Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-47-2021
https://doi.org/10.5194/soil-7-47-2021
Short communication
 | 
01 Mar 2021
Short communication |  | 01 Mar 2021

Quantifying and correcting for pre-assay CO2 loss in short-term carbon mineralization assays

Matthew A. Belanger, Carmella Vizza, G. Philip Robertson, and Sarah S. Roley

Related authors

Soil carbon accrual and biopore formation across a plant diversity gradient
Kyungmin Kim, Maik Geers-Lucas, G. Phillip Robertson, and Alexandra N. Kravchenko
EGUsphere, https://doi.org/10.5194/egusphere-2025-2584,https://doi.org/10.5194/egusphere-2025-2584, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary

Cited articles

Barnard, R., Osborne, C., and Firestone, M.: Responses of soil bacterial and fungal communities to extreme desiccation and rewetting, ISME J., 7, 2229–2241, https://doi.org/10.1038/ismej.2013.104, 2013. 
Birch, H. F.: The effect of soil drying on humus decomposition and nitrogen availability, Plant Soil, 10, 9–31, https://doi.org/10.1007/BF01343734, 1958. 
Blazewicz, S. J., Schwartz, E., and Firestone, M. K.: Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil, Ecology, 95, 1162–1172, https://doi.org/10.1890/13-1031.1, 2014. 
Blazewicz, S. J., Hungate, B. A., Koch, B. J., Nuccio, E. E., Morrissey, E., Brodie, E. L., Schwartz, E., Pett-Ridge, J., and Firestone, M. K: Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil, ISME J., 14, 1520–1532, https://doi.org/10.1038/s41396-020-0617-3, 2020. 
Borken, W. and Matzner, E.: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils, Glob. Change Biol., 15, 808–824, https://doi.org/10.1111/j.1365-2486.2008.01681.x, 2009. 
Download
Short summary
Soil health is often assessed by re-wetting a dry soil and measuring CO2 production, but the potential bias introduced by soils of different moisture contents is unclear. Our study found that wetter soil tended to lose more carbon during drying than drier soil, thus affecting soil health interpretations. We developed a correction factor to account for initial soil moisture effects, which future studies may benefit from adapting for their soil.
Share