Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Delineating the distribution of mineral and peat soils at the landscape scale in northern boreal regions
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Eliza Maher Hasselquist
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Johan Stendahl
Department of Soil and Environment, Swedish University of Agricultural
Science, Uppsala 756 51, Sweden
Mats B. Nilsson
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Siddhartho S. Paul
Department of Forest Ecology and Management, Swedish University of
Agricultural Science, Umeå 901 87, Sweden
Related authors
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2909, https://doi.org/10.5194/egusphere-2024-2909, 2024
Short summary
Short summary
We investigated the factors influencing soil moisture variations across a boreal forest catchment in northern Sweden, where data is usually scarce. We found that soil moisture is shaped by topographical features, vegetation and soil characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Anneli M. Ågren and William Lidberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-34, https://doi.org/10.5194/hess-2019-34, 2019
Publication in HESS not foreseen
Short summary
Short summary
Headwaters make up the majority of any given stream network, yet, they are poorly mapped. A solution to this is to model the stream networks from high resolution digital elevation models. Matthews Correlation Coefficient (MCC) for a modelled stream network was 0.463 while the best topographical maps of today, had an MCC of 0.387. A residual analysis showed that 15 % of the errors could be explained by variability in runoff, quaternary deposits, local topography and location.
A. M. Ågren, W. Lidberg, M. Strömgren, J. Ogilvie, and P. A. Arp
Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, https://doi.org/10.5194/hess-18-3623-2014, 2014
A. M. Ågren, I. Buffam, D. M. Cooper, T. Tiwari, C. D. Evans, and H. Laudon
Biogeosciences, 11, 1199–1213, https://doi.org/10.5194/bg-11-1199-2014, https://doi.org/10.5194/bg-11-1199-2014, 2014
Francesco Zignol, William Lidberg, Caroline Greiser, Johannes Larson, Raúl Hoffrén, and Anneli M. Ågren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2909, https://doi.org/10.5194/egusphere-2024-2909, 2024
Short summary
Short summary
We investigated the factors influencing soil moisture variations across a boreal forest catchment in northern Sweden, where data is usually scarce. We found that soil moisture is shaped by topographical features, vegetation and soil characteristics, and weather conditions. The insights presented in this study will help improve models that predict soil moisture over space and time, which is crucial for forest management and nature conservation in the face of climate change and biodiversity loss.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Shirin Karimi, Eliza Maher Hasselquist, Järvi Järveoja, Virginia Mosquera, and Hjalmar Laudon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-158, https://doi.org/10.5194/hess-2024-158, 2024
Preprint under review for HESS
Short summary
Short summary
There is an increasing interest in rewetting drained peatlands to regain their important ecosystem functions. However, as peatland rewetting is a relatively new strategy, the scientific foundation for this approach is not solid. Therefore, we investigated the impact of rewetting on flood mitigation using high-resolution hydrological field observations. Our results showed that peatland rewetting has significantly reduced peak flow, runoff coefficient, and mitigated flashy hydrograph responses.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Preprint under review for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Yao Gao, Eleanor J. Burke, Sarah E. Chadburn, Maarit Raivonen, Mika Aurela, Lawrence B. Flanagan, Krzysztof Fortuniak, Elyn Humphreys, Annalea Lohila, Tingting Li, Tiina Markkanen, Olli Nevalainen, Mats B. Nilsson, Włodzimierz Pawlak, Aki Tsuruta, Huiyi Yang, and Tuula Aalto
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-229, https://doi.org/10.5194/bg-2022-229, 2022
Manuscript not accepted for further review
Short summary
Short summary
We coupled a process-based peatland CH4 emission model HIMMELI with a state-of-art land surface model JULES. The performance of the coupled model was evaluated at six northern wetland sites. The coupled model is considered to be more appropriate in simulating wetland CH4 emission. In order to improve the simulated CH4 emission, the model requires better representation of the peat soil carbon and hydrologic processes in JULES and the methane production and transportation processes in HIMMELI.
Johannes Larson, William Lidberg, Anneli M. Ågren, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 26, 4837–4851, https://doi.org/10.5194/hess-26-4837-2022, https://doi.org/10.5194/hess-26-4837-2022, 2022
Short summary
Short summary
Terrain indices constitute a good candidate for modelling the spatial variation of soil moisture conditions in many landscapes. In this study, we evaluate nine terrain indices on varying DEM resolution and user-defined thresholds with validation using an extensive field soil moisture class inventory. We demonstrate the importance of field validation for selecting the appropriate DEM resolution and user-defined thresholds and that failing to do so can result in ambiguous and incorrect results.
Anders Lindroth, Norbert Pirk, Ingibjörg S. Jónsdóttir, Christian Stiegler, Leif Klemedtsson, and Mats B. Nilsson
Biogeosciences, 19, 3921–3934, https://doi.org/10.5194/bg-19-3921-2022, https://doi.org/10.5194/bg-19-3921-2022, 2022
Short summary
Short summary
We measured the fluxes of carbon dioxide and methane between a moist moss tundra and the atmosphere on Svalbard in order to better understand how such ecosystems are affecting the climate and vice versa. We found that the system was a small sink of carbon dioxide and a small source of methane. These fluxes are small in comparison with other tundra ecosystems in the high Arctic. Analysis of temperature sensitivity showed that respiration was more sensitive than photosynthesis above about 6 ℃.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Kpade O. L. Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun
SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021, https://doi.org/10.5194/soil-7-377-2021, 2021
Short summary
Short summary
Forests store large amounts of carbon in soils. Implementing suitable measures to improve the sink potential of forest soils would require accurate data on the carbon stored in forest soils and a better understanding of the factors affecting this storage. This study showed that the prediction of soil carbon stock in Swedish forest soils can increase in accuracy when one divides a big region into smaller areas in combination with information collected locally and derived from satellites.
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Sophie Casetou-Gustafson, Harald Grip, Stephen Hillier, Sune Linder, Bengt A. Olsson, Magnus Simonsson, and Johan Stendahl
Biogeosciences, 17, 281–304, https://doi.org/10.5194/bg-17-281-2020, https://doi.org/10.5194/bg-17-281-2020, 2020
Short summary
Short summary
Reliable methods are required for estimating mineral supply rates to forest growth from weathering. We applied the depletion method, the PROFILE model and the base cation budget method to two forest sites in Sweden. The highest weathering rate was obtained from the budget method and the lowest from the depletion method. The high rate by the budget method suggests that there were additional sources for tree uptake not captured by measurements.
Nicholas P. Rosenstock, Johan Stendahl, Gregory van der Heijden, Lars Lundin, Eric McGivney, Kevin Bishop, and Stefan Löfgren
SOIL, 5, 351–366, https://doi.org/10.5194/soil-5-351-2019, https://doi.org/10.5194/soil-5-351-2019, 2019
Short summary
Short summary
Biofuel harvests from forests involve large removals of available nutrients, necessitating accurate measurements of soil nutrient stocks. We found that dilute hydrochloric acid extractions from soils released far more Ca, Na, and K than classical salt–extracted exchangeable nutrient pools. The size of these acid–extractable pools may indicate that forest ecosystems could sustain greater biomass extractions of Ca, Mg, and K than are predicted from salt–extracted exchangeable base cation pools.
Cecilia Akselsson, Salim Belyazid, Johan Stendahl, Roger Finlay, Bengt A. Olsson, Martin Erlandsson Lampa, Håkan Wallander, Jon Petter Gustafsson, and Kevin Bishop
Biogeosciences, 16, 4429–4450, https://doi.org/10.5194/bg-16-4429-2019, https://doi.org/10.5194/bg-16-4429-2019, 2019
Short summary
Short summary
The release of elements from soil through weathering is an important process, controlling nutrient availability for plants and recovery from acidification. However, direct measurements cannot be done, and present estimates are burdened with high uncertainties. In this paper we use different approaches to quantify weathering rates in different scales in Sweden and discuss the pros and cons. The study contributes to more robust assessments of sustainable harvesting of forest biomass.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Anneli M. Ågren and William Lidberg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-34, https://doi.org/10.5194/hess-2019-34, 2019
Publication in HESS not foreseen
Short summary
Short summary
Headwaters make up the majority of any given stream network, yet, they are poorly mapped. A solution to this is to model the stream networks from high resolution digital elevation models. Matthews Correlation Coefficient (MCC) for a modelled stream network was 0.463 while the best topographical maps of today, had an MCC of 0.387. A residual analysis showed that 15 % of the errors could be explained by variability in runoff, quaternary deposits, local topography and location.
Kevin Van Sundert, Joanna A. Horemans, Johan Stendahl, and Sara Vicca
Biogeosciences, 15, 3475–3496, https://doi.org/10.5194/bg-15-3475-2018, https://doi.org/10.5194/bg-15-3475-2018, 2018
Short summary
Short summary
Nutrient availability regulates terrestrial ecosystem function and global change responses, and thus the capacity to buffer climate change by CO2 uptake. Large-scale studies allow generalizing on the role of nutrients, but comparing the nutrient status among sites poses a bottleneck. In this study, we adjust a nutrient availability metric for seminatural systems, using Swedish forest data. Future studies should evaluate metric performance outside boreal forests and provide further adjustments.
Christine Metzger, Mats B. Nilsson, Matthias Peichl, and Per-Erik Jansson
Geosci. Model Dev., 9, 4313–4338, https://doi.org/10.5194/gmd-9-4313-2016, https://doi.org/10.5194/gmd-9-4313-2016, 2016
Short summary
Short summary
Many interactions between various abiotic and biotic processes and their parameters were identified by global sensitivity analysis, revealing strong dependence of a certain model output (e.g. CO2 or heat fluxes, leaf area index, radiation, water table, soil temperature or snow depth) to model set-up and parameterization in many different processes, a limited transferability of parameter values between models, and the importance of ancillary measurements for improving models and thus predictions.
Boris Ťupek, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen
Biogeosciences, 13, 4439–4459, https://doi.org/10.5194/bg-13-4439-2016, https://doi.org/10.5194/bg-13-4439-2016, 2016
Short summary
Short summary
We evaluated the soil carbon stock estimates of Yasso07, Q, and CENTURY soil carbon models, used in national greenhouse gas inventories in Europe, Japan, and USA, with soil carbon stock measurements from Swedish Forest Soil National Inventories. Measurements grouped according to the gradient of soil nutrient status revealed that the models underestimated for the Swedish boreal forest soils with higher site fertility. We discussed mechanisms of underestimation and further model developments.
S. Osterwalder, J. Fritsche, C. Alewell, M. Schmutz, M. B. Nilsson, G. Jocher, J. Sommar, J. Rinne, and K. Bishop
Atmos. Meas. Tech., 9, 509–524, https://doi.org/10.5194/amt-9-509-2016, https://doi.org/10.5194/amt-9-509-2016, 2016
Short summary
Short summary
Human activities have increased mercury (Hg) cycling between land and atmosphere. To define landscapes as sinks or sources of Hg we have developed an advanced REA system for long-term measurements of gaseous elemental Hg exchange. It was tested in two contrasting environments: above Basel, Switzerland, and a peatland in Sweden. Both landscapes showed net Hg emission (15 and 3 ng m−2 h−1, respectively). The novel system will help to advance our understanding of Hg exchange on an ecosystem scale.
A. M. Ågren, W. Lidberg, M. Strömgren, J. Ogilvie, and P. A. Arp
Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, https://doi.org/10.5194/hess-18-3623-2014, 2014
A. M. Ågren, I. Buffam, D. M. Cooper, T. Tiwari, C. D. Evans, and H. Laudon
Biogeosciences, 11, 1199–1213, https://doi.org/10.5194/bg-11-1199-2014, https://doi.org/10.5194/bg-11-1199-2014, 2014
Related subject area
Soil sensing
Uncovering soil compaction: performance of electrical and electromagnetic geophysical methods
Closing the phenotyping gap with non-invasive belowground field phenotyping
The effect of soil moisture content and soil texture on fast in situ pH measurements with two types of robust ion-selective electrodes
Best performances of visible–near-infrared models in soils with little carbonate – a field study in Switzerland
Improving models to predict holocellulose and Klason lignin contents for peat soil organic matter with mid-infrared spectra
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2024-2082, https://doi.org/10.5194/egusphere-2024-2082, 2024
Short summary
Short summary
This work uses automated electrical resistivity tomography (ERT) for belowground field phenotyping alongside conventional field breeding techniques, thereby closing the phenotyping gap. We show that ERT is not only capable of measuring differences between crops, but also has sufficient precision to capture the differences between genotypes of the same crop. We automatically derive indicators, which can be translated to static and dynamic plant traits, directly useful for breeders.
Sebastian Vogel, Katja Emmerich, Ingmar Schröter, Eric Bönecke, Wolfgang Schwanghart, Jörg Rühlmann, Eckart Kramer, and Robin Gebbers
SOIL, 10, 321–333, https://doi.org/10.5194/soil-10-321-2024, https://doi.org/10.5194/soil-10-321-2024, 2024
Short summary
Short summary
To rapidly obtain high-resolution soil pH data, pH sensors can measure the pH value directly in the field under the current soil moisture (SM) conditions. The influence of SM on pH and on its measurement quality was studied. An SM increase causes a maximum pH increase of 1.5 units. With increasing SM, the sensor pH value approached the standard pH value measured in the laboratory. Thus, at high soil moisture, calibration of the sensor pH values to the standard pH value is negligible.
Simon Oberholzer, Laura Summerauer, Markus Steffens, and Chinwe Ifejika Speranza
SOIL, 10, 231–249, https://doi.org/10.5194/soil-10-231-2024, https://doi.org/10.5194/soil-10-231-2024, 2024
Short summary
Short summary
This study investigated the performance of visual and near-infrared spectroscopy in six fields in Switzerland. Spectral models showed a good performance for soil properties related to organic matter at the field scale. However, spectral models performed best in fields with low mean carbonate content because high carbonate content masks spectral features for organic carbon. These findings help facilitate the establishment and implementation of new local soil spectroscopy projects.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Cited articles
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use
of multiple LIDAR-derived digital terrain indices and machine learning for
high-resolution national-scale soil moisture mapping of the Swedish forest
landscape, Geoderma, 404, 115280,
https://doi.org/10.1016/j.geoderma.2021.115280, 2021.
Arrouays, D., Grundy, M. G., Hartemink, A. E., Hempel, J. W., Heuvelink, G.
B. M., Hong, S. Y., Lagacherie, P., Lelyk, G., McBratney, A. B., McKenzie,
N. J., Mendonca-Santos, M. d. L., Minasny, B., Montanarella, L., Odeh, I. O.
A., Sanchez, P. A., Thompson, J. A., and Zhang, G.-L.: Chapter Three –
GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties, in:
Advances in Agronomy, edited by: Sparks, D. L., Academic Press, 93–134,
https://doi.org/10.1016/B978-0-12-800137-0.00003-0, 2014.
Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A., and Bright, R. M.: A
sensible climate solution for the boreal forest, Nat. Clim. Change, 8, 11–12,
https://doi.org/10.1038/s41558-017-0043-3, 2018.
Barthelmes, A., Couwenberg, J., Risager, M., Tegetmeyer, C., and Joosten,
H.: Peatlands and Climate in a Ramsar Context: A Nordic-Baltic Perspective,
Nordic Council of Ministers, ISBN 978-92-893-4196-7, 2015.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, E.: Peat deposits store
more carbon than trees in forested peatlands of the boreal biome, Sci.
Rep.-UK, 11, 2657, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Koppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Behrens, T., Schmidt, K., MacMillan, R. A., and Rossel, R. A. V.:
Multi-scale digital soil mapping with deep learning, Sci. Rep.-UK, 8, 15244, https://doi.org/10.1038/s41598-018-33516-6,
2018.
Berglund, O. and Berglund, K.: Distribution and cultivation intensity of
agricultural peat and gyttja soils in Sweden and estimation of greenhouse
gas emissions from cultivated peat soils, Geoderma, 154, 173–180,
https://doi.org/10.1016/j.geoderma.2008.11.035, 2010.
Burton, R. G. O.: The peat resources of Great Britain (Scotland, England and
Wales and Isle of Man), in: Global Peat Resources, edited by: Lappalainen, E., International Peat Society, Jyskä, Finland, 79–86, ISBN 952-90-7487-5, 1996.
Chen, T., He,
T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R.,
Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., and Li, Y.: xgboost:
Extreme Gradient Boosting, R package version 1.0.0.2, CRAN repository [code] , https://mran.microsoft.com/snapshot/2020-05-05/web/packages/xgboost/index.html (last access: 25 November 2022), 2020.
Cheng, K., Xu, X. R., Cui, L. Q., Li, Y. P., Zheng, J. F., Wu, W. N., Sun,
J. F., and Pan, G. X.: The role of soils in regulation of freshwater and
coastal water quality, Philos. T. R. Soc. B, 376, 20200176,
https://doi.org/10.1098/rstb.2020.0176, 2021.
Chicco, D. and Jurman, G.: The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genomics, 21, 6, https://doi.org/10.1186/s12864-019-6413-7,
2020.
Chicco, D., Warrens, M. J., and Jurman, G.: The Matthews Correlation
Coefficient (MCC) is More Informative Than Cohen's Kappa and Brier Score in
Binary Classification Assessment, IEEE Access, 9, 78368–78381,
https://doi.org/10.1109/ACCESS.2021.3084050, 2021.
Cohen, A., Klassen, S., and Evans, D.: Ethics in Archaeological Lidar,
Journal of Computer Applications in Archaeology, 3, 76–91,
https://doi.org/10.5334/jcaa.48, 2020.
Cohen, J.: A coefficient of agreement for nominal scales, Educ. Psychol. Meas.,
20, 37–46, 1960.
Creed, I. F., Sanford, S. E., Beall, F. D., Molot, L. A., and Dillon, P. J.:
Cryptic wetlands: integrating hidden wetlands in regression models of the
export of dissolved organic carbon from forested landscapes, Hydrol. Process.,
17, 3629–3648, https://doi.org/10.1002/hyp.1357, 2003.
Cruickshank, M. M. and Tomlinson, R. W.: Peatland in Northern Ireland:
inventory and prospect, Irish Geography, 23, 17–30,
https://doi.org/10.1080/00750779009478763, 1990.
Delgado, R. and Tibau, X. A.: Why Cohen's Kappa should be avoided as
performance measure in classification, Plos One, 14, e0222916,
https://doi.org/10.1371/journal.pone.0222916, 2019.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D.,
Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen,
M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos,
C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M.,
Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch,
T., Potapov, P., Turubanova, S., Tyukavina, A., de Souza, N., Pintea, L.,
Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S.
A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R.,
Lillesø, J.-P. B., van Breugel, P., Graudal, L., Voge, M., Al-Shammari,
K. F., and Saleem, M.: An Ecoregion-Based Approach to Protecting Half the
Terrestrial Realm, BioScience, 67, 534–545,
https://doi.org/10.1093/biosci/bix014, 2017.
Franzen, L. G., Lindberg, F., Viklander, V., and Walther, A.: The potential
peatland extent and carbon sink in Sweden, as related to the Peatland/Ice
Age Hypothesis, Mires Peat, 10, 1–19, 2012.
Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., and
Ståhl, G.: Adapting National Forest Inventories to changing requirements
– the case of the Swedish National Forest Inventory at the turn of the 20th
century, Silva Fenn, 48, 1095, https://doi.org/10.14214/sf.1095, 2014.
Gunnarsson, U. and Löfroth, M.: Våtmarksinventeringen – resultat
från 25 års inventeringar Nationell slutrapport för
våtmarksinventeringen (VMI) i Sverige, Stockholm, 120, ISBN 978-91-620-5925-5,
2009 (in Swedish).
Hirvas, H., Lagerbäck, R., Mäkinen, K., Nenonen, K., Olsen, L.,
Rodhe, L., and Thoresen, M.: The Nordkalott Project: studies of Quaternary
geology in northern Fennoscandia, Boreas, 17, 431–437,
https://doi.org/10.1111/j.1502-3885.1988.tb00560.x, 1988.
Hounkpatin, K. O. L., Stendahl, J., Lundblad, M., and Karltun, E.: Predicting the spatial distribution of soil organic carbon stock in Swedish forests using a group of covariates and site-specific data, SOIL, 7, 377–398, https://doi.org/10.5194/soil-7-377-2021, 2021.
Hånell, B.: Torvtäckta marker, dikning och sumpskogar i Svergie, Sveriges Lantbruksuniversitet,
Umeå, 6, ISSN 0280-7408, 1990.
Hånell, B.: Bilaga 4 – Möjligheterna till höjning av
skogsproduktionen i Sverige genom dikesrensning, dikning och gödsling av
torvmarker, in: Skogsskötsel för ökad tillväxt,
Faktaunderlag till MINT utredningen, edited by: Fahlvik, N., Johansson, U.,
and Nilsson, U., SLU, Alnarp, 26, ISBN 978-91-86197-43-8, 2009.
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W.
R., Kukla, G., Kutzbach, J., Martinson, D. G., Mcintyre, A., Mix, A. C.,
Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L.,
Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R.: On the Structure and
Origin of Major Glaciation Cycles 2. The 100,000-Year Cycle,
Paleoceanography, 8, 699–735, https://doi.org/10.1029/93PA02751, 1993.
Ivanov, K. E.: Water movement in mirelands, Academic Press, London England,
translated by: Arthur Thomson and Ingram, H. A. P., 276, ISBN 0123764602, 1981.
Jackson, R. B., Lajtha, K. Crow, S. E. Hugelius, G. Kramer, M. G., and
Pineiro G.: The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic
and Abiotic Controls, Annu. Rev. Ecol. Evol. S., 48, 419–445,
https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Jenny, H.: Factors of Soil Formation – A System of Quantitative Pedology,
Dover Publications, Inc., New York, ISBN 0486681289, 1941.
Joosten, H. and Clarke, D.: Wise use of mires and peatlands – Background and
principles including a framework for decision-making, Saarijärvi,
Finland, 304, ISBN 951-97744-8-3, 2002.
Karlsson, C., Sohlienius, G., and Peterson Becher, G.: Handledning för
jordartsgeologiska kartor och databaser över Sverige, Sveriges Geologiska Undersökning,
Uppsala, 83, https://resource.sgu.se/dokument/publikation/sgurapport/sgurapport202117rapport/s2117-rapport.pdf (last access: 29 November 2022), 2021 (in Swedish).
Kuglerova, L., Ågren, A., Jansson, R., and Laudon, H.: Towards
optimizing riparian buffer zones: Ecological and biogeochemical implications
for forest management, Forest Ecol. Manag., 334, 74–84,
https://doi.org/10.1016/j.foreco.2014.08.033, 2014a.
Kuglerova, L., Jansson, R., Ågren, A., Laudon, H., and Malm-Renofalt,
B.: Groundwater discharge creates hotspots of riparian plant species
richness in a boreal forest stream network, Ecology, 95, 715–725,
https://doi.org/10.1890/13-0363.1, 2014b.
Kuglerova, L., Dynesius, M., Laudon, H., and Jansson, R.: Relationships
Between Plant Assemblages and Water Flow Across a Boreal Forest Landscape: A
Comparison of Liverworts, Mosses, and Vascular Plants, Ecosystems, 19,
170–184, https://doi.org/10.1007/s10021-015-9927-0, 2016.
Laamrani, A., Valeria, O., Bergeron, Y., Fenton, N., Cheng, L. Z., and
Anyomi, K.: Effects of topography and thickness of organic layer on
productivity of black spruce boreal forests of the Canadian Clay Belt
region, Forest Ecol. Manag., 330, 144–157,
https://doi.org/10.1016/j.foreco.2014.07.013, 2014.
Lantmäteriet: Product Description, GSD-Property map, vector, Document version 6.2.7, report, 153, 2020.
Lappalainen, E. and Hänninen, P.: Suomen turvevarat, The peat reserves
of Finland, Espoo, Finland, 133, 1–19, 1993.
Latifovic, R., Pouliot, D., and Campbell, J.: Assessment of Convolution
Neural Networks for Surficial Geology Mapping in the South Rae Geological
Region, Northwest Territories, Canada, Remote Sens.-Basel, 10, 1–19,
https://doi.org/10.3390/rs10020307, 2018.
Lidberg, W., Nilsson, M., and Ågren, A.: Using machine learning to
generate high-resolution wet area maps for planning forest management: A
study in a boreal forest landscape, Ambio, 49, 475–486,
https://doi.org/10.1007/s13280-019-01196-9, 2020.
Loisel, J., Yu, Z. C., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,
Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R.,
Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F.,
Fialkiewicz-Koziel, B., Finkelstein, S. A., Galka, M., Garneau, M.,
Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C.,
Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz,
M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Makila, M., Mallon,
G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J.,
O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H.,
Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C.,
Thom, T., Tuittila, E. S., Turetsky, M., Valiranta, M., van der Linden, M.,
van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W. J.: A
database and synthesis of northern peatland soil properties and Holocene
carbon and nitrogen accumulation, Holocene, 24, 1028–1042,
https://doi.org/10.1177/0959683614538073, 2014.
Löfgren, P.: Skogsmark, samt träd- och buskmark inom fjällomradet, Arbetsrapport 34, Sveriges lantbruksuniversitet, Umeå, 13 pp., ISSN 1401-1204, 1998 (in Swedish).
Matthews, B. W.: Comparison of the predicted and observed secondary
structure of T4 phage lysozyme, Biochim. Biophys. Acta, 405, 442–451,
https://doi.org/10.1016/0005-2795(75)90109-9, 1975.
McGarty, C., Mavor, K. I., and Skorich, D. P.: Social categorization, in: International Encyclopedia of the Social & Behavioral
Sciences, edited by: Wright, J.
D., 186–191, https://doi.org/10.1016/B978-0-08-097086-8.24091-9,
2015.
Minasny, B., Berglund, O., Connolly, J., Hedley, C., de Vries, F., Gimona,
A., Kempen, B., Kidd, D., Lilja, H., Malone, B., McBratney, A., Roudier, P.,
O'Rourke, S., Rudiyanto, Padarian, J., Poggio, L., ten Caten, A., Thompson,
D., Tuve, C., and Widyatmanti, W.: Digital mapping of peatlands – A critical
review, Earth-Sci. Rev., 196, 102870,
https://doi.org/10.1016/j.earscirev.2019.05.014, 2019.
Nijp, J. J., Metselaar, K. Limpens, J. Bartholomeus, H. M. Nilsson, M. B.
Berendse, F., and van der Zee S. E. A. T. M.: High-resolution peat volume
change in a northern peatland: Spatial variability, main drivers, and impact
on ecohydrology, Ecohydrology, 12, e2114, https://doi.org/10.1002/eco.2114,
2019.
Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H., and
Ranneby, B.: Methane emission from Swedish mires: National and regional
budgets and dependence on mire vegetation, J. Geophys. Res.-Atmos., 106,
20847–20860, https://doi.org/10.1029/2001JD900119, 2001.
Nilsson, T., Lundblad, M., and Karltun, E.: Förändring av torvmarksrelaterade
variabler på skogsmark mellan omdreven och
taxeringsår – Data från Riksskogstaxeringen (RT) och Markinventeringen
(MI), med koppling till vissa klimatdata från SMHI
Rapport no 17, Institutionen för mark och miljö, Sveriges Lantbruksuniversitet, Sveriges Metrologiska och Hydrologiska Institut, Norrköping, 62, ISSN 1653-8102, 2018 (in Swedish).
Olsen, L., Sveian, H., Ottesen, D., and Rise, L.: Quaternary glacial,
interglacial and interstadial deposits of Norway and adjacent onshore and
offshore areas., in: Quaternary Geology of Norway, edited by: Olsen, L.,
Fredin, O., and Olesen, O., Geological Survey of Norway Special Publication,
79–144, ISBN 978-82-7385-153-6, 2013.
Olsson, B. and Ledwith, M.: National Land Cover Database (NMD)
– Product Description, English version, Swedish Environmental Protection Agency, Stockholm, 13, 2020.
Olsson, M.: Soil survey in Sweden, In: Soil resources of Europe, edited by: Bullock, P., Jones, R. J. A., and Montanarella, L., The European Soil Bureau. Research Report No.6, EUR 18991 EN, Joint Research Centre, Ispra, Italy, 145–151, 1999.
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, A., and
Stendahl, J.: Organic Carbon Stocks in Swedish Podzol Soils in Relation to
Soil Hydrology and Other Site Characteristics, Silva Fenn., 43, 209–222,
https://doi.org/10.14214/sf.207, 2009.
O'Neil, G. L., Goodall, J. L., Behl, M., and Saby, L.: Deep learning Using
Physically-Informed Input Data for Wetland Identification, Environ. Modell.
Softw., 126, 104665, https://doi.org/10.1016/j.envsoft.2020.104665, 2020.
Pan, Y. D., Birdsey, R. A., Fang, J. Y., Houghton, R., Kauppi, P. E., Kurz,
W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais,
P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., Rautiainen,
A., Sitch, S., and Hayes, D.: A Large and Persistent Carbon Sink in the
World's Forests, Science, 333, 988–993,
https://doi.org/10.1126/science.1201609, 2011.
Ploum, S. W., Leach, J. A., Kuglerová, L., and Laudon, H.: Thermal
detection of discrete riparian inflow points (DRIPs) during contrasting
hydrological events, Hydrol. Process., 32, 3049–3050,
https://doi.org/10.1002/hyp.13184, 2018.
Pouliot, D., Latifovic, R., Pasher, J., and Duffe, J.: Assessment of
Convolution Neural Networks for Wetland Mapping with Landsat in the Central
Canadian Boreal Forest Region, Remote Sens.-Basel, 11, 772,
https://doi.org/10.3390/rs11070772, 2019.
Prince, A., Franssen, J., Lapierre, J. F., and Maranger, R.: High-resolution
broad-scale mapping of soil parent material using object-based image
analysis (OBIA) of LiDAR elevation data, Catena, 188, 104422,
https://doi.org/10.1016/j.catena.2019.104422, 2020.
Rydin, H. and Jeglum, J. K.: The biology of peatlands, Second edition,
Oxford Univesity Press, Oxford, 381, ISBN 9780199603008, 2013.
Rydin, H., Sjörs, H., and Löfroth, M.: Mires, in: Swedish plant
geography, edited by: Rydin, H., Snoeijs, P., and Diekmann, M., Acta
Phytogeographica Suecica, TK-tryck, Uppsala, 91–112, ISBN 91-72 1 0-084-2, 1999.
Saco, P. M., McDonough, K. R., Rodriguez, J. F., Rivera-Zayas, J., and
Sandi, S. G.: The role of soils in the regulation of hazards and extreme
events, Philos. T. R. Soc. B, 376, 20200178,
https://doi.org/10.1098/rstb.2020.0178, 2021.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global
soil carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Schöllin, M. and Daher, K. B.: Land use in Sweden, Seventh edition,
Örebro, 183, ISBN 978-91-618-1660-6, 2019.
Schönauer, M., Prinz, R., Väätäinen, K., Astrup, R.,
Pszenny, D., Lindeman, H., and Jaeger, D.: Spatio-temporal prediction of
soil moisture using soil maps, topographic indices and SMAP retrievals, Int.
J. Appl. Earth Obs., 108, 102730, https://doi.org/10.1016/j.jag.2022.102730,
2022.
Sewell, P. D., Quideau, S. A., Dyck, M., and Macdonald, E.: Long-term
effects of harvest on boreal forest soils in relation to a remote
sensing-based soil moisture index, Forest Ecol. Manag., 462, 117986,
https://doi.org/10.1016/j.foreco.2020.117986, 2020.
Silver, W. L., Perez, T., Mayer, A., and Jones, A. R.: The role of soil in
the contribution of food and feed, Philos. T. R. Soc. B, 376, 20200181,
https://doi.org/10.1098/rstb.2020.0181, 2021.
SLU: Field work instructions – Swedish National Forest Inventory
and Swedish Soil Inventory, Institutionen för skoglig resurshushållning, Umeå, 237, 2021.
Sveriges lantbruksuniversitet/Swedish University of Agricultural Sciences:
SLU Markfuktighetskartor, https://www.slu.se/mfk, last access: 25 November 2022.
Smith, P., Keesstra, S. D., Silver, W. L., Adhya, T. K., De Deyn, G. B.,
Carvalheiro, L. G., Giltrap, D. L., Renforth, P., Cheng, K., Sarkar, B.,
Saco, P. M., Scow, K., Smith, J., Morel, J. C., Thiele-Bruhn, S., Lal, R.,
and McElwee, P.: Soil-derived Nature's Contributions to People and their
contribution to the UN Sustainable Development Goals, Philos. T. R. Soc. B, 376, 20200185,
https://doi.org/10.1098/rstb.2020.0185, 2021.
Stendahl, J., Berg, B., and Lindahl, B. D.: Manganese availability is
negatively associated with carbon storage in northern coniferous forest
humus layers, Sci. Rep.-UK, 7, 15487,
https://doi.org/10.1038/s41598-017-15801-y, 2017.
Stroeven, A. P., Hattestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin,
O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M.
W., Fink, D., Lundqvist, J., Rosqvist, G. C., Stromberg, B., and Jansson, K.
N.: Deglaciation of Fennoscandia, Quaternary Sci. Rev., 147, 91-121,
https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Tanneberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., Shumka, S.,
Marine, A. M., Jenderedjian, K., Steiner, G. M., Essl, F., Etzold, J.,
Mendes, C., Kozulin, A., Frankard, P., Milanovic, D., Ganeva, A.,
Apostolova, I., Alegro, A.,
Delipetrou, P., Navratilova, J., Risager, M.,
Leivits, A., Fosaa, A. M., Tuominen, S., Muller, F., Bakuradze, T., Sommer,
M., Christanis, K., Szurdoki, E., Oskarsson, H., Brink, S. H., Connolly, J.,
Bragazza, L., Martinelli, G., Aleksans, O., Priede, A., Sungaila, D.,
Melovski, L., Belous, T., Saveljic, D., de Vries, F., Moen, A., Dembek, W.,
Mateus, J., Hanganu, J., Sirin, A., Markina, A., Napreenko, M., Lazarevic,
P., Stanova, V. S., Skoberne, P., Perez, P. H., Pontevedra-Pombal, X.,
Lonnstad, J., Kuchler, M., Wust-Galley, C., Kirca, S., Mykytiuk, O.,
Lindsay, R., and Joosten, H.: The peatland map of Europe, Mires Peat, 19,
22, https://doi.org/10.19189/MaP.2016.OMB.264, 2017.
WRB: World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil resources reports 106, Food and Agriculture Organization of the United Nations, Rome, 192, ISBN 978-92-5-108369-7, 2015.
Zoltai, S. C., Pollett, F. C., Jeglum, J. K., and Adams, G. D.: Developing
a wetland classification for Canada, in: Forest Soils and Forest Land Management. Proceedings of the Fourth North American Forest Soils Conference, 4th North American Forest Soils Conference, Laval University, Laval, Quebec, Canada, August 1973, 497–511, 1975.
Short summary
Historically, many peatlands in the boreal region have been drained for timber production. Given the prospects of a drier future due to climate change, wetland restorations are now increasing. Better maps hold the key to insights into restoration targets and land-use management policies, and maps are often the number one decision-support tool. We use an AI-developed soil moisture map based on laser scanning data to illustrate how the mapping of peatlands can be improved across an entire nation.
Historically, many peatlands in the boreal region have been drained for timber production. Given...