Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-843-2024
https://doi.org/10.5194/soil-10-843-2024
Original research article
 | 
04 Dec 2024
Original research article |  | 04 Dec 2024

Uncovering soil compaction: performance of electrical and electromagnetic geophysical methods

Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari

Related authors

Brief communication: Use of lightweight and low-cost steel net electrodes for electrical resistivity tomography (ERT) surveys performed on coarse-blocky surface environments
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
The Cryosphere, 19, 4141–4148, https://doi.org/10.5194/tc-19-4141-2025,https://doi.org/10.5194/tc-19-4141-2025, 2025
Short summary
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023,https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Induced Electromagnetic prospecting for the characterization of the European southernmost glacier: the Calderone Glacier, Apennines, Italy
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190,https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary

Cited articles

Alaoui, A. and Diserens, E.: Mapping soil compaction – A review, Curr. Opin. Environ. Sci. Heal., 5, 60–66, https://doi.org/10.1016/j.coesh.2018.05.003, 2018. 
Anjos, L., Gaistardo, C., Deckers, J., Dondeyne, S., Eberhardt, E., Gerasimova, M., Harms, B., Jones, A., Krasilnikov, P., Reinsch, T., Vargas, R., and Zhang, G.: World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps, edited by: Schad, P., Van Huyssteen, C., and Micheli, E., Rome (Italy), FAO, 2015, JRC91947, https://publications.jrc.ec.europa.eu/repository/handle/JRC91947, 2014. 
Batey, T. and McKenzie, D. C.: Soil compaction: Identification directly in the field, Soil Use Manag., 22, 123–131, https://doi.org/10.1111/j.1475-2743.2006.00017.x, 2006. 
Benevenute, P. A. N., de Morais, E. G., Souza, A. A., Vasques, I. C. F., Cardoso, D. P., Sales, F. R., Severiano, E. C., Homem, B. G. C., Casagrande, D. R., and Silva, B. M.: Penetration resistance: An effective indicator for monitoring soil compaction in pastures, Ecol. Indic., 117, 106647, https://doi.org/10.1016/j.ecolind.2020.106647, 2020. 
Berisso, F. E., Schjønning, P., Keller, T., Lamandé, M., Etana, A., De Jonge, L. W., Iversen, B. V, Arvidsson, J., and Forkman, J.: Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil, Soil Till. Res., 122, 42–51, https://doi.org/10.1016/j.still.2012.02.005, 2012. 
Download
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Share