Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Eliza Maher Hasselquist
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Johan Stendahl
Department of Soil and Environment, Swedish University of Agricultural
Science, Uppsala 756 51, Sweden
Mats B. Nilsson
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Siddhartho S. Paul
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Related authors
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
Hydrol. Earth Syst. Sci., 29, 5493–5513, https://doi.org/10.5194/hess-29-5493-2025, https://doi.org/10.5194/hess-29-5493-2025, 2025
Short summary
Short summary
We investigated the factors influencing spatial and temporal variations in soil moisture across a boreal forest catchment in northern Sweden. We found that soil moisture is shaped by topography, soil properties, vegetation characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Tiia Määttä, Ankur Desai, Masahito Ueyama, Rodrigo Vargas, Eric J. Ward, Zhen Zhang, Gil Bohrer, Kyle Delwiche, Etienne Fluet-Chouinard, Järvi Järveoja, Sara Knox, Lulie Melling, Mats B. Nilsson, Matthias Peichl, Angela Che Ing Tang, Eeva-Stiina Tuittila, Jinsong Wang, Sheel Bansal, Sarah Feron, Manuel Helbig, Aino Korrensalo, Ken W. Krauss, Gavin McNicol, Shuli Niu, Zutao Ouyang, Kathleen Savage, Oliver Sonnentag, Robert Jackson, and Avni Malhotra
EGUsphere, https://doi.org/10.5194/egusphere-2025-5023, https://doi.org/10.5194/egusphere-2025-5023, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We compared ecosystem and plot-scale methane fluxes across wetland and upland sites. Ecosystem-scale fluxes were higher than at plot scale, but differences were small. Vapor pressure deficit, atmospheric pressure, turbulence, and wind direction affected the differences. Both scales could be combined for improved methane flux estimates at coarser temporal scales.
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
Hydrol. Earth Syst. Sci., 29, 5493–5513, https://doi.org/10.5194/hess-29-5493-2025, https://doi.org/10.5194/hess-29-5493-2025, 2025
Short summary
Short summary
We investigated the factors influencing spatial and temporal variations in soil moisture across a boreal forest catchment in northern Sweden. We found that soil moisture is shaped by topography, soil properties, vegetation characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Shirin Karimi, Virginia Mosquera, Eliza Maher Hasselquist, Järvi Järveoja, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 29, 2599–2614, https://doi.org/10.5194/hess-29-2599-2025, https://doi.org/10.5194/hess-29-2599-2025, 2025
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting significantly reduced peak flow and runoff coefficient and mitigated flashy hydrograph responses.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021, https://doi.org/10.5194/soil-7-377-2021, 2021
Short summary
Short summary
Forests store large amounts of carbon in soils. Implementing suitable measures to improve the sink potential of forest soils would require accurate data on the carbon stored in forest soils and a better understanding of the factors affecting this storage. This study showed that the prediction of soil carbon stock in Swedish forest soils can increase in accuracy when one divides a big region into smaller areas in combination with information collected locally and derived from satellites.
Cited articles
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use
of multiple LIDAR-derived digital terrain indices and machine learning for
high-resolution national-scale soil moisture mapping of the Swedish forest
landscape, Geoderma, 404, 115280,
https://doi.org/10.1016/j.geoderma.2021.115280, 2021.
Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G.
B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie,
N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O.
A., Sanchez, P. A., Thompson, J. A., and Zhang, G.-L.: Chapter Three –
GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties, in:
Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 93–134,
https://doi.org/10.1016/B978-0-12-800137-0.00003-0, 2014.
Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A., and Bright, R. M.: A
sensible climate solution for the boreal forest, Nat. Clim. Change, 8, 11–12,
https://doi.org/10.1038/s41558-017-0043-3, 2018.
Barthelmes, A., Couwenberg, J., Risager, M., Tegetmeyer, C., and Joosten,
H.: Peatlands and Climate in a Ramsar Context: A Nordic-Baltic Perspective,
Nordic Council of Ministers, ISBN 978-92-893-4196-7, 2015.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, E.: Peat deposits store
more carbon than trees in forested peatlands of the boreal biome, Sci.
Rep.-UK, 11, 2657, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Koppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Behrens, T., Schmidt, K., MacMillan, R. A., and Rossel, R. A. V.:
Multi-scale digital soil mapping with deep learning, Sci. Rep.-UK, 8, 15244, https://doi.org/10.1038/s41598-018-33516-6,
2018.
Berglund, O. and Berglund, K.: Distribution and cultivation intensity of
agricultural peat and gyttja soils in Sweden and estimation of greenhouse
gas emissions from cultivated peat soils, Geoderma, 154, 173–180,
https://doi.org/10.1016/j.geoderma.2008.11.035, 2010.
Burton, R. G. O.: The peat resources of Great Britain (Scotland, England and
Wales and Isle of Man), in: Global Peat Resources, edited by: Lappalainen, E., International Peat Society, Jyskä, Finland, 79–86, ISBN 952-90-7487-5, 1996.
Chen, T., He,
T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,
Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li, Y.: xgboost:
Extreme Gradient Boosting, R package version 1.0.0.2, CRAN repository [code] , https://mran.microsoft.com/snapshot/2020-05-05/web/packages/xgboost/index.html (last access: 25 November 2022), 2020.
Cheng, K., Xu, X. R., Cui, L. Q., Li, Y. P., Zheng, J. F., Wu, W. N., Sun,
J. F., and Pan, G. X.: The role of soils in regulation of freshwater and
coastal water quality, Philos. T. R. Soc. B, 376, 20200176,
https://doi.org/10.1098/rstb.2020.0176, 2021.
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genomics, 21, 6, https://doi.org/10.1186/s12864-019-6413-7,
2020.
Chicco, D., Warrens, M. J., and Jurman, G.: The Matthews Correlation
Coefficient (MCC) is More Informative Than Cohen's Kappa and Brier Score in
Binary Classification Assessment, IEEE Access, 9, 78368–78381,
https://doi.org/10.1109/ACCESS.2021.3084050, 2021.
Cohen, A., Klassen, S., and Evans, D.: Ethics in Archaeological Lidar,
Journal of Computer Applications in Archaeology, 3, 76–91,
https://doi.org/10.5334/jcaa.48, 2020.
Cohen, J.: A coefficient of agreement for nominal scales, Educ. Psychol. Meas.,
20, 37–46, 1960.
Creed, I. F., Sanford, S. E., Beall, F. D., Molot, L. A., and Dillon, P. J.:
Cryptic wetlands: integrating hidden wetlands in regression models of the
export of dissolved organic carbon from forested landscapes, Hydrol. Process.,
17, 3629–3648, https://doi.org/10.1002/hyp.1357, 2003.
Cruickshank, M. M. and Tomlinson, R. W.: Peatland in Northern Ireland:
inventory and prospect, Irish Geography, 23, 17–30,
https://doi.org/10.1080/00750779009478763, 1990.
Delgado, R. and Tibau, X. A.: Why Cohen's Kappa should be avoided as
performance measure in classification, Plos One, 14, e0222916,
https://doi.org/10.1371/journal.pone.0222916, 2019.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D.,
Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen,
M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos,
C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M.,
Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch,
T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L.,
Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S.
A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R.,
Lillesø, J.-P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari,
K. F., and Saleem, M.: An Ecoregion-Based Approach to Protecting Half the
Terrestrial Realm, BioScience, 67, 534–545,
https://doi.org/10.1093/biosci/bix014, 2017.
Franzen, L. G., Lindberg, F., Viklander, V., and Walther, A.: The potential
peatland extent and carbon sink in Sweden, as related to the Peatland/Ice
Age Hypothesis, Mires Peat, 10, 1–19, 2012.
Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., and
Ståhl, G.: Adapting National Forest Inventories to changing requirements
– the case of the Swedish National Forest Inventory at the turn of the 20th
century, Silva Fenn, 48, 1095, https://doi.org/10.14214/sf.1095, 2014.
Gunnarsson, U. and Löfroth, M.: Våtmarksinventeringen – resultat
från 25 års inventeringar Nationell slutrapport för
våtmarksinventeringen (VMI) i Sverige, Stockholm, 120, ISBN 978-91-620-5925-5,
2009 (in Swedish).
Hirvas, H., Lagerbäck, R., Mäkinen, K., Nenonen, K., Olsen, L.,
Rodhe, L., and Thoresen, M.: The Nordkalott Project: studies of Quaternary
geology in northern Fennoscandia, Boreas, 17, 431–437,
https://doi.org/10.1111/j.1502-3885.1988.tb00560.x, 1988.
Hounkpatin, K. O. L., Stendahl, J., Lundblad, M., and Karltun, E.: Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data, SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021, 2021.
Hånell, B.: Torvtäckta marker, dikning och sumpskogar i Svergie, Sveriges Lantbruksuniversitet,
Umeå, 6, ISSN 0280-7408, 1990.
Hånell, B.: Bilaga 4 – Möjligheterna till höjning av
skogsproduktionen i Sverige genom dikesrensning, dikning och gödsling av
torvmarker, in: Skogsskötsel för ökad tillväxt,
Faktaunderlag till MINT utredningen, edited by: Fahlvik, N., Johansson, U.,
and Nilsson, U., SLU, Alnarp, 26, ISBN 978-91-86197-43-8, 2009.
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W.
R., Kukla, G., Kutzbach, J., Martinson, D. G., Mcintyre, A., Mix, A. C.,
Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L.,
Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R.: On the Structure and
Origin of Major Glaciation Cycles 2. The 100,000-Year Cycle,
Paleoceanography, 8, 699–735, https://doi.org/10.1029/93PA02751, 1993.
Ivanov, K. E.: Water movement in mirelands, Academic Press, London England,
translated by: Arthur Thomson and Ingram, H. A. P., 276, ISBN 0123764602, 1981.
Jackson, R. B., Lajtha, K. Crow, S. E. Hugelius, G. Kramer, M. G., and
Pineiro G.: The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic
and Abiotic Controls, Annu. Rev. Ecol. Evol. S., 48, 419–445,
https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Jenny, H.: Factors of Soil Formation – A System of Quantitative Pedology,
Dover Publications, Inc., New York, ISBN 0486681289, 1941.
Joosten, H. and Clarke, D.: Wise use of mires and peatlands – Background and
principles including a framework for decision-making, Saarijärvi,
Finland, 304, ISBN 951-97744-8-3, 2002.
Karlsson, C., Sohlienius, G., and Peterson Becher, G.: Handledning för
jordartsgeologiska kartor och databaser över Sverige, Sveriges Geologiska Undersökning,
Uppsala, 83, https://resource.sgu.se/dokument/publikation/sgurapport/sgurapport202117rapport/s2117-rapport.pdf (last access: 29 November 2022), 2021 (in Swedish).
Kuglerova, L., Ågren, A., Jansson, R., and Laudon, H.: Towards
optimizing riparian buffer zones: Ecological and biogeochemical implications
for forest management, Forest Ecol. Manag., 334, 74–84,
https://doi.org/10.1016/j.foreco.2014.08.033, 2014a.
Kuglerova, L., Jansson, R., Ågren, A., Laudon, H., and Malm-Renofalt,
B.: Groundwater discharge creates hotspots of riparian plant species
richness in a boreal forest stream network, Ecology, 95, 715–725,
https://doi.org/10.1890/13-0363.1, 2014b.
Kuglerova, L., Dynesius, M., Laudon, H., and Jansson, R.: Relationships
Between Plant Assemblages and Water Flow Across a Boreal Forest Landscape: A
Comparison of Liverworts, Mosses, and Vascular Plants, Ecosystems, 19,
170–184, https://doi.org/10.1007/s10021-015-9927-0, 2016.
Laamrani, A., Valeria, O., Bergeron, Y., Fenton, N., Cheng, L. Z., and
Anyomi, K.: Effects of topography and thickness of organic layer on
productivity of black spruce boreal forests of the Canadian Clay Belt
region, Forest Ecol. Manag., 330, 144–157,
https://doi.org/10.1016/j.foreco.2014.07.013, 2014.
Lantmäteriet: Product Description, GSD-Property map, vector, Document version 6.2.7, report, 153, 2020.
Lappalainen, E. and Hänninen, P.: Suomen turvevarat, The peat reserves
of Finland, Espoo, Finland, 133, 1–19, 1993.
Latifovic, R., Pouliot, D., and Campbell, J.: Assessment of Convolution
Neural Networks for Surficial Geology Mapping in the South Rae Geological
Region, Northwest Territories, Canada, Remote Sens.-Basel, 10, 1–19,
https://doi.org/10.3390/rs10020307, 2018.
Lidberg, W., Nilsson, M., and Ågren, A.: Using machine learning to
generate high-resolution wet area maps for planning forest management: A
study in a boreal forest landscape, Ambio, 49, 475–486,
https://doi.org/10.1007/s13280-019-01196-9, 2020.
Loisel, J., Yu, Z. C., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,
Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R.,
Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F.,
Fialkiewicz-Koziel, B., Finkelstein, S. A., Galka, M., Garneau, M.,
Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C.,
Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz,
M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Makila, M., Mallon,
G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J.,
O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H.,
Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C.,
Thom, T., Tuittila, E. S., Turetsky, M., Valiranta, M., van der Linden, M.,
van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W. J.: A
database and synthesis of northern peatland soil properties and Holocene
carbon and nitrogen accumulation, Holocene, 24, 1028–1042,
https://doi.org/10.1177/0959683614538073, 2014.
Löfgren, P.: Skogsmark, samt träd- och buskmark inom fjällomradet, Arbetsrapport 34, Sveriges lantbruksuniversitet, Umeå, 13 pp., ISSN 1401-1204, 1998 (in Swedish).
Matthews, B. W.: Comparison of the predicted and observed secondary
structure of T4 phage lysozyme, Biochim. Biophys. Acta, 405, 442–451,
https://doi.org/10.1016/0005-2795(75)90109-9, 1975.
McGarty, C., Mavor, K. I., and Skorich, D. P.: Social categorization, in: International Encyclopedia of the Social & Behavioral
Sciences, edited by: Wright, J.
D., 186–191, https://doi.org/10.1016/B978-0-08-097086-8.24091-9,
2015.
Minasny, B., Berglund, O., Connolly, J., Hedley, C., de Vries, F., Gimona,
A., Kempen, B., Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P.,
O'Rourke, S., Rudiyanto, Padarian, J., Poggio, L., ten Caten, A., Thompson,
D., Tuve, C., and Widyatmanti, W.: Digital mapping of peatlands – A critical
review, Earth-Sci. Rev., 196, 102870,
https://doi.org/10.1016/j.earscirev.2019.05.014, 2019.
Nijp, J. J., Metselaar, K. Limpens, J. Bartholomeus, H. M. Nilsson, M. B.
Berendse, F., and van der Zee S. E. A. T. M.: High-resolution peat volume
change in a northern peatland: Spatial variability, main drivers, and impact
on ecohydrology, Ecohydrology, 12, e2114, https://doi.org/10.1002/eco.2114,
2019.
Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H., and
Ranneby, B.: Methane emission from Swedish mires: National and regional
budgets and dependence on mire vegetation, J. Geophys. Res.-Atmos., 106,
20847–20860, https://doi.org/10.1029/2001JD900119, 2001.
Nilsson, T., Lundblad, M., and Karltun, E.: Förändring av torvmarksrelaterade
variabler på skogsmark mellan omdreven och
taxeringsår – Data från Riksskogstaxeringen (RT) och Markinventeringen
(MI), med koppling till vissa klimatdata från SMHI
Rapport no 17, Institutionen för mark och miljö, Sveriges Lantbruksuniversitet, Sveriges Metrologiska och Hydrologiska Institut, Norrköping, 62, ISSN 1653-8102, 2018 (in Swedish).
Olsen, L., Sveian, H., Ottesen, D., and Rise, L.: Quaternary glacial,
interglacial and interstadial deposits of Norway and adjacent onshore and
offshore areas., in: Quaternary Geology of Norway, edited by: Olsen, L.,
Fredin, O., and Olesen, O., Geological Survey of Norway Special Publication,
79–144, ISBN 978-82-7385-153-6, 2013.
Olsson, B. and Ledwith, M.: National Land Cover Database (NMD)
– Product Description, English version, Swedish Environmental Protection Agency, Stockholm, 13, 2020.
Olsson, M.: Soil survey in Sweden, In: Soil resources of Europe, edited by: Bullock, P., Jones, R. J. A., and Montanarella, L., The European Soil Bureau. Research Report No.6, EUR 18991 EN, Joint Research Centre, Ispra, Italy, 145–151, 1999.
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, A., and
Stendahl, J.: Organic Carbon Stocks in Swedish Podzol Soils in Relation to
Soil Hydrology and Other Site Characteristics, Silva Fenn., 43, 209–222,
https://doi.org/10.14214/sf.207, 2009.
O'Neil, G. L., Goodall, J. L., Behl, M., and Saby, L.: Deep learning Using
Physically-Informed Input Data for Wetland Identification, Environ. Modell.
Softw., 126, 104665, https://doi.org/10.1016/j.envsoft.2020.104665, 2020.
Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz,
W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais,
P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., Rautiainen,
A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the
World's Forests, Science, 333, 988–993,
https://doi.org/10.1126/science.1201609, 2011.
Ploum, S. W., Leach, J. A., Kuglerová, L., and Laudon, H.: Thermal
detection of discrete riparian inflow points (DRIPs) during contrasting
hydrological events, Hydrol. Process., 32, 3049–3050,
https://doi.org/10.1002/hyp.13184, 2018.
Pouliot, D., Latifovic, R., Pasher, J., and Duffe, J.: Assessment of
Convolution Neural Networks for Wetland Mapping with Landsat in the Central
Canadian Boreal Forest Region, Remote Sens.-Basel, 11, 772,
https://doi.org/10.3390/rs11070772, 2019.
Prince, A., Franssen, J., Lapierre, J. F., and Maranger, R.: High-resolution
broad-scale mapping of soil parent material using object-based image
analysis (OBIA) of LiDAR elevation data, Catena, 188, 104422,
https://doi.org/10.1016/j.catena.2019.104422, 2020.
Rydin, H. and Jeglum, J. K.: The biology of peatlands, Second edition,
Oxford Univesity Press, Oxford, 381, ISBN 9780199603008, 2013.
Rydin, H., Sjörs, H., and Löfroth, M.: Mires, in: Swedish plant
geography, edited by: Rydin, H., Snoeijs, P., and Diekmann, M., Acta
Phytogeographica Suecica, TK-tryck, Uppsala, 91–112, ISBN 91-72 1 0-084-2, 1999.
Saco, P. M., McDonough, K. R., Rodriguez, J. F., Rivera-Zayas, J., and
Sandi, S. G.: The role of soils in the regulation of hazards and extreme
events, Philos. T. R. Soc. B, 376, 20200178,
https://doi.org/10.1098/rstb.2020.0178, 2021.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global
soil carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Schöllin, M. and Daher, K. B.: Land use in Sweden, Seventh edition,
Örebro, 183, ISBN 978-91-618-1660-6, 2019.
Schönauer, M., Prinz, R., Väätäinen, K., Astrup, R.,
Pszenny, D., Lindeman, H., and Jaeger, D.: Spatio-temporal prediction of
soil moisture using soil maps, topographic indices and SMAP retrievals, Int.
J. Appl. Earth Obs., 108, 102730, https://doi.org/10.1016/j.jag.2022.102730,
2022.
Sewell, P. D., Quideau, S. A., Dyck, M., and Macdonald, E.: Long-term
effects of harvest on boreal forest soils in relation to a remote
sensing-based soil moisture index, Forest Ecol. Manag., 462, 117986,
https://doi.org/10.1016/j.foreco.2020.117986, 2020.
Silver, W. L., Perez, T., Mayer, A., and Jones, A. R.: The role of soil in
the contribution of food and feed, Philos. T. R. Soc. B, 376, 20200181,
https://doi.org/10.1098/rstb.2020.0181, 2021.
SLU: Field work instructions – Swedish National Forest Inventory
and Swedish Soil Inventory, Institutionen för skoglig resurshushållning, Umeå, 237, 2021.
Sveriges lantbruksuniversitet/Swedish University of Agricultural Sciences:
SLU Markfuktighetskartor, https://www.slu.se/mfk, last access: 25 November 2022.
Smith, P., Keesstra, S. D., Silver, W. L., Adhya, T. K., De Deyn, G. B.,
Carvalheiro, L. G., Giltrap, D. L., Renforth, P., Cheng, K., Sarkar, B.,
Saco, P. M., Scow, K., Smith, J., Morel, J. C., Thiele-Bruhn, S., Lal, R.,
and McElwee, P.: Soil-derived Nature's Contributions to People and their
contribution to the UN Sustainable Development Goals, Philos. T. R. Soc. B, 376, 20200185,
https://doi.org/10.1098/rstb.2020.0185, 2021.
Stendahl, J., Berg, B., and Lindahl, B. D.: Manganese availability is
negatively associated with carbon storage in northern coniferous forest
humus layers, Sci. Rep.-UK, 7, 15487,
https://doi.org/10.1038/s41598-017-15801-y, 2017.
Stroeven, A. P., Hattestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin,
O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M.
W., Fink, D., Lundqvist, J., Rosqvist, G. C., Stromberg, B., and Jansson, K.
N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91-121,
https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Tanneberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., Shumka, S.,
Marine, A. M., Jenderedjian, K., Steiner, G. M., Essl, F., Etzold, J.,
Mendes, C., Kozulin, A., Frankard, P., Milanovic, D., Ganeva, A.,
Apostolova, I., Alegro, A.,
Delipetrou, P., Navratilova, J., Risager, M.,
Leivits, A., Fosaa, A. M., Tuominen, S., Muller, F., Bakuradze, T., Sommer,
M., Christanis, K., Szurdoki, E., Oskarsson, H., Brink, S. H., Connolly, J.,
Bragazza, L., Martinelli, G., Aleksans, O., Priede, A., Sungaila, D.,
Melovski, L., Belous, T., Saveljic, D., de Vries, F., Moen, A., Dembek, W.,
Mateus, J., Hanganu, J., Sirin, A., Markina, A., Napreenko, M., Lazarevic,
P., Stanova, V. S., Skoberne, P., Perez, P. H., Pontevedra-Pombal, X.,
Lonnstad, J., Kuchler, M., Wust-Galley, C., Kirca, S., Mykytiuk, O.,
Lindsay, R., and Joosten, H.: The peatland map of Europe, Mires Peat, 19,
22, https://doi.org/10.19189/MaP.2016.OMB.264, 2017.
WRB: World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil resources reports 106, Food and Agriculture Organization of the United Nations, Rome, 192, ISBN 978-92-5-108369-7, 2015.
Zoltai, S. C., Pollett, F. C., Jeglum, J. K., and Adams, G. D.: Developing
a wetland classification for Canada, in: Forest Soils and Forest Land Management. Proceedings of the Fourth North American Forest Soils Conference, 4th North American Forest Soils Conference, Laval University, Laval, Quebec, Canada, August 1973, 497–511, 1975.
Short summary
Historically, many peatlands in the boreal region have been drained for timber production. Given the prospects of a drier future due to climate change, wetland restorations are now increasing. Better maps hold the key to insights into restoration targets and land-use management policies, and maps are often the number one decision-support tool. We use an AI-developed soil moisture map based on laser scanning data to illustrate how the mapping of peatlands can be improved across an entire nation.
Historically, many peatlands in the boreal region have been drained for timber production. Given...