Articles | Volume 4, issue 3
https://doi.org/10.5194/soil-4-173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-4-173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America
Mario Guevara
University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA
Guillermo Federico Olmedo
INTA EEA Mendoza, San Martín 3853, Luján de Cuyo, Mendoza, Argentina
FAO, Vialle de Terme di Caracalla, Rome, Italy
Emma Stell
University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA
Yusuf Yigini
FAO, Vialle de Terme di Caracalla, Rome, Italy
Yameli Aguilar Duarte
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mérida, Mexico
Carlos Arellano Hernández
Instituto Nacional de Estadísitica y Geografía, Aguascalientes, Mexico
Gloria E. Arévalo
Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, Honduras
Carlos Eduardo Arroyo-Cruz
National Commission for the Knowledge and Use of Biodiversity, Mexico City, Mexico
Adriana Bolivar
Subdirección Agrología, Instituto Geográfico Agustín Codazzi, Bogotá, Colombia
Sally Bunning
Oficina Regional de la FAO para América Latina y el Caribe, Santiago de Chile, Chile
Nelson Bustamante Cañas
Servicio Agrícola y Ganadero, Santiago de Chile, Chile
Carlos Omar Cruz-Gaistardo
Instituto Nacional de Estadísitica y Geografía, Aguascalientes, Mexico
Fabian Davila
Direccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, Uruguay
Martin Dell Acqua
Direccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, Uruguay
Arnulfo Encina
Facultad de Ciencias Agrarias de la Universidad Nacional de Asunción, Asunción, Paraguay
Hernán Figueredo Tacona
Land Viceministry, Ministry of Rural Development and Land, La Paz, Bolivia
Fernando Fontes
Direccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, Uruguay
José Antonio Hernández Herrera
Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, Mexico
Alejandro Roberto Ibelles Navarro
Instituto Nacional de Estadísitica y Geografía, Aguascalientes, Mexico
Veronica Loayza
Ministerio de Agricultura y Ganaderia, Quito, Ecuador
Alexandra M. Manueles
Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, Honduras
Fernando Mendoza Jara
Universidad Nacional Agraria, Managua, Nicaragua
Carolina Olivera
Oficina Regional de la FAO para América Latina y el Caribe, Bogotá, Colombia
Rodrigo Osorio Hermosilla
Servicio Agrícola y Ganadero, Santiago de Chile, Chile
Gonzalo Pereira
Direccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, Uruguay
Pablo Prieto
Direccion General de Recursos Naturales, Ministerio de Ganaderia, Agricultura y Pesca, Montevideo, Uruguay
Iván Alexis Ramos
Instituto de Investigación Agropecuaria de Panamá, Panamá, Panama
Juan Carlos Rey Brina
Sociedad Venezolana de la Ciencia del Suelo, Caracas, Venezuela
Rafael Rivera
Ministerio de Medio Ambiente, Santo Domingo, Dominican Republic
Javier Rodríguez-Rodríguez
National Commission for the Knowledge and Use of Biodiversity, Mexico City, Mexico
Ronald Roopnarine
Department of Natural and Life Sciences, COSTAATT, Port of Spain, Trinidad and Tobago
University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
Albán Rosales Ibarra
Instituto de Innovación en Transferencia y Tecnología Agropecuaria, San José, Costa Rica
Kenset Amaury Rosales Riveiro
Ministerio de Ambiente y Recursos Naturales de Guatemala, Ciudad Guatemala, Guatemala
Guillermo Andrés Schulz
INTA CNIA, Buenos Aires, Argentina
Adrian Spence
International Centre for Environmental and Nuclear Sciences, University of the West Indies, Kingston, Jamaica
Gustavo M. Vasques
Embrapa Solos, Rio de Janeiro, Brazil
Ronald R. Vargas
FAO, Vialle de Terme di Caracalla, Rome, Italy
University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA
Viewed
Total article views: 8,249 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Jan 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
5,947 | 2,084 | 218 | 8,249 | 505 | 144 | 163 |
- HTML: 5,947
- PDF: 2,084
- XML: 218
- Total: 8,249
- Supplement: 505
- BibTeX: 144
- EndNote: 163
Total article views: 6,470 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Aug 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,882 | 1,400 | 188 | 6,470 | 336 | 135 | 141 |
- HTML: 4,882
- PDF: 1,400
- XML: 188
- Total: 6,470
- Supplement: 336
- BibTeX: 135
- EndNote: 141
Total article views: 1,779 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Jan 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,065 | 684 | 30 | 1,779 | 169 | 9 | 22 |
- HTML: 1,065
- PDF: 684
- XML: 30
- Total: 1,779
- Supplement: 169
- BibTeX: 9
- EndNote: 22
Viewed (geographical distribution)
Total article views: 8,249 (including HTML, PDF, and XML)
Thereof 7,298 with geography defined
and 951 with unknown origin.
Total article views: 6,470 (including HTML, PDF, and XML)
Thereof 5,583 with geography defined
and 887 with unknown origin.
Total article views: 1,779 (including HTML, PDF, and XML)
Thereof 1,715 with geography defined
and 64 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
63 citations as recorded by crossref.
- Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland P. Borrelli et al. 10.1016/j.iswcr.2023.07.008
- Best Practice for Upscaling Soil Organic Carbon Stocks in Salt Marshes C. Ladd et al. 10.2139/ssrn.4136995
- Digital soil mapping and GlobalSoilMap. Main advances and ways forward D. Arrouays et al. 10.1016/j.geodrs.2020.e00265
- Guatemala soil organic carbon database (GTMSOC) A. Vásquez et al. 10.1111/ejss.13450
- National soil organic carbon map of agricultural lands in Nepal S. Lamichhane et al. 10.1016/j.geodrs.2022.e00568
- A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect H. Huang et al. 10.1088/1748-9326/aca41e
- Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area H. Bellinaso et al. 10.1016/j.geoderma.2021.115116
- Optimized data-driven pipeline for digital mapping of quantitative and categorical properties of soils in Colombia A. Coca-Castro et al. 10.36783/18069657rbcs20210084
- Spatio-temporal assessment of topsoil organic carbon stock change in Hungary G. Szatmári et al. 10.1016/j.still.2019.104410
- Spatial distribution of soil carbon storage in desert shrubland ecosystems of northwest Mexico F. Ayala-Niño et al. 10.1016/j.jaridenv.2020.104251
- Zoning Prediction and Mapping of Three-Dimensional Forest Soil Organic Carbon: A Case Study of Subtropical Forests in Southern China Y. Li et al. 10.3390/f14061197
- Regional ensemble modeling reduces uncertainty for digital soil mapping C. Brungard et al. 10.1016/j.geoderma.2021.114998
- Colombian soil texture: building a spatial ensemble model V. Varón-Ramírez et al. 10.5194/essd-14-4719-2022
- Machine learning in space and time for modelling soil organic carbon change G. Heuvelink et al. 10.1111/ejss.12998
- Best practice for upscaling soil organic carbon stocks in salt marshes C. Ladd et al. 10.1016/j.geoderma.2022.116188
- Modeling sediment transport and flow velocity of thawed soil with straw returning D. Yang et al. 10.1016/j.jhydrol.2022.127805
- Digital Mapping of Agricultural Soil Organic Carbon Using Soil Forming Factors: A Review of Current Efforts at the Regional and National Scales Y. Xia et al. 10.3389/fsoil.2022.890437
- Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia A. Suleymanov et al. 10.1007/s40808-023-01723-4
- Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring X. Ge et al. 10.7717/peerj.6926
- Mapping soil organic carbon stocks in Tunisian topsoils H. Bahri et al. 10.1016/j.geodrs.2022.e00561
- Digital mapping of GlobalSoilMap soil properties at a broad scale: A review S. Chen et al. 10.1016/j.geoderma.2021.115567
- Mapping Topsoil Behavior to Compaction at National Scale from an Analysis of Field Observations A. Richer-de-Forges et al. 10.3390/land13071014
- Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France A. RICHER-de-FORGES et al. 10.1016/j.pedsph.2022.07.009
- National-scale mapping of soil organic carbon stock in France: New insights and lessons learned by direct and indirect approaches Z. Chen et al. 10.1016/j.seh.2023.100049
- Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management J. Kristensen et al. 10.5194/soil-5-289-2019
- Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms A. Sakhaee et al. 10.5194/soil-8-587-2022
- Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic E. Duarte et al. 10.1080/22797254.2022.2045226
- A High-resolution Soil Organic Carbon Map for Great Britain S. Mahmood et al. 10.1080/27658511.2024.2415166
- Predicting soil organic carbon with different approaches and spatial resolutions for the southern Iberian Peninsula, Spain P. Durante et al. 10.1016/j.geodrs.2024.e00780
- Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland A. Baltensweiler et al. 10.1016/j.geodrs.2021.e00437
- Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniques N. Sathiparan et al. 10.1007/s42107-023-00790-3
- IRAKA: The first Colombian soil information system with digital soil mapping products G. Araujo-Carrillo et al. 10.1016/j.catena.2020.104940
- Downscaling satellite soil moisture using geomorphometry and machine learning M. Guevara et al. 10.1371/journal.pone.0219639
- Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy O. Adeniyi et al. 10.3390/land12020494
- Assessing the effects of agricultural management practices and land-use changes on soil organic carbon stocks Q. Zhuang et al. 10.1016/j.still.2023.105716
- The impact of drought on soil moisture trends across Brazilian biomes F. Lopes Ribeiro et al. 10.5194/nhess-21-879-2021
- SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty L. Poggio et al. 10.5194/soil-7-217-2021
- A review of the global soil property maps for Earth system models Y. Dai et al. 10.5194/soil-5-137-2019
- Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions? E. Stell et al. 10.1111/gcb.15666
- Enhancing Soil Mapping with Hyperspectral Subsurface Images generated from soil lab Vis-SWIR spectra tested in southern Brazil Y. Gelsleichter et al. 10.1016/j.geodrs.2023.e00641
- Upscaling Soil Organic Carbon Measurements at the Continental Scale Using Multivariate Clustering Analysis and Machine Learning Z. Wang et al. 10.1029/2023JG007702
- Digital mapping of soil organic carbon using remote sensing data: A systematic review N. Pouladi et al. 10.1016/j.catena.2023.107409
- Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010) M. Guevara et al. 10.1029/2019GB006219
- Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico I. Arroyo et al. 10.3390/f14030539
- Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review S. Lamichhane et al. 10.1016/j.geoderma.2019.05.031
- Machine learning for digital soil mapping: Applications, challenges and suggested solutions A. Wadoux et al. 10.1016/j.earscirev.2020.103359
- Space-time modelling of soil organic carbon stock change at multiple scales: Case study from Hungary G. Szatmári et al. 10.1016/j.geoderma.2024.117067
- Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking D. Zhao et al. 10.1016/j.compag.2021.105990
- Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023) N. Batjes et al. 10.5194/essd-16-4735-2024
- Comparing the prediction performance, uncertainty quantification and extrapolation potential of regression kriging and random forest while accounting for soil measurement errors B. Takoutsing & G. Heuvelink 10.1016/j.geoderma.2022.116192
- Leveraging the application of Earth observation data for mapping cropland soils in Brazil J. Safanelli et al. 10.1016/j.geoderma.2021.115042
- A note on knowledge discovery and machine learning in digital soil mapping A. Wadoux et al. 10.1111/ejss.12909
- A spatial machine learning model developed from noisy data requires multiscale performance evaluation: Predicting depth to bedrock in the Delaware river basin, USA P. Goodling et al. 10.1016/j.envsoft.2024.106124
- Mapping soil organic carbon stocks in Nepal’s forests S. Khanal et al. 10.1038/s41598-023-34247-z
- Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression R. Llamas et al. 10.3390/rs12040665
- Soft Computing Techniques for Appraisal of Potentially Toxic Elements from Jalandhar (Punjab), India V. Kumar et al. 10.3390/app11188362
- A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area C. Schillaci et al. 10.1016/j.catena.2018.12.015
- Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations C. Sothe et al. 10.1016/j.geoderma.2021.115402
- Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019) N. Batjes et al. 10.5194/essd-12-299-2020
- First soil organic carbon report of Paraguay A. Encina-Rojas et al. 10.1016/j.geodrs.2023.e00611
- Clay content mapping and uncertainty estimation using weighted model averaging D. Zhao et al. 10.1016/j.catena.2021.105791
- Spatial Distribution of Carbon Stocks Along Protected and Non-protected Coastal Wetland Ecosystems in the Gulf of Mexico C. Troche-Souza et al. 10.1007/s10021-024-00918-9
- Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile G. Olmedo et al. 10.3390/f11101063
61 citations as recorded by crossref.
- Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland P. Borrelli et al. 10.1016/j.iswcr.2023.07.008
- Best Practice for Upscaling Soil Organic Carbon Stocks in Salt Marshes C. Ladd et al. 10.2139/ssrn.4136995
- Digital soil mapping and GlobalSoilMap. Main advances and ways forward D. Arrouays et al. 10.1016/j.geodrs.2020.e00265
- Guatemala soil organic carbon database (GTMSOC) A. Vásquez et al. 10.1111/ejss.13450
- National soil organic carbon map of agricultural lands in Nepal S. Lamichhane et al. 10.1016/j.geodrs.2022.e00568
- A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect H. Huang et al. 10.1088/1748-9326/aca41e
- Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area H. Bellinaso et al. 10.1016/j.geoderma.2021.115116
- Optimized data-driven pipeline for digital mapping of quantitative and categorical properties of soils in Colombia A. Coca-Castro et al. 10.36783/18069657rbcs20210084
- Spatio-temporal assessment of topsoil organic carbon stock change in Hungary G. Szatmári et al. 10.1016/j.still.2019.104410
- Spatial distribution of soil carbon storage in desert shrubland ecosystems of northwest Mexico F. Ayala-Niño et al. 10.1016/j.jaridenv.2020.104251
- Zoning Prediction and Mapping of Three-Dimensional Forest Soil Organic Carbon: A Case Study of Subtropical Forests in Southern China Y. Li et al. 10.3390/f14061197
- Regional ensemble modeling reduces uncertainty for digital soil mapping C. Brungard et al. 10.1016/j.geoderma.2021.114998
- Colombian soil texture: building a spatial ensemble model V. Varón-Ramírez et al. 10.5194/essd-14-4719-2022
- Machine learning in space and time for modelling soil organic carbon change G. Heuvelink et al. 10.1111/ejss.12998
- Best practice for upscaling soil organic carbon stocks in salt marshes C. Ladd et al. 10.1016/j.geoderma.2022.116188
- Modeling sediment transport and flow velocity of thawed soil with straw returning D. Yang et al. 10.1016/j.jhydrol.2022.127805
- Digital Mapping of Agricultural Soil Organic Carbon Using Soil Forming Factors: A Review of Current Efforts at the Regional and National Scales Y. Xia et al. 10.3389/fsoil.2022.890437
- Spatial prediction of soil properties using random forest, k-nearest neighbors and cubist approaches in the foothills of the Ural Mountains, Russia A. Suleymanov et al. 10.1007/s40808-023-01723-4
- Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring X. Ge et al. 10.7717/peerj.6926
- Mapping soil organic carbon stocks in Tunisian topsoils H. Bahri et al. 10.1016/j.geodrs.2022.e00561
- Digital mapping of GlobalSoilMap soil properties at a broad scale: A review S. Chen et al. 10.1016/j.geoderma.2021.115567
- Mapping Topsoil Behavior to Compaction at National Scale from an Analysis of Field Observations A. Richer-de-Forges et al. 10.3390/land13071014
- Hand-feel soil texture observations to evaluate the accuracy of digital soil maps for local prediction of soil particle size distribution: A case study in Central France A. RICHER-de-FORGES et al. 10.1016/j.pedsph.2022.07.009
- National-scale mapping of soil organic carbon stock in France: New insights and lessons learned by direct and indirect approaches Z. Chen et al. 10.1016/j.seh.2023.100049
- Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management J. Kristensen et al. 10.5194/soil-5-289-2019
- Spatial prediction of organic carbon in German agricultural topsoil using machine learning algorithms A. Sakhaee et al. 10.5194/soil-8-587-2022
- Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic E. Duarte et al. 10.1080/22797254.2022.2045226
- A High-resolution Soil Organic Carbon Map for Great Britain S. Mahmood et al. 10.1080/27658511.2024.2415166
- Predicting soil organic carbon with different approaches and spatial resolutions for the southern Iberian Peninsula, Spain P. Durante et al. 10.1016/j.geodrs.2024.e00780
- Machine learning based soil maps for a wide range of soil properties for the forested area of Switzerland A. Baltensweiler et al. 10.1016/j.geodrs.2021.e00437
- Effect of aggregate size, aggregate to cement ratio and compaction energy on ultrasonic pulse velocity of pervious concrete: prediction by an analytical model and machine learning techniques N. Sathiparan et al. 10.1007/s42107-023-00790-3
- IRAKA: The first Colombian soil information system with digital soil mapping products G. Araujo-Carrillo et al. 10.1016/j.catena.2020.104940
- Downscaling satellite soil moisture using geomorphometry and machine learning M. Guevara et al. 10.1371/journal.pone.0219639
- Digital Mapping of Soil Properties Using Ensemble Machine Learning Approaches in an Agricultural Lowland Area of Lombardy, Italy O. Adeniyi et al. 10.3390/land12020494
- Assessing the effects of agricultural management practices and land-use changes on soil organic carbon stocks Q. Zhuang et al. 10.1016/j.still.2023.105716
- The impact of drought on soil moisture trends across Brazilian biomes F. Lopes Ribeiro et al. 10.5194/nhess-21-879-2021
- SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty L. Poggio et al. 10.5194/soil-7-217-2021
- A review of the global soil property maps for Earth system models Y. Dai et al. 10.5194/soil-5-137-2019
- Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions? E. Stell et al. 10.1111/gcb.15666
- Enhancing Soil Mapping with Hyperspectral Subsurface Images generated from soil lab Vis-SWIR spectra tested in southern Brazil Y. Gelsleichter et al. 10.1016/j.geodrs.2023.e00641
- Upscaling Soil Organic Carbon Measurements at the Continental Scale Using Multivariate Clustering Analysis and Machine Learning Z. Wang et al. 10.1029/2023JG007702
- Digital mapping of soil organic carbon using remote sensing data: A systematic review N. Pouladi et al. 10.1016/j.catena.2023.107409
- Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010) M. Guevara et al. 10.1029/2019GB006219
- Mapping Forest Cover and Estimating Soil Organic Matter by GIS-Data and an Empirical Model at the Subnational Level in Mexico I. Arroyo et al. 10.3390/f14030539
- Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review S. Lamichhane et al. 10.1016/j.geoderma.2019.05.031
- Machine learning for digital soil mapping: Applications, challenges and suggested solutions A. Wadoux et al. 10.1016/j.earscirev.2020.103359
- Space-time modelling of soil organic carbon stock change at multiple scales: Case study from Hungary G. Szatmári et al. 10.1016/j.geoderma.2024.117067
- Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking D. Zhao et al. 10.1016/j.compag.2021.105990
- Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023) N. Batjes et al. 10.5194/essd-16-4735-2024
- Comparing the prediction performance, uncertainty quantification and extrapolation potential of regression kriging and random forest while accounting for soil measurement errors B. Takoutsing & G. Heuvelink 10.1016/j.geoderma.2022.116192
- Leveraging the application of Earth observation data for mapping cropland soils in Brazil J. Safanelli et al. 10.1016/j.geoderma.2021.115042
- A note on knowledge discovery and machine learning in digital soil mapping A. Wadoux et al. 10.1111/ejss.12909
- A spatial machine learning model developed from noisy data requires multiscale performance evaluation: Predicting depth to bedrock in the Delaware river basin, USA P. Goodling et al. 10.1016/j.envsoft.2024.106124
- Mapping soil organic carbon stocks in Nepal’s forests S. Khanal et al. 10.1038/s41598-023-34247-z
- Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on Geostatistical Techniques and Multiple Regression R. Llamas et al. 10.3390/rs12040665
- Soft Computing Techniques for Appraisal of Potentially Toxic Elements from Jalandhar (Punjab), India V. Kumar et al. 10.3390/app11188362
- A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area C. Schillaci et al. 10.1016/j.catena.2018.12.015
- Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations C. Sothe et al. 10.1016/j.geoderma.2021.115402
- Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019) N. Batjes et al. 10.5194/essd-12-299-2020
- First soil organic carbon report of Paraguay A. Encina-Rojas et al. 10.1016/j.geodrs.2023.e00611
- Clay content mapping and uncertainty estimation using weighted model averaging D. Zhao et al. 10.1016/j.catena.2021.105791
2 citations as recorded by crossref.
Discussed (final revised paper)
Discussed (preprint)
Latest update: 20 Nov 2024
Short summary
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a country-specific basis as required by the Global Soil Partnership of the United Nations. We identify key prediction factors for SOC across each country. We compare and test different methods to generate spatially explicit predictions of SOC and conclude that there is no best method on a quantifiable basis.
We provide a reproducible multi-modeling approach for SOC mapping across Latin America on a...