most suitable are
conditions with relatively high SWC values.

Soil nitrate concentrations and soil bulk electrical
conductivity

For further interpretation of the geophysically derived infor-
mation, the nitrate concentrations and ECesoil data for the soil
samples analyzed in the laboratory were investigated (Fig. 9b
and c). As the nitrate analysis is time consuming, only those
depths where elevated nitrate concentrations were measured
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Figure 9. Comparison of the mean (a) ECERT [mSm−1], (b) ECsoil
e [mSm−1], and (c) nitrate concentration [mgkg−1] for each treatment

over time. As the reference, the depth profile prior to fertilization is shown in black. The gray color indicates the standard deviation. Note
that the x axis scale is logarithmic for better visualization.

in the preceding measurement days and the next underlying
sampling layer were analyzed. If the next layer also showed
higher concentrations compared to the reference (with the
reference equating to the concentration prior to fertilizer ap-
plication), the next depth was also analyzed. This simplifica-
tion can be made if preferential water flow and the associ-
ated preferential solute transport can be excluded and if only
slow matric flow of the solutes is assumed. For those layers
not analyzed for the corresponding sampling day, the nitrate
concentration measured prior to fertilizer application (DAF
0) was considered. KCl was also not measured as the extrac-
tion and measurements are also extremely tedious and costly,
and the overall focus of the study was on N fertilization ef-
fects.

Overall, the ECesoil and nitrate concentrations followed a
similar trend as the EMI or ERT data, especially for both high
dosages of N and KCl (Fig. 9). The mean ECesoil in the con-
trol plot varied to a small extent between 3 and 15 mSm−1 in
the first 20 cm over time, probably affected by weather events
and translocation of the background solute and/or mineral-
ization of organic matter (Fig. 9b). At greater depths, ECesoil

decreased to values round 8 mSm−1, likely caused by a lower
organic matter content and, therefore, lower release of DOC.
The mean soil nitrate concentrations in the control plot also
varied to a small extent between 5 and 15 mg NO−3 kg−1 soil,
with some variability over the nine measurement dates (see
Fig. 9c) likely caused by small-scale heterogeneity of the soil
and the small-scale sampling via the Pürckhauer auger (see
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detailed discussion below). In general, the nitrate concentra-
tions in the upper 60 cm of the control plots were always
slightly higher than those in the deeper soil, which can be at-
tributed to the lower organic matter content at greater depths,
forming less nitrate by decomposition. As already discussed
for ECesoil, the temporal changes in the nitrate concentration
of the control plot, where no N fertilizer was applied, can be
probably associated with the mineralization of organic mat-
ter as stimulated by higher soil temperatures in the uppermost
centimeters of the soil profile and with nitrate release into the
soil.

As expected, the highest ECesoil and nitrate concentrations
were found in the high-dosage plots (Nc and KLc). In gen-
eral, ECesoil followed a similar pattern to that discussed for
ECERT. Looking at the nitrate concentrations, we can notice
that the nitrate concentrations increased rapidly after the fer-
tilizer application up to approximately 1400 mgkg−1 in the
first 10 cm until DAF 66 for the high dosage (Fig. 9c). Af-
ter irrigation and further precipitation, the nitrate concentra-
tions decreased in the upper 10 cm but still remained higher
than those found in the control plot. Despite the high values
found, no significant differences (p< 0.2) were observed for
any depth or treatment for the normal and double dosages for
ECesoil and nitrate content with respect to the control plots.
For the high dosage, a significant difference (p< 0.1) was
partly present for ECesoil at 0–10 cm on DAF 102 and 195,
for KClc on DAF 36 and 193 at a depth of 10–40 cm, and for
Nc and KClc from DAF 102 to 400 (except DAF on 310 at
10–20 cm depth for Nc). For 80–100 cm depth, the Nc treat-
ment differed significantly from the control on DAF 310–
465, and the KClc treatment differed significantly from the
control on DAF 102 and from DAF 310 to 465. For the ni-
trate content of the N-fertilized plots, similar patterns as for
ECesoil can be observed, with the highest concentrations for
the highest dosages, especially for the shallow depth, over the
entire experimental period and a slow downward movement
over time. Interestingly, higher concentrations are also found
in the highest-dosage plots (Nc) at later times, indicating a
downward movement of the nitrate.

In general, the soil sample data ECesoil and the nitrate con-
centrations had the highest CV of all measurements, which
explains the weaker significant differences between the treat-
ments and control compared to ERT and EMI, which both
showed lower CV. The high variability of the nitrate con-
centrations and ECesoil of the soil samples can be partly ex-
plained by the sampling itself – as only a few soil samples
were extracted (one per plot, with three per treatment) com-
pared to EMI (4 per plot, with 12 per treatment) and ERT
(∼ 5 per plot, with 10 per treatment) – and by the small vol-
ume sampled by the Pürckhauer auger. For ECERT on DAF
310 and beyond, we speculated that the decrease in ECERT

is caused by downward movement of the nitrate to deeper
soil layers. Looking at the ECesoil data and nitrate concentra-
tions, we can see the same pattern of lower ECesoil values in
the upper soil layer (0–10 cm) and higher ones in the under-

lying layer. The same holds for the nitrate concentrations. As
ECesoil and the soil nitrate concentrations are independent of
the SWC changes, this only showed the actual status of ions
available at a certain time in the soil and, therefore, proved
the hypothesis of downward translocation.

3.2.3 Correlation between measured soil states

Generally, geophysical measurements such as those gathered
by EMI and ERT are influenced by various soil states and
parameters such as soil texture (e.g., clay content), soil pore
water salinity, and soil temperature (McNeill, 1980; Corwin
and Lesch, 2005). Therefore, one aim of this study was to dis-
entangle the impact of fertilization on the measurement sig-
nal. Therefore, correlations between the different measured
states were performed (Table 2 and Tables S1–S4). As the
soil texture will not affect the results measured in the differ-
ent treatments due to the fact that soil texture is known to be
very stable over time (Upadhyay and Raghubanshi, 2020),
soil texture can be assumed to be a static component in the
analysis and, therefore, can be neglected.

In a first step, the sensor-based SWC and ECeref of the sen-
sor data were correlated (Fig. 10). Note that the correlation
was performed either for the entire dataset measured over
the entire period or for the single days where geophysical
measurements were acquired. Before looking into the details
of the individual correlations, attention should be drawn to
the effect of irrigation on ECeref. Directly after the irrigation
(blue dots in Fig. 10) on DAF 98, ECeref showed higher val-
ues for respective SWCs and dropped down to lower ones for
the same SWCs (yellow to red dots). This effect can be ex-
plained by the higher electrical conductivity of the irrigation
water used (49.1 mSm−1) compared to the rainwater (classi-
cally between 3–6 mSm−1 in the region) feeding the soil wa-
ter under non-irrigated conditions. As shown by Kaufmann
et al. (2019), the irrigation does not only affect the soil EC
over short times but can be traced back by EC measurements
over longer periods. However, at a deeper depth (30–60 cm),
ECeref was less affected by the irrigation as the irrigation wa-
ter had to travel downwards and also had to mix with already
existing pore water and, thereby, had to be equilibrated in
relation to the ion concentration.

Coming back to the correlation (Fig. 10), it becomes visi-
ble that, for the shallow subsurface between 0–30 cm depth,
a moderate correlation for both the entire dataset and mea-
surement days (r > 0.6) was calculated, whereby the effect
of the irrigation becomes less and less pronounced in the
deeper soil layers as the points (bluish and red or yellow)
get closer to each other. For depths of 40 cm, the correla-
tion over all days is slightly lower (r = 0.43), and, at 60 cm,
only a low correlation (r = 0.25) for the entire dataset was
found. The low correlation, especially at 60 cm depth, can be
explained by the low variability of ECeref and SWC. Consid-
ering only the days where geophysical measurements were
performed, the correlation generally increased for all depths
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Table 2. Pearson correlation coefficients (r) between ECaEMI (VCP and HCP), ECERT, and ECesoil with the measured (a) nitrate concen-
trations and (b) SWC data from the sensors for depths (d) between 10 to 120 cm. Note that the mean values gathered over all plots within the
same treatments for each measurement day have been used. Correlation was style coded according to r , with high correlation coefficients in
bold and underlined (r > 0.8), moderate correlations in bold (0.5<r > 0.8), low correlations in normal roman font (0.3<r > 0.5), and no
correlation in italics (r < 0.3). The definitions of the quality of the correlation coefficients r are similar to those defined by Schmäck et al.
(2022).

(a) Nitrate (b) SWC

d [m] 10 20 30 40 60 80 100 10 20 30 40 60

ECaEMI

VCP 0.32
DOI 0–0.25 m

All 0.53 0.83 0.76 0.67 0.55 0.38 0.20
Co. −0.06 −0.16 −0.09 −0.02 0.50 0.18 0.14 0.68 0.58 0.59 0.63 0.58
Na −0.04 0.26 0.54 0.47 0.73 0.70 0.35 0.69 0.67 0.63 0.56 0.53
Nb 0.30 0.71 0.76 0.58 0.60 0.13 −0.08 0.63 0.57 0.58 0.50 0.45
Nc 0.21 0.62 0.51 0.30 0.15 −0.17 −0.23 0.51 0.45 0.45 0.34 0.27

ECaEMI

VCP 0.53
DOI 0–0.53 m

All 0.48 0.86 0.81 0.75 0.64 0.46 0.28
Co. −0.05 −0.03 0.08 0.03 0.54 0.35 0.16 0.59 0.56 0.61 0.62 0.60
Na 0.02 0.35 0.71 0.63 0.78 0.72 0.40 0.67 0.66 0.67 0.64 0.62
Nb 0.29 0.70 0.78 0.62 0.64 0.14 0.01 0.59 0.58 0.61 0.55 0.51
Nc 0.14 0.72 0.65 0.47 0.31 −0.09 −0.22 0.57 0.48 0.49 0.46 0.40

ECaEMI

VCP 1.18
DOI 0–0.89 m

All 0.43 0.83 0.81 0.78 0.68 0.51 0.35
Co. −0.05 −0.02 0.10 0.09 0.56 0.40 0.20 0.66 0.59 0.63 0.67 0.63
Na −0.08 0.30 0.74 0.68 0.78 0.74 0.38 0.75 0.68 0.70 0.71 0.67
Nb 0.23 0.69 0.80 0.66 0.67 0.18 0.08 0.67 0.61 0.64 0.63 0.58
Nc 0.04 0.68 0.67 0.57 0.40 0.00 −0.10 0.66 0.50 0.50 0.55 0.47

ECaEMI

HCP 0.32
DOI 0–0.45 m

ALL 0.43 0.87 0.83 0.77 0.65 0.45 0.46
Co. −0.03 0.04 0.12 0.14 0.38 0.23 −0.05 0.40 0.31 0.37 0.39 0.36
Na −0.05 0.28 0.68 0.64 0.66 0.67 0.30 0.56 0.52 0.54 0.51 0.49
Nb 0.18 0.69 0.79 0.70 0.67 0.15 0.00 0.58 0.53 0.56 0.52 0.48
Nc 0.07 0.78 0.69 0.55 0.36 −0.09 −0.26 0.57 0.47 0.47 0.47 0.41

ECaEMI

HCP 0.53
DOI 0–1.1 m

All 0.30 0.80 0.81 0.84 0.75 0.63 0.00
Co. 0.12 0.32 0.16 0.01 0.32 0.32 0.00 0.50 0.36 0.40 0.50 0.48
Na −0.07 0.20 0.84 0.75 0.69 0.62 0.53 0.63 0.52 0.55 0.62 0.60
Nb 0.09 0.63 0.79 0.79 0.71 0.21 0.09 0.65 0.53 0.56 0.61 0.55
Nc −0.14 0.65 0.71 0.77 0.61 0.29 0.13 0.61 0.36 0.33 0.53 0.46

ECaEMI

HCP 1.18
DOI 0–1.78 m

All 0.30 0.67 0.70 0.72 0.62 0.57 0.47
Co. −0.15 −0.10 0.01 −0.08 0.39 0.36 0.27 0.65 0.56 0.59 0.65 0.58
Na −0.08 0.10 0.76 0.67 0.64 0.63 0.51 0.69 0.59 0.63 0.70 0.64
Nb 0.04 0.53 0.63 0.70 0.70 0.35 0.28 0.71 0.59 0.61 0.70 0.62
Nc −0.09 0.45 0.55 0.56 0.41 0.21 0.15 0.59 0.37 0.33 0.53 0.45

ECERT All 0.60 0.89 0.71 0.74 0.70 0.62 0.45
Co. −0.18 0.02 0.06 0.13 0.35 0.09 −0.05 0.63 0.41 0.32 0.20 0.16
Na −0.10 0.39 0.87 0.78 0.68 0.23 0.09 0.39 0.36 0.36 0.15 0.09
Nb 0.34 0.63 0.82 0.89 0.66 0.11 0.54 0.33 0.45 0.50 0.03 0.03
Nc 0.39 0.79 0.40 0.47 0.47 0.46 0.34 0.28 0.31 −0.04 0.86 0.81

ECesoil All 0.97 0.94 0.98 0.96 0.90 0.94 0.58
Co. −0.23 −0.19 0.01 0.11 0.18 −0.41 −0.62
Na 0.90 0.53 0.38 0.56 0.71 0.59 −0.65
Nb 0.97 0.86 0.82 0.77 0.59 0.57 0.02
Nc 0.97 0.92 0.98 0.97 0.85 0.96 0.87

and exceeded r values of 0.8 for the depths of 10 to 30 cm.
Even at lower depths, r stayed relatively high, with r = 0.7
and 0.51 for 40 and 60 cm depth, respectively.

As the next step, the impacts of the confounding factors
SWC or nitrate concentration on the geophysical measure-
ments were analyzed. Therefore, the ECaEMI of all six coil
configurations, ECERT, and the reference lab-derived ECeSoil

were correlated with the nitrate concentrations sampled and
SWC gathered by the sensors per treatment (Table 2). The
correlations with parameters per plot (soil vs. geophysics) are
additionally found for all treatments together. The definitions
of the quality of the correlation coefficients r are based on
those suggested by Schmäck et al. (2022), whereby Schmäck
et al. (2022) used R2 values instead of Pearson’s r . In gen-
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Figure 10. Linear regression between ECref
e and SWC measured by the soil sensors over all 485 d of the experiment. The color indicates the

day after fertilization. The values of the main measurement day are highlighted, indicating the time after the fertilization (green points prior
to irrigation).

eral, for both EMI and ERT data, the combined correlation,
where all data from all treatments were used together, with
nitrate content and ECesoil had a high to moderate correla-
tion (r > 0.4) for the N-fertilized plots. The low correlation
for the control plot might be explained by the general low
variability in the data (see Fig. 9) but also clearly shows that
all observed effects are mainly related to the fertilization and
not to changes in other soil states. The low correlation for
the shallow soil layer (0–10 cm) over all EMI configurations
and also, partly, for ERT is somehow surprising as, especially
in this layer, the most variation in nitrate concentration over
time was observed (Fig. 9). As ECesoil versus nitrate showed
the highest correlation, not only over the entire profile but
also for the shallow layer of 0–10 cm, except for the control,
this shows that the geophysical sensors used (ERT and EMI)
are less suited to gathering information from the very shallow
soil up to 10 cm. For ERT, an electrode spacing of 0.25 cm
was used, resulting in 1 m coverage of the four electrodes
used for one single measurement (thus being partly influ-
enced outside of the plots). Reducing the electrode spacing is
theoretically feasible, as shown by Ochs and Klitzsch (2020),
but would lead to lower depths one can investigate and lower
resolutions at larger depths. Additionally, spatial smoothing
is applied in the standard inversion used, limiting the small-
scale resolution, as shown by Kemna et al. (2002). The EMI-
derived ECa values are a weighted depth function of the re-
trieved signal, and so, laterally, one measurement spans at

least the coil separation and the depth resolution. The sensi-
tivity of the EMI configuration spans the soil sample interval
and is therefore affected by different depths. Therefore, we
can conclude that the shallow ECaEMI seems to be addition-
ally affected by other soil states and, therefore, is not suitable
to measure the effect of fertilization in those shallow soil lay-
ers.

As generally known and as shown in Fig. 10, SWC has a
large impact on the soil electrical conductivity, ECeref, mea-
sured by the sensors installed in the soil profile. Therefore,
we also analyzed the impact of SWC on measured ECaEMI

and ECERT by correlating the sensor-based SWCs measured
on the days of geophysical measurements against ECaEMI

and ECERT assuming that SWCs are the same in all plots
as those measured at the reference location. As can be seen
in Table 2, the correlation is much better if we look at all
depths and EMI configurations used compared to the corre-
lation of ECaEMI with N. Additionally, the shallow soil depth
0–10 cm showed better correlations now. Only for the corre-
lation between ECERT and SWC cab no clear improvement
be detected, and one can even find a slightly worse correla-
tion between the two states. In contrast, high correlations (as
indicated with the solid bold black in Table 2) do not show
up for the correlation with SWC at all. Additionally, one can
detect that the correlation is, in most cases, weaker for the
high fertilizer application (Nc) compared to lower dosages
applied, which corresponds to the higher correlation found
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for the high nitrate concentrations (Nc) and electrical con-
ductivity, as discussed before. This means that SWC has an
overall impact on the measured EC at all fertilization levels,
but at high fertilization rates, the nitrate impacts the mea-
sured EC to a larger extend. Finally, the question arises of
why the shallow soil layers (0–10 cm) were better correlated
to SWC compared to nitrate concentration. On the one hand,
SWCs were all measured at one location (sensor pit) ignor-
ing local soil heterogeneities, whereas the correlation with
nitrate concentrations is based on two measurements within
the same plot. Potentially the high variability (as expressed
in high coefficient of variation) of the nitrate concentration
might affected the correlation between nitrate and the geo-
physical measurements. Additionally, looking at the tempo-
ral course of ECEMI data (Fig. 8), it was observed that at days
with low SWC the measured electrical conductivity dropped
(e.g., around DAF 66 or 310), whereas the corresponding ni-
trate concentration dropped to a smaller extent as the nitrate
mass per soil volume is not directly connected to the mass of
water in the same soil volume. Nevertheless, the pore wa-
ter conductivity must increase if nitrate masses stay unaf-
fected, but SWC drops. This leads to the conclusion that, at
low SWC content, the EMI and ERT methods seem not to be
appropriate to detect changes in nitrate concentrations.

Based on the correlation between the obtained electrical
conductivities and depth-dependent nitrate concentrations,
especially over all treatments, one can conclude that high
nitrate levels can be measured with moderate to higher ac-
curacy in the clay soil studied. This also means that large
differences in the nitrate level between fields or within fields
might lead to differences in gathered ECaEMI. This fact
can either support the delineation of inner-field management
zones or complicate the explanation of “jumps” in measured
ECaEMI across field boarders, even if the same crop has been
grown. That nitrate differences in the soil can be measured
by EMI has been already shown by Eigenberg et al. (2002)
and Eigenberg and Nienaber (2003). In contrast to the work
presented here, both the aforementioned studies did not only
add nitrate to the soil but also analyzed situations that are
more complex. In Eigenberg et al. (2002), a 7-year manure
and cover crop experiment was analyzed, where both the ma-
nure and the cover crops impact soil organic matter content
soil structure, and water retention and, therefore, measured
ECaEMI. In the second study, Eigenberg and Nienaber (2003)
studied the impact of compost piles on measured ECaEMI,
but, also, here, various changes in the soil (higher SOC, re-
tention capacity, etc.) might have affected the signal and not
only nitrate stock differences.

4 Summary and conclusion

In the study presented, time-lapse geophysical measurements
using EMI, ERT, and GPR were used to analyze the impact
of fertilization on the measured geophysical signals. There-

fore, two different fertilizers (calcium ammonium nitrate and
potassium chloride ) were applied at three different dosages
to field plots in triplicate. Although the GPR data could not
be used for a detailed analysis because of the high attenua-
tions of the EM waves, for other soil types, where the back-
ground electrical bulk conductivity is smaller, GPR could
help to map the SWC distributions in the soil over time.
The results of this work showed that ERT was suitable to de-
tect the impact of fertilization on bulk electrical conductivity
over the entire course of the experiment (438 d), especially
for the case of extremely high fertilizer application (10-fold
increase compared to the recommended dosage). EMI was
also not able to measure differences between the low fertil-
izer dosage applied (190 kgNha−1) and the unfertilized con-
trol, but for higher dosages, EMI was able to trace the dif-
ferences in electrical conductivity over longer time periods.
Interestingly, EMI was able to detect KCl with 190 kgha−1.
The correlation between EMI- and ERT-derived electrical
conductivities and ground truth nitrate data showed that both
techniques failed to trace the fertilizers back in the shallow-
est soil layer 0–10 cm and were not able to reproduce small
changes in nitrate concentrations in the unfertilized control
plot. Based on the study, we can conclude that EMI and ERT
are suitable for detecting different fertilization levels in a clay
soil if the fertilization differences are large enough but fail if
concentrations are extremely small, such as those in 10-year-
old bare soil without fertilization. Nevertheless, the study
showed that the geophysical measurements are suitable for
detecting differences in fertilization even over a longer time
span of more than 1 year. In addition, we observed that rel-
atively high SWC conditions are the most appropriate con-
ditions in which to identify differences in fertilization states.
Based on the findings presented, we recommend not neglect-
ing the past fertilization practices in EMI studies, especially
if larger are surveyed with different fertilization practices or
crops with different fertilizer demands are surveyed.
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