Journal cover Journal topic
SOIL An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.343 IF 3.343
  • IF 5-year value: 4.963 IF 5-year
    4.963
  • CiteScore value: 9.6 CiteScore
    9.6
  • SNIP value: 1.637 SNIP 1.637
  • IPP value: 4.28 IPP 4.28
  • SJR value: 1.403 SJR 1.403
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 25 Scimago H
    index 25
Volume 1, issue 1
SOIL, 1, 273–286, 2015
https://doi.org/10.5194/soil-1-273-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Geosciences and wine: the environmental processes that regulate...

SOIL, 1, 273–286, 2015
https://doi.org/10.5194/soil-1-273-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 17 Mar 2015

Review article | 17 Mar 2015

The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards

L. Brillante et al.

Related authors

The longest homogeneous series of grape harvest dates, Beaune 1354–2018, and its significance for the understanding of past and present climate
Thomas Labbé, Christian Pfister, Stefan Brönnimann, Daniel Rousseau, Jörg Franke, and Benjamin Bois
Clim. Past, 15, 1485–1501, https://doi.org/10.5194/cp-15-1485-2019,https://doi.org/10.5194/cp-15-1485-2019, 2019
Short summary

Related subject area

Soils and plants
Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise-à-la-masse: a vineyard infiltration experiment
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Nicola Cenni, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
SOIL, 6, 95–114, https://doi.org/10.5194/soil-6-95-2020,https://doi.org/10.5194/soil-6-95-2020, 2020
Short summary
Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents
Jörg Niederberger, Martin Kohler, and Jürgen Bauhus
SOIL, 5, 189–204, https://doi.org/10.5194/soil-5-189-2019,https://doi.org/10.5194/soil-5-189-2019, 2019
Short summary
Bone char effects on soil: sequential fractionations and XANES spectroscopy
Mohsen Morshedizad, Kerstin Panten, Wantana Klysubun, and Peter Leinweber
SOIL, 4, 23–35, https://doi.org/10.5194/soil-4-23-2018,https://doi.org/10.5194/soil-4-23-2018, 2018
Short summary
Leaf waxes in litter and topsoils along a European transect
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016,https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
Martina I. Gocke, Fabian Kessler, Jan M. van Mourik, Boris Jansen, and Guido L. B. Wiesenberg
SOIL, 2, 537–549, https://doi.org/10.5194/soil-2-537-2016,https://doi.org/10.5194/soil-2-537-2016, 2016
Short summary

Cited articles

Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., and Rossi, R.: In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging, Tree Physiology, 28, 1441–1448, 2008.
Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., and Gomes, J. J. F.: Multi-electrode 3D resistivity imaging of alfalfa root zone, European J. Agronomy, 31, 213–222, https://doi.org/10.1016/j.eja.2009.08.005, 2009.
Amente, G., Baker, J., and Reece, C.: Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils, Soil Sci. Soc. Am. J., 64, 1931–1939, 2000.
André, F., van Leeuwen, C., Saussez, S., Van Durmen, R., Bogaert, P., Moghadas, D., de Rességuier, L., Delvaux, B., Vereecken, H., and Lambot, S.: High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography, J. Appl. Geophys., 78, 113–122, https://doi.org/10.1016/j.jappgeo.2011.08.002, 2012.
Andrenelli, M. C., Magini, S., Pellegrini, S., Perria, R., Vignozzi, N., and Costantini, E. A. C.: The use of the ARP\textcopyright system to reduce the costs of soil survey for precision viticulture, J. Appl. Geophys., 99, 24–34, https://doi.org/10.1016/j.jappgeo.2013.09.012, 2013.
Publications Copernicus
Download
Short summary
The available soil water (ASW) is a major contributor to the viticulture "terroir". Electrical resistivity tomography (ERT) allows for measurements of soil water accurately and with low disturbance. This work reviews the use of ERT to spatialise soil water and ASW. A case example is also presented: differences in water uptake (as evaluated by fraction of transpirable soil water variations) depending on grapevine water status (as measured by leaf water potential) are evidenced and mapped.
The available soil water (ASW) is a major contributor to the viticulture "terroir". Electrical...
Citation