Articles | Volume 7, issue 1
SOIL, 7, 47–52, 2021
SOIL, 7, 47–52, 2021

Short communication 01 Mar 2021

Short communication | 01 Mar 2021

Quantifying and correcting for pre-assay CO2 loss in short-term carbon mineralization assays

Matthew A. Belanger et al.

Related authors

Regulators of coastal wetland methane production and responses to simulated global change
Carmella Vizza, William E. West, Stuart E. Jones, Julia A. Hart, and Gary A. Lamberti
Biogeosciences, 14, 431–446,,, 2017
Short summary

Related subject area

Soil and methods
The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578,,, 2020
Short summary
Game theory interpretation of digital soil mapping convolutional neural networks
José Padarian, Alex B. McBratney, and Budiman Minasny
SOIL, 6, 389–397,,, 2020
Short summary
Comparing three approaches of spatial disaggregation of legacy soil maps based on the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm
Yosra Ellili-Bargaoui, Brendan Philip Malone, Didier Michot, Budiman Minasny, Sébastien Vincent, Christian Walter, and Blandine Lemercier
SOIL, 6, 371–388,,, 2020
Oblique geographic coordinates as covariates for digital soil mapping
Anders Bjørn Møller, Amélie Marie Beucher, Nastaran Pouladi, and Mogens Humlekrog Greve
SOIL, 6, 269–289,,, 2020
Short summary
Development of pedotransfer functions for water retention in tropical mountain soil landscapes: spotlight on parameter tuning in machine learning
Anika Gebauer, Monja Ellinger, Victor M. Brito Gomez, and Mareike Ließ
SOIL, 6, 215–229,,, 2020
Short summary

Cited articles

Barnard, R., Osborne, C., and Firestone, M.: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting, ISME J., 7, 2229–2241,, 2013. 
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen availability, Plant Soil, 10, 9–31,, 1958. 
Blazewicz, S. J., Schwartz, E., and Firestone, M. K.: Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil, Ecology, 95, 1162–1172,, 2014. 
Blazewicz, S. J., Hungate, B. A., Koch, B. J., Nuccio, E. E., Morrissey, E., Brodie, E. L., Schwartz, E., Pett-Ridge, J., and Firestone, M. K: Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil, ISME J., 14, 1520–1532,, 2020. 
Borken, W. and Matzner, E.: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824,, 2009. 
Short summary
Soil health is often assessed by re-wetting a dry soil and measuring CO2 production, but the potential bias introduced by soils of different moisture contents is unclear. Our study found that wetter soil tended to lose more carbon during drying than drier soil, thus affecting soil health interpretations. We developed a correction factor to account for initial soil moisture effects, which future studies may benefit from adapting for their soil.