Articles | Volume 12, issue 1
https://doi.org/10.5194/soil-12-79-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-12-79-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Digging deeper: assessing soil quality in a diversity of conservation agriculture practices
Manon S. Ferdinand
CORRESPONDING AUTHOR
Sytra, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.14, 1348 Louvain-La-Neuve, Belgium
Brieuc F. Hardy
Department of Sustainability, Systems & Prospective – Unit of Soil, Water and Integrated Crop Production, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
Philippe V. Baret
Sytra, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.14, 1348 Louvain-La-Neuve, Belgium
Related authors
No articles found.
Frédéric Marie Vanwindekens and Brieuc François Hardy
SOIL, 9, 573–591, https://doi.org/10.5194/soil-9-573-2023, https://doi.org/10.5194/soil-9-573-2023, 2023
Short summary
Short summary
Structural stability is critical for sustainable agricultural soil management. We invented a simple test to measure soil structural stability. The QuantiSlakeTest consists of a dynamic weighting of a dried soil sample in water. The test is rapid, does not require expensive equipment and provides a high density of information on soil structural properties. With an open-access programme for data management under development, the test has strong potential for adoption by a large community of users.
Brieuc Hardy, Nils Borchard, and Jens Leifeld
SOIL, 8, 451–466, https://doi.org/10.5194/soil-8-451-2022, https://doi.org/10.5194/soil-8-451-2022, 2022
Short summary
Short summary
Soil amendment with artificial black carbon (BC; biomass transformed by incomplete combustion) has the potential to mitigate climate change. Nevertheless, the accurate quantification of BC in soil remains a critical issue. Here, we successfully used dynamic thermal analysis (DTA) to quantify centennial BC in soil. We demonstrate that DTA is largely under-exploited despite providing rapid and low-cost quantitative information over the range of soil organic matter.
Cited articles
Adeux, G., Guinet, M., Courson, E., Lecaulle, S., Munier-Jolain, N., and Cordeau, S.: Multicriteria assessment of conservation agriculture systems, Frontiers in Agronomy, 4, https://doi.org/10.3389/fagro.2022.999960, 2022.
Apaq-W and Biowallonie: Les chiffres du bio 2022 en Wallonie, Collaboration entre l'Apaq-W et Biowallonie, https://www.biowallonie.com/wp-content/uploads/2023/06/ChiffresDuBio-2022-BD.pdf (last access: 15 January 2026), 2023.
Association Française de Normalisation: ISO 11465:1993, https://www.iso.org/fr/standard/20886.html (last access: 15 January 2026), 1993.
Association Française de Normalisation: Qualité du sol – Détermination de la distribution granulométrique des particules du sol – Méthode à la pipette, Standard NF-X31-107, 2003.
Awale, R., Emeson, M. A., and Machado, S.: Soil Organic Carbon Pools as Early Indicators for Soil Organic Matter Stock Changes under Different Tillage Practices in Inland Pacific Northwest, Frontiers in Ecology and Evolution, 5, https://doi.org/10.3389/fevo.2017.00096, 2017.
Bahri, H., Annabi, M., Cheikh M'Hamed, H., and Frija, A.: Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context, Science of the Total Environment, 692, 1223–1233, https://doi.org/10.1016/j.scitotenv.2019.07.307, 2019.
Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M., and Radulovich, R.: Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions, Frontiers in Environmental Science, 8, https://doi.org/10.3389/fenvs.2020.579904, 2020.
Blanco-Canqui, H.: Assessing the potential of nature-based solutions for restoring soil ecosystem services in croplands, Science of The Total Environment, 921, 170854, https://doi.org/10.1016/j.scitotenv.2024.170854, 2024.
Bohoussou, Y. N., Kou, Y.-H., Yu, W.-B., Lin, B., Virk, A. L., Zhao, X., Dang, Y. P., and Zhang, H.-L.: Impacts of the components of conservation agriculture on soil organic carbon and total nitrogen storage: A global meta-analysis, Science of The Total Environment, 842, 156822, https://doi.org/10.1016/j.scitotenv.2022.156822, 2022.
Bongiorno, G., Bünemann, E. K., Oguejiofor, C. U., Meier, J., Gort, G., Comans, R., Mäder, P., Brussaard, L., and de Goede, R.: Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe, Ecological Indicators, 99, 38–50, https://doi.org/10.1016/j.ecolind.2018.12.008, 2019.
Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R., and Dulazi, A. A.: Conservation tillage impacts on soil, crop and the environment, International Soil and Water Conservation Research, 3, 119–129, https://doi.org/10.1016/j.iswcr.2015.05.002, 2015.
Chabert, A. and Sarthou, J.-P.: Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services, Agriculture, Ecosystems & Environment, 292, 106815, https://doi.org/10.1016/j.agee.2019.106815, 2020.
Chartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., and van Wesemael, B.: Mapping Soil Organic Carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia), Geoderma Regional, 9, 73–86, https://doi.org/10.1016/j.geodrs.2016.12.006, 2017.
Chen, G. and Weil, R. R.: Penetration of cover crop roots through compacted soils, Plant Soil, 331, 31–43, https://doi.org/10.1007/s11104-009-0223-7, 2010.
Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., and Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations, Soil and Tillage Research, 188, 41–52, https://doi.org/10.1016/j.still.2018.04.011, 2019.
Chervet, A., Ramseier, L., Sturny, W. G., Zuber, M., Stettler, M., Weisskopf, P., Zihlmann, U., Martínez, G. I., and Keller, T.: Rendements et paramètres du sol après 20 ans de semis direct et de labour, Recherche Agronomique Suisse, 7, 216–223, 2016.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Global Change Biology, 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Craheix, D., Angevin, F., Doré, T., and de Tourdonnet, S.: Using a multicriteria assessment model to evaluate the sustainability of conservation agriculture at the cropping system level in France, European Journal of Agronomy, 76, 75–86, https://doi.org/10.1016/j.eja.2016.02.002, 2016.
Cristofari, H., Girard, N., and Magda, D.: Supporting transition toward conservation agriculture: a framework to analyze the learning processes of farmers, Hungarian Geographical Bulletin, 66, 65–76, https://doi.org/10.15201/hungeobull.66.1.7, 2017.
Culman, S. W., Snapp, S. S., Freeman, M. A., Schipanski, M. E., Beniston, J., Lal, R., Drinkwater, L. E., Franzluebbers, A. J., Glover, J. D., Grandy, A. S., Lee, J., Six, J., Maul, J. E., Mirsky, S. B., Spargo, J. T., and Wander, M. M.: Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction that is Sensitive to Management, Soil Science Society of America Journal, 76, 494–504, https://doi.org/10.2136/sssaj2011.0286, 2012.
Derrien, D., Barré, P., Basile-Doelsch, I., Cécillon, L., Chabbi, A., Crème, A., Fontaine, S., Henneron, L., Janot, N., Lashermes, G., Quénéa, K., Rees, F., and Dignac, M.-F.: Current controversies on mechanisms controlling soil carbon storage: implications for interactions with practitioners and policy-makers. A review, Agron. Sustain. Dev., 43, 21, https://doi.org/10.1007/s13593-023-00876-x, 2023.
Dexter, A. R., Richard, G., Arrouays, D., Czyż, E. A., Jolivet, C., and Duval, O.: Complexed organic matter controls soil physical properties, Geoderma, 144, 620–627, https://doi.org/10.1016/j.geoderma.2008.01.022, 2008.
Dimassi, B., Mary, B., Wylleman, R., Labreuche, J., Couture, D., Piraux, F., and Cohan, J.-P.: Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years, Agriculture, Ecosystems & Environment, 188, 134–146, https://doi.org/10.1016/j.agee.2014.02.014, 2014.
Doran, J. W. and Parkin, T. B.: Defining and Assessing Soil Quality, in: Defining Soil Quality for a Sustainable Environment, John Wiley & Sons, Ltd, 1–21, https://doi.org/10.2136/sssaspecpub35.c1, 1994.
Dupla, X., Gondret, K., Sauzet, O., Verrecchia, E., and Boivin, P.: Changes in topsoil organic carbon content in the Swiss leman region cropland from 1993 to present. Insights from large scale on-farm study, Geoderma, 400, 115125, https://doi.org/10.1016/j.geoderma.2021.115125, 2021.
Dupla, X., Lemaître, T., Grand, S., Gondret, K., Charles, R., Verrecchia, E., and Boivin, P.: On-Farm Relationships Between Agricultural Practices and Annual Changes in Organic Carbon Content at a Regional Scale, Front. Environ. Sci., 10, https://doi.org/10.3389/fenvs.2022.834055, 2022.
EUSO: EUSO Soil Health Dashboard, https://esdac.jrc.ec.europa.eu/esdacviewer/euso-dashboard/, last access: 13 December 2024.
FAO: Three principles of Conservation Agriculture, http://www.fao.org/conservation-agriculture/en/, last access: 6 December 2019.
FAO and ITPS: Status of the World's Soil Resources (SWSR) – Main Report, Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, https://www.fao.org/3/i5199e/i5199e.pdf (last access: 15 January 2026), 2015.
Ferdinand, M.: The diversity of practices in conservation agriculture, Thesis, UCLouvain, http://hdl.handle.net/2078.1/287412 (last access: 15 January 2026), 2024.
Ferdinand, M. S. and Baret, P. V.: A method to account for diversity of practices in Conservation Agriculture, Agron. Sustain. Dev., 44, 31, https://doi.org/10.1007/s13593-024-00961-9, 2024.
Giller, K. E., Witter, E., Corbeels, M., and Tittonell, P.: Conservation agriculture and smallholder farming in Africa: The heretics' view, Field Crops Research, 114, 23–34, https://doi.org/10.1016/j.fcr.2009.06.017, 2009.
Goidts, E.: Soil organic carbon evolution at the regional scale: overcoming uncertainties & quantifying driving forces, UCLouvain, http://hdl.handle.net/2078.1/21726 (last access: 15 January 2026), 2009.
González-Sánchez, E. J., Moreno-Garcia, M., Kassam, A., Holgado-Cabrera, A., Trivino-Tarradas, P., Carbonell-Bojollo, R., Pisante, M., Veroz-Gonzalez, O., and Basch, G.: Conservation Agriculture: Making Climate Change Mitigation and Adaptation Real in Europe, European Conservation Agriculture Federation (ECAF), 182 pp., https://ecaf.org/wp-content/uploads/2021/02/Conservation_Agriculture_climate_change_report.pdf (last access: 15 January 2026), 2017.
Hamza, M. A. and Anderson, W. K.: Soil compaction in cropping systems: A review of the nature, causes and possible solutions, Soil and Tillage Research, 82, 121–145, https://doi.org/10.1016/j.still.2004.08.009, 2005.
Hobbs, P. R., Sayre, K., and Gupta, R.: The role of conservation agriculture in sustainable agriculture, Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 543–555, https://doi.org/10.1098/rstb.2007.2169, 2008.
Huang, J., Rinnan, Å., Bruun, T. B., Engedal, T., and Bruun, S.: Identifying the fingerprint of permanganate oxidizable carbon as a measure of labile soil organic carbon using Fourier transform mid-infrared photoacoustic spectroscopy, European Journal of Soil Science, 72, 1831–1841, https://doi.org/10.1111/ejss.13085, 2021.
IPCC: Summary for Policymakers – Special Report on Climate Change and Land, https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (last access: 15 January 2026), 2019.
Jabro, J. D., Allen, B. L., Rand, T., Dangi, S. R., and Campbell, J. W.: Effect of Previous Crop Roots on Soil Compaction in 2 Yr Rotations under a No-Tillage System, Land, 10, 202, https://doi.org/10.3390/land10020202, 2021.
Jacobs, A., Poeplau, C., Weiser, C., Fahrion-Nitschke, A., and Don, A.: Exports and inputs of organic carbon on agricultural soils in Germany, Nutr. Cycl. Agroecosyst., 118, 249–271, https://doi.org/10.1007/s10705-020-10087-5, 2020.
Jensen, J. L., Schjønning, P., Watts, C. W., Christensen, B. T., Peltre, C., and Munkholm, L. J.: Relating soil C and organic matter fractions to soil structural stability, Geoderma, 337, 834–843, https://doi.org/10.1016/j.geoderma.2018.10.034, 2019.
Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P. C., and Boivin, P.: Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?, Geoderma, 302, 14–21, https://doi.org/10.1016/j.geoderma.2017.04.021, 2017.
Kassam, A., Friedrich, T., and Derpsch, R.: Global spread of Conservation Agriculture, International Journal of Environmental Studies, 76, 29–51, https://doi.org/10.1080/00207233.2018.1494927, 2018.
Lahmar, R.: Adoption of conservation agriculture in Europe: Lessons of the KASSA project, Land Use Policy, 27, 4–10, https://doi.org/10.1016/j.landusepol.2008.02.001, 2010.
Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in microbial control over soil carbon storage, Nat. Microbiol., 2, 1–6, https://doi.org/10.1038/nmicrobiol.2017.105, 2017.
Mamedov, A. I., Fujimaki, H., Tsunekawa, A., Tsubo, M., and Levy, G. J.: Structure stability of acidic Luvisols: Effects of tillage type and exogenous additives, Soil and Tillage Research, 206, 104832, https://doi.org/10.1016/j.still.2020.104832, 2021.
Martínez, I., Chervet, A., Weisskopf, P., Sturny, W. G., Etana, A., Stettler, M., Forkman, J., and Keller, T.: Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile, Soil and Tillage Research, 163, 141–151, https://doi.org/10.1016/j.still.2016.05.021, 2016.
Mason, E., Cornu, S., and Chenu, C.: Stakeholders' point of view on access to soil knowledge in France. What are the opportunities for further improvement?, Geoderma Regional, 35, e00716, https://doi.org/10.1016/j.geodrs.2023.e00716, 2023.
Meena, R. P. and Jha, A.: Conservation agriculture for climate change resilience: A microbiological perspective, in: Microbes for Climate Resilient Agriculture, John Wiley & Sons, Ltd, 165–190, https://doi.org/10.1002/9781119276050.ch8, 2018.
Page, K. L., Dang, Y. P., and Dalal, R. C.: The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield, Frontiers in Sustainable Food Systems, 4, https://doi.org/10.3389/fsufs.2020.00031, 2020.
Pisante, M., Stagnari, F., Acutis, M., Bindi, M., Brilli, L., Di Stefano, V., and Carozzi, M.: Conservation agriculture and climate change, in: Conservation Agriculture, Springer International Publishing, 579–620, https://doi.org/10.1007/978-3-319-11620-4_22, 2015.
Prout, J. M., Shepherd, K. D., McGrath, S. P., Kirk, G. J. D., and Haefele, S. M.: What is a good level of soil organic matter? An index based on organic carbon to clay ratio, European Journal of Soil Science, 72, 2493–2503, https://doi.org/10.1111/ejss.13012, 2020.
Pulley, S., Taylor, H., Prout, J. M., Haefele, S. M., and Collins, A. L.: The soil organic carbon: Clay ratio in North Devon, UK: Implications for marketing soil carbon as an asset class, Soil Use and Management, 39, 1068–1081, https://doi.org/10.1111/sum.12920, 2023.
R Core Team: R: The R Project for Statistical Computing, https://www.r-project.org/ (last access: 15 January 2026), 2022.
Riera, A., Duluins, O., Schuster, M., and Baret, P. V.: Accounting for diversity while assessing sustainability: insights from the Walloon bovine sectors, Agron. Sustain. Dev., 43, 30, https://doi.org/10.1007/s13593-023-00882-z, 2023.
Scopel, E., Triomphe, B., Affholder, F., Da Silva, F. A. M., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., de Carvalho Mendes, I., and De Tourdonnet, S.: Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review, Agron. Sustain. Dev., 33, 113–130, https://doi.org/10.1007/s13593-012-0106-9, 2013.
Sherrod, L. A., Dunn, G., Peterson, G. A., and Kolberg, R. L.: Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method, Soil Science Society of America Journal, 66, 299–305, https://doi.org/10.2136/sssaj2002.2990, 2002.
Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J.: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment, Soil and Tillage Research, 118, 66–87, https://doi.org/10.1016/j.still.2011.10.015, 2012.
SPW ARNE, DEMNA, and DEE: Environnement physique: Etat de l'environnement wallon : Indicateurs environnementaux, http://etat.environnement.wallonie.be/contents/indicatorcategories/composantes-environnementales-et/environnement-physique.html (last access: 15 January 2026), 2018.
Statbel: Chiffres clés de l'agriculture 2023, https://doc.statbel.fgov.be/publications/S510.01/S510.01F_Chiffres_cle_agri_2023.pdf (last access: 15 January 2026), 2023.
Sumberg, J. and Giller, K. E.: What is “conventional” agriculture?, Global Food Security, 32, 100617, https://doi.org/10.1016/j.gfs.2022.100617, 2022.
Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T. S., Lamanna, C., and Eyre, J. X.: How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa, Food Security, 9, 537–560, 2017.
Tollefson, M. (Ed.): Graphics with the ggplot2 Package: An Introduction, in: Visualizing Data in R 4: Graphics Using the base, graphics, stats, and ggplot2 Packages, Apress, Berkeley, CA, 281–293, https://doi.org/10.1007/978-1-4842-6831-5_7, 2021.
Van den Putte, A., Govers, G., Diels, J., Langhans, C., Clymans, W., Vanuytrecht, E., Merckx, R., and Raes, D.: Soil functioning and conservation tillage in the Belgian Loam Belt, Soil and Tillage Research, 122, 1–11, https://doi.org/10.1016/j.still.2012.02.001, 2012.
van Wesemael, B., Chartin, C., Wiesmeier, M., von Lützow, M., Hobley, E., Carnol, M., Krüger, I., Campion, M., Roisin, C., Hennart, S., and Kögel-Knabner, I.: An indicator for organic matter dynamics in temperate agricultural soils, Agriculture, Ecosystems & Environment, 274, 62–75, https://doi.org/10.1016/j.agee.2019.01.005, 2019.
Vanwindekens, F., Lamotte, L. de, Serteyn, L., Goidts, E., Doncel, A., Chartin, C., Hardy, B., Leclercq, V., Smissen, H. V. D., and Huyghebaert, B.: Principes généraux pour maintenir – voire améliorer – le taux de matière organique dans les sols agricoles - Document d'orientation des agriculteurs et des agricultrices souhaitant souscrire à la MAEC-Sols en Wallonie, https://gitrural.cra.wallonie.be/portail-public/documents-u07/-/raw/main/doc_orientation_maec_sols.pdf (last access: 15 January 2026), 2024.
Vanwindekens, F. M. and Hardy, B. F.: The QuantiSlakeTest, measuring soil structural stability by dynamic weighing of undisturbed samples immersed in water, SOIL, 9, 573–591, https://doi.org/10.5194/soil-9-573-2023, 2023.
Vertès, F., Hatch, D., Velthof, G., Taube, F., Laurent, F., Loiseau, P., and Recous, S.: Short-term and cumulative effects of grassland cultivation on nitrogen and carbon cycling in ley-arable rotations, in: Grassland Science in Europe, Vol. 12, 227–246, https://www.cabidigitallibrary.org/doi/full/10.5555/20083018734 (last access: 15 Januar 2026), 2007.
Virto, I., Barré, P., Burlot, A., and Chenu, C.: Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems, Biogeochemistry, 108, 17–26, https://doi.org/10.1007/s10533-011-9600-4, 2012.
Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., and Zemla, J.: Package “corrplot”, Statistician, 56, 18, https://peerj.com/articles/9945/Supplemental_Data_S10.pdf (last access: 15 January 2026), 2017.
Weil, R. R. and Brady, N. C.: The Nature and Properties of Soils, 15th edn., https://www.researchgate.net/publication/301200878_The_Nature_and_Properties_of_Soils_15th_edition (last access: 15 January 2026), 2017.
Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., and Samson-Liebig, S. E.: Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use, American Journal of Alternative Agriculture, 18, 3–17, https://doi.org/10.1079/AJAA200228, 2003.
Short summary
We assessed three soil quality indicators across Walloon Conservation Agriculture (CA) fields, accounting for practice diversity within four CA-types. Soil indicators varied significantly among CA-types. Inclusion of temporary grasslands in the crop sequence emerged as the most influential factor. Our findings show that CA effects depend on the combination of practices, highlighting the need for a systemic, context-based evaluation of soil quality.
We assessed three soil quality indicators across Walloon Conservation Agriculture (CA) fields,...