Articles | Volume 10, issue 2
https://doi.org/10.5194/soil-10-813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-813-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil organic matter interactions along the elevation gradient of the James Ross Island (Antarctica)
Vítězslav Vlček
CORRESPONDING AUTHOR
Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
David Juřička
Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
Martin Valtera
Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
Helena Dvořáčková
Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Vojtěch Štulc
Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Michaela Bednaříková
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
Jana Šimečková
Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Peter Váczi
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
Miroslav Pohanka
Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
Pavel Kapler
Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Miloš Barták
Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
Vojtěch Enev
Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
Related authors
Antonín Kintl, Vítězslav Vlček, Martin Brtnický, Jan Nedělník, and Jakub Elbl
SOIL, 8, 349–372, https://doi.org/10.5194/soil-8-349-2022, https://doi.org/10.5194/soil-8-349-2022, 2022
Short summary
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
Antonín Kintl, Vítězslav Vlček, Martin Brtnický, Jan Nedělník, and Jakub Elbl
SOIL, 8, 349–372, https://doi.org/10.5194/soil-8-349-2022, https://doi.org/10.5194/soil-8-349-2022, 2022
Short summary
Short summary
We have started to address this issue because the application of wetting agents is very widespread within the European Union and is often considered desirable because it increases the effectiveness of pesticides. While pesticides are thoroughly tested for their impact on the environment as a whole, testing for the effects of wetting agents is minimal. Today, there is no research on their impact on the soil environment.
Cited articles
Aerts, R.: Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship, Oikos, 79, 439–449, https://doi.org/10.2307/3546886, 1997.
Alaei, L., Ashengroph, M., and Moosavi-Movahedi, A. A.: The concept of protein folding/unfolding and its impacts on human health, Adv. Protein Chem. Str., 126, 227–278, https://doi.org/10.1016/bs.apcsb.2021.01.007, 2021.
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., and Borrelli, P.: Global phosphorus shortage will be aggravated by soil erosion, Nat. Commun., 11, 4546, https://doi.org/10.1038/s41467-020-18326-7, 2020.
Arenz, B. E., Blanchette, R. A., and Farrell, R. L.: Fungal diversity in Antarctic soils, in: Antarctic Terrestrial Microbiology, edited by: Cowan, D. A., Springer-Verlag, Berlin Heiderberg, 35–53, https://doi.org/10.1007/978-3-642-45213-0_3, 2014.
Barták, M., Váczi, P., Stachoň, Z., and Kubešová, S.: Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures, Czech Polar Rep., 5, 75–87, https://doi.org/10.5817/CPR2015-1-8, 2015.
Basu, S., Rabara, R. C., and Negi, S.: AMF: The future prospect for sustainable agriculture, Physiol. Mol. Plant P., 102, 36–45, https://doi.org/10.1016/j.pmpp.2017.11.007, 2018.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47, 151–163, https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Blackwell, M.: Evolution. Terrestrial life – fungal from the start?, Science, 289, 1884–1885, https://doi.org/10.1126/science.289.5486.1884, 2000.
Błaszkowski, J.: Glomeromycota, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 303 pp., ISBN 978-83-89648-82-2, 2012.
Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V., and Mazzoleni, S.: Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than and Lignin N ratios, Soil Biol. Biochem., 56, 40–48, https://doi.org/10.1016/j.soilbio.2012.03.003, 2013.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254, https://doi.org/10.1016/0003-2697(76)90527-3, 1976.
Bridge, P. D. and Newsham, K. K.: Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning, Fungal Ecol., 2, 66–74, https://doi.org/10.1016/j.funeco.2008.10.008, 2009.
Campbell, I. B. and Claridge, G. G. C.: Antarctica: Soils, Weathering Processes and Environment. Developments in Soil Science 16, Elsevier Science, 367 pp., ISBN 9780444427847, 1987.
Cross, A. F. and Schlesinger, W. H.: Biological and geochemical controls on phosphorus fractions in semiarid soils, Biogeochemistry, 52, 155–172, https://doi.org/10.1023/A:1006437504494, 2001.
Czech Geological Survey: James Ross Island – Northern Part. Topographic map 1 : 25 000, CGS, Praha, ISBN 978-80-7075-734-5, 2009.
Durán, J., Rodríguez, A., Heiðmarsson, S., Lehmann, J. R. K., del Moral, Á., Garrido-Benavent, I., and De los Ríos, A.: Cryptogamic cover determines soil attributes and functioning in polar terrestrial ecosystems, Sci. Total Environ., 762, 143169, https://doi.org/10.1016/j.scitotenv.2020.143169, 2021.
FAO: Measuring and modelling soil carbon stock and stock changes in livestock production systems. Guidelines for assessment (Version 1), Livestock Environmental Assessment and Performance (LEAP) Partnership, FAO, Rome, 170 pp., ISBN 978-92-5-131408-1, 2019.
Fassbender, A. J., Orr, J. C., and Dickson, A. G.: Technical note: Interpreting pH changes, Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, 2021.
Filippelli, G. M. and Souch, C.: Effects of climate and landscape development on the terrestrial phosphorus cycle, Geology, 27, 171–174, https://doi.org/10.1130/0091-7613(1999)027<0171:EOCALD>2.3.CO;2, 1999.
Fitter, A. H., Heinemeyer, A., and Staddon, P. L.: The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach, New Phytol., 147, 179–187, https://doi.org/10.1046/j.1469-8137.2000.00680.x, 2008.
Gao, M. R., Xu, Q. D., He, Q., Sun, Q., and Zeng, W.-C.: A theoretical and experimental study: the influence of different standards on the determination of total phenol content in the Folin–Ciocalteu assay, J. Food Meas. Charact., 13, 1349–1356, https://doi.org/10.1007/s11694-019-00050-6, 2019.
Gillespie, A. W., Farrell, R. E., Walley, F. L., Ross, A. R., Leinweber, P., Eckhardt, K. U., Regier, T. Z., and Blyth, R. I.: Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials, Soil. Biol. Biochem., 43, 766–777, https://doi.org/10.1016/j.soilbio.2010.12.010, 2011.
Golchin, A., Baldock, J. A., and Oades, J. M.: A model linking organic matter decomposition, chemistry, and aggregate dynamics, in: Soil processes and the carbon cycle, edited by: Lal, R., Kimble, J. M., Follet, F., and Stewart, B. A., CRC Press, 245–266, https://doi.org/10.1201/9780203739273, 2018.
Green, T. G. A., Nash, T. H., and Lange, O. L.: Physiological ecology of carbon dioxide Exchange, in: Lichen Biology, edited by: Nash III, T. H., Cambridge University Press, 152–181, https://doi.org/10.1017/CBO9780511790478.010, 2008.
Grewal, K. S., Buchan, G. D., and Sherlock, R. R.: Comparison of three methods of organic carbon determination in some New Zealand soils, Eur. J. Soil Sci., 42, 251–257, https://doi.org/10.1111/j.1365-2389.1991.tb00406.x, 1991.
Harper, C. J., Taylor, T. N., Krings, M., and Taylor, E. L.: Mycorrhizal symbiosis in the Paleozoic seed fern Glossopteris from Antarctica, Rev. Palaeobot. Palyno., 192, 22–31, https://doi.org/10.1016/j.revpalbo.2013.01.002, 2013.
Holátko, J., Brtnický, M., Kučerík, J., Kotianová, M., Elbl, J., Kintl, A., Kynický, J., Benada, O., Datta, R., and Jansa, J.: Glomalin – Truths, myths, and the future of this elusive soil glycoprotein, Soil Biol. Biochem., 153, 108116, https://doi.org/10.1016/j.soilbio.2020.108116, 2021.
Houghton, R. A.: Balancing the global carbon budget, Annu. Rev. Earth Pl. Sc., 35, 313–347, https://doi.org/10.1146/annurev.earth.35.031306.140057, 2007.
Huang, Y., Wang, D. W., Cai, J. L., and Zheng, W. S.: Review of glomalin-related soil protein and its environmental function in the rhizosphere, Chin. J. Plant Ecol., 35, 232–236, https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00232 (last access: 14 November 2024), 2011.
Kelley, A. P.: Mycotrophy in plants. Chronica Botanica, Waltham, MA, 223 pp., ISBN-13 978-1121005679, 1950.
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M., and Hefting, M. M.: Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems, Method. Ecol. Evol., 4, 1070–1075, https://doi.org/10.1111/2041-210X.12097, 2013.
Kondratyuk, S. Y. and Kärnefelt, I.: Revision of three natural groups of xanthorioid lichens (Teloschistaceae, Ascomycota), Ukrainskiy Botanichnyi Zhurnal, 60, 427–437, 2003.
Kouchi, H., Shimomura, K., Hata, S., Hirota, A., Wu, G. J., Kumagai, H., Tajima, S., Suganuma, N., Suzuki, A., Aoki, T., Hayashi, M., Yokoyama, T., Ohyama, T., Asamizu, E., Kuwata, Ch., Shibata, D., and Tabata, S.: Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus, DNA Res., 11, 263–274, https://doi.org/10.1093/dnares/11.4.263, 2004.
Láska, K. and Prošek, P.: Klima a klimatický výzkum ostrova James Ross, in: Antarktida, edited by: Prošek, P., Academia, 348 pp., ISBN 978-80-200-2140-3, 2013.
Lovato, P. E., Schuepp, H., Trouvelot, A., and Gianinazzi, S.: Application of arbuscular mycorrhizal fungi (AMF) in orchid and ornamental plants, in: Mycorrhiza, edited by: Varma, A. and Hock, B., Springer, Berlin Heidelberg New York, 443–468, https://doi.org/10.1007/978-3-662-03779-9_19, 1995.
Makkonen, M., Berg, M. P., Handa, I. T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P. M., and Aerts, R.: Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 15, 1033–1041, https://doi.org/10.1111/j.1461-0248.2012.01826.x, 2012.
Martins, M. C. B., de Lima, M. J. G., Silva, F. P., Azevedo-Ximenes, E., da Silva, N. H., and Pereira, E. C.: Cladia aggregata (lichen) from Brazilian Northeast: chemical characterization and antimicrobial activity, Braz. Arch. Biol. Techn., 53, 115–122, https://doi.org/10.1590/S1516-89132010000100015, 2010.
Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G., Ritz, C., Guilyardi, E., Jouzel, J., Abe-Ouchi, A., Crucifix, M., Gladstone, R. M., Hewitt, C. D., Kitoh, A., LeGrande, A. N., Marti, O., Merkel, U., Motoi, T., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Ross, I., Valdes, P. J., Vettoretti, G., Weber, S. L., Wolk, F., and Yu, Y.: Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints, Clim. Dynam., 26, 513–529, https://doi.org/10.1007/s00382-005-0081-9, 2006.
Matějka, M., Láska, K., Jeklová, K., and Hošek, J.: High-Resolution Numerical Modelling of Near-Surface Atmospheric Fields in the Complex Terrain of James Ross Island, Antarctic Peninsula, Atmosphere-Basel, 12, 360, https://doi.org/10.3390/atmos12030360, 2021.
McCraw, J. D.: Soils of the Ross Dependency, Antarctica. A preliminary note, N. Z. Soc. Soil Sci. Proc., 4, 30–35, 1960.
Mehlich, A.: Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant, Commun. Soil Sci. Plan., 15, 1409–1416, https://doi.org/10.1080/00103628409367568, 1984.
Melo, C. D., Walker, C., Krüger, C., Borges, P. A. V., Luna, S., Mendoca, D., Fonseca, H. M. A. C., and Machado, A. C.: Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconiaazorica on native forest of Azores, Ann. Microbiol., 69, 1309–1327, https://doi.org/10.1007/s13213-019-01535-x, 2019.
Mlčoch, B., Nývlt, D., and Mixa, P.: Geological map of James Ross Island Northern Part 1 : 25 000, Czech Geol. Survey, Prague, ISBN 978-80-7075-996-7, 2020.
Paul, E. (Ed.): Soil microbiology, ecology and biochemistry, Academic Press, 604 pp., ISBN 9780124159556, 2014.
Pirozynski, K. A. and Malloch, D. W.: The origin of land plants: a matter of mycotropism, Biosystems, 6, 153–164, https://doi.org/10.1016/0303-2647(75)90023-4, 1975.
Pohanka, M. and Vlček, V.: Assay of glomalin using a quartz crystal microbalance biosensor, Electroanalysis, 30, 453–458, https://doi.org/10.1002/elan.201700772, 2018.
Pospíšilová, L., Vlček, V., Hybler, V., and Uhlík, P.: Carbon content and macroelement in cryosols, Humic Substances Research, 13, 13–17, 2017.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 15 December 2022), 2022.
Rackley, S. A.: Carbon capture and storage, Butterworth-Heinemann, 698 pp., ISBN 9780128120415, 2017.
Rayner, M. C.: Mycorrhiza – An Account of Non-Pathogenic Infection by Fungi in Vascular Plants and Bryophytes, White Press, ISBN-10: 152870763X, ISBN-13: 978-1528707633, 2018.
Redecker, D., Kodner, R., and Graham, L. E.: Glomalean fungi from the Ordovician, Science, 289, 1920–1921, https://doi.org/10.1126/science.289.5486.1920, 2000.
Remy, W., Taylor, T. N., Hass, H., and Kerp, H.: Four hundred-million-year-old vesicular arbuscular mycorrhizae, P. Natl. Acad. Sci. USA, 91, 11841–11843, https://doi.org/10.1073/pnas.91.25.11841, 1994.
Röder, J., Detsch, F., Otte, I., Appelhans, T., Nauss, T., Peters, M. K., and Brandl, R.: Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient, Biotropica, 49, 217–228, https://doi.org/10.1111/btp.12403, 2016.
Russell, J. and Bulman, S.: The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus, New Phytol., 165, 567–579, https://doi.org/10.1111/j.1469-8137.2004.01251.x, 2005.
Santiago, R., Silva, N. H., Silva, F. P., Martins, M. C. B., de Vasconcelos, T. L., Yano-Melo, A. M., and Pereira, E. C.: Interactions of the lichen Cladonia salzmannii Nyl. with soil, microbiota, mycorrhizae and Genipa Americana, J. Soil Sci. Plant Nut., 18, 833–850, https://doi.org/10.4067/S0718-95162018005002402, 2018.
Schüßler, A., Schwarzott, D., and Walker, Ch.: A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 105, 1413–1421, https://doi.org/10.1017/S0953756201005196, 2001.
Shukla, V., Bajpai, R., Pandey, U., and Upreti, D. K.: Do Lichens have the Ability to Remove Arsenic from Water?, Int. J. Plant Environ., 5, 47–49, https://doi.org/10.18811/ijpen.v5i01.8, 2019.
Siewert, Ch.: Rapid screening of soil properties using thermogravimetry, Soil Sci. Soc. Am. J., 68, 1656–1661, https://doi.org/10.2136/sssaj2004.1656, 2004.
Simon, L., Bousquet, J., Levesque, R. C., and Lalonde, M.: Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants, Nature, 363, 67–69, https://doi.org/10.1038/363067a0, 1993.
Smith, S. E. and Read, D. J.: Mycorrhizal Symbiosis. San Diego, CA, Academic Press, https://doi.org/10.1016/B978-0-12-652840-4.X5000-1, 1997.
Smith, S. E. and Read, D. J.: Mycorrhizal Symbiosis, Academic Press, San Diego, USA, 800 pp., https://doi.org/10.1016/B978-0-12-370526-6.X5001-6, 2008.
Stark, S. and Hyvärinen, M.: Are phenolics leaching from the lichen Cladina stellaris sources of energy rather than allelophatic agents for soil microorganisms?, Soil Biol. Biochem., 35, 1381–1385, https://doi.org/10.1016/S0038-0717(03)00217-7, 2003.
Strelin, J. A. and Sone, T.: Rock glaciers on James Ross Island, Antarctica, in: Permafrost, 7th International Conference Proceedings, Yellowknife (Canada), edited by: Lewkowicz, A. G. and Allard, M., Collection Nordicana University Laval, Quebec, 1027–1032, 23–27 June 1998, OCLC No 40770716, ISBN: 9782920197572, 2920197576, 1998.
Swati, J., Bajpai, A., and Narain Johri, B.: Extremophilic fungi at the interface of climate change, in: Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology, edited by: Kumar, V. S., Shah, M. P., Parmar, S., and Kumar, A., Academic Press, 1–22, ISBN 9780128219256, https://doi.org/10.1016/B978-0-12-821925-6.00001-0, 2021.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cy., 23, GB2023, https://doi.org/10.1029/2008GB003327, 2009.
Tigre, R. C., Silva, N. H., Santos, M. G., Honda, N. K., Falcao, E. P. S., and Pereira, E. C.: Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa, Ecotoxicol. Environ. Safety, 84, 125–132, https://doi.org/10.1016/j.ecoenv.2012.06.026, 2012.
Tóth, Z., Táncsics, A., Kriszt, B., Kröel-Dulay, G., Ónodi, G., and Hornung, E.: Extreme effects of drought on composition of the soil bacterial community and decomposition of plant tissue, Eur. J. Soil Sci., 68, 504–513, https://doi.org/10.1111/ejss.12429, 2017.
Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S.: Antarctic climate change during the last 50 years, Int. J. Climatol., 25, 279–294, https://doi.org/10.1002/joc.1130, 2005.
Utaile, Y. U., Honnay, O., Muys, B., Cheche, S. S., and Helsen, K.: Effect of Dichrostachys cinerea encroachment on plant species diversity, functional traits and litter decomposition in an East‐African savannah ecosystem, J. Veg. Sci., 32, e12949, https://doi.org/10.1111/jvs.12949, 2021.
van Bemmelen, J. M.: Über die Bestimmungen des Wassers, den Humus, des Schwefels, der in den colloidalen Silikaten gebunden Kieselsäuren, des Mangans, u.s.w. im Ackerboden, Landwirtschaftliche Versuch Station, 37, 279–290, 1889.
Vingiani, S., Adamo, P., and Giordano, S.: Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area, Environ. Pollut., 129, 145–158, https://doi.org/10.1016/j.envpol.2003.09.016, 2004.
Vlček, V., Pospíšilová, L., and Uhlík, P.: Mineralogy and chemical composition of Cryosols and Andosols in Antarctica, Soil Water Res., 13, 61–73, https://doi.org/10.17221/231/2016-SWR, 2018.
Walkley, A.: A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils: Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents, Soil Sci., 63, 251–264, https://doi.org/10.1097/00010694-194704000-00001, 1947.
Walkley, A. and Black, I. A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29–38, https://doi.org/10.1097/00010694-193401000-00003, 1934.
Wilcke, W., Oelmann, Y., Schmitt, A., Valarezo, C., Zech, W., and Homeier, J.: Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest, J. Plant Nutr. Soil Sc., 171, 220–230, https://doi.org/10.1002/jpln.200625210, 2008.
Wright, S. F. and Anderson, R. L.: Aggregate stability and glomalin in alternative crop rotations for the central Great Plains, Biol. Fert. Soils, 31, 249–253, https://doi.org/10.1007/s003740050653, 2000.
Wright, S. F. and Upadhyaya, A.: Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi, Soil Sci., 161, 575–586, https://doi.org/10.1097/00010694-199609000-00003, 1996.
Wuest, S. B., Caesar-TonThat, T. C., Wright, S. F., and Williams, J. D.: Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt–loam soil, Soil Till. Res., 84, 154–167, https://doi.org/10.1016/j.still.2004.11.008, 2005.
Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T., Miltner, A., and Schroth, G.: Factors controlling humification and mineralization of soil organic matter in the tropics, Geoderma, 79, 117–161, https://doi.org/10.1016/S0016-7061(97)00040-2, 1997.
Zhu, R., Wang, Q., Wang, C., Hou, L., and Ma, D.: Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils, Sci. Rep.-UK, 4, 7055, https://doi.org/10.1038/srep07055, 2014.
Zhu, Y.-G. and Miller, R. M.: Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems, Trends Plant Sci., 8, 407–409, https://doi.org/10.1016/s1360-1385(03)00184-5, 2003.
Zvěřina, O., Coufalík, P., Vaculovič, T., Kuta, J., Zeman, J., and Komárek, J.: Macro-and microelements in soil profile of the moss-covered area in James Ross Island, Antarctica, Czech Polar Rep., 2, 1–7, https://doi.org/10.5817/CPR2012-1-1, 2012.
Short summary
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and various soil properties. Nine plots across an altitudinal range from 10 to 320 m were investigated in the deglaciated region of James Ross Island (Antarctica). Our results indicate that the primary factor influencing the SOC content is likely not altitude or coarse-fraction content; rather, other hard-to-quantify factors, such as the presence of liquid water during the summer period, impact SOC content.
The aim of this work was to evaluate the correlation between soil organic carbon (SOC) and...