Articles | Volume 12, issue 1
https://doi.org/10.5194/soil-12-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-12-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil fungal network complexity and functional roles differ between black truffle plantations and forests
Vasiliki Barou
RTA, Sustainable Plant Protection, Centre de Cabrils, 08348, Cabrils, Barcelona, Spain
Jorge Prieto-Rubio
Centro de Investigaciones Sobre Desertificación (CIDE), CSIC-Universidad de Valencia-Generalitat Valenciana, 46113, Moncada, Valencia, Spain
Mario Zabal-Aguirre
Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
Javier Parladé
RTA, Sustainable Plant Protection, Centre de Cabrils, 08348, Cabrils, Barcelona, Spain
Ana Rincón
CORRESPONDING AUTHOR
Instituto de Ciencias Agrarias, ICA-CSIC. C/ Serrano 115bis, 28006, Madrid, Spain
Related authors
No articles found.
Jorge Prieto-Rubio, José L. Garrido, Julio M. Alcántara, Concepción Azcón-Aguilar, Ana Rincón, and Álvaro López-García
SOIL, 10, 425–439, https://doi.org/10.5194/soil-10-425-2024, https://doi.org/10.5194/soil-10-425-2024, 2024
Short summary
Short summary
Changes in soil biological activity when microbial taxa interact remain little understood. To address this, we approach network analyses of ectomycorrhizal fungal communities. The study highlights how distinct fungi contribute to explaining community structure, whilst others mainly do for soil enzymatic activity. This differentiation between structural and functional roles of ectomycorrhizal fungi adds new insights to understand soil fungal community complexity and its functionality in soils.
Cited articles
Adamo, I., Dashevskaya, S., and Alday, J. G.: Fungal perspective of pine and oak colonization in Mediterranean degraded ecosystems, Forests, 13, 88, https://doi.org/10.3390/f13010088, 2022.
Antony-Babu, S., Deveau, A., Van Nostrand, J. D., Zhou, J., Le Tacon, F., Robin, C., Frey-Klett, P., and Uroz, S.: Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles, Environ. Microbiol., 16, 2831–2847, https://doi.org/10.1111/1462-2920.12294, 2013.
Bagella, S., Filigheddu, R., Caria, M. C., Girlanda, M., and Roggero, P. P.: Contrasting land uses in Mediterranean agro-silvopastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms, Comptes Rendus Biologies, 337, 717–724, https://doi.org/10.1016/j.crvi.2014.09.005, 2014.
Balami, S., Vašutová, M., Godbold, D., Kotas, P., and Cudlín, P.: Soil fungal communities across land use types, iForest - Biogeosciences and Forestry, 13, 548–558, https://doi.org/10.3832/ifor3231-013, 2020.
Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., and Richardson, A. E.: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil, Soil Biol. Biochem., 97, 188–198, https://doi.org/10.1016/j.soilbio.2016.03.017, 2016.
Barberán, A., Bates, S. T., Casamayor, E. O., and Fierer, N.: Using network analysis to explore co-occurrence patterns in soil microbial communities, ISME J., 6, 343–351, https://doi.org/10.1038/ismej.2011.119, 2012.
Barou, V., Rincón, A., Calvet, C., Camprubí, A., and Parladé, J.: Aromatic plants and their associated arbuscular mycorrhizal fungi outcompete Tuber melanosporum in compatibility assays with truffle-oaks, Biology, 12, 628, https://doi.org/10.3390/biology12040628, 2023.
Barou, V., Rincón, A., and Parladé, J.: Modelling environmental drivers of Tuber melanosporum extraradical mycelium in productive holm oak plantations and forests, For. Ecol. Manag., 563, 121988, https://doi.org/10.1016/j.foreco.2024.121988, 2024.
Barou, V., Zabal-Aguirre, M., Parladé, J., and Rincón, A.: Tuber melanosporum Vittad. abundance and specific soil parameters predict soil enzymatic activity in wild and managed truffle producing systems, Appl. Soil Ecol., 206, 105872, https://doi.org/10.1016/j.apsoil.2025.105872, 2025.
Bastian, M., Heymann, S., and Jacomy, M.: Gephi: An open source software for exploring and manipulating networks, Proceedings of the International AAAI Conference on Web and Social Media, 3, 361–362, https://doi.org/10.1609/icwsm.v3i1.13937, 2009.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67, https://doi.org/10.18637/jss.v067.i01, 2015.
Belfiori, B., Riccioni, C., Tempesta, S., Pasqualetti, M., Paolocci, F., and Rubini, A.: Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds, FEMS Microbiol. Ecol., 81, 547–561, https://doi.org/10.1111/j.1574-6941.2012.01379.x, 2012.
Birt, H. W. G. and Dennis, P. G.: Inference and analysis of SPIEC-EASI microbiome networks, Methods Mol. Biol., 2232, 155–171, https://doi.org/10.1007/978-1-0716-1040-4_14, 2021.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.: Fast unfolding of communities in large networks, J. Stat. Mech.: Theory Exp., 2008, P10008, https://doi.org/10.1088/1742-5468/2008/10/P10008, 2008.
Bödeker, I. T. M., Lindahl, B. D., Olson, Å., and Clemmensen, K. E.: Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently, Funct. Ecol., 30, 1967–1978, https://doi.org/10.1111/13652435.12677, 2016.
Bragato, G.: Is truffle brûlé a case of perturbational niche construction?, For. Syst., 23, 349–356, https://doi.org/10.5424/fs/2014232-04925, 2014.
Brandon-Mong, G.-J., Shaw, G. T.-W., Chen, W.-H., Chen, C.-C., and Wang, D.: A network approach to investigating the key microbes and stability of gut microbial communities in a mouse neuropathic pain model, BMC Microbiol., 20, 295, https://doi.org/10.1186/s12866-020-01981-7, 2020.
Brede, M. (Ed): Book review: Networks – An introduction, Mark E. J. Newman, Oxford University Press, ISBN-978-0-19-920665-0, Artif. Life, 18, 241–242, https://doi.org/10.1162/artl_r_00062, 2012.
Brinkmann, N., Schneider, D., Sahner, J., Ballauff, J., Edy, N., Barus, H., Irawan, B., Budi, S. W., Qaim, M., Daniel, R., and Polle, A.: Intensive tropical land use massively shifts soil fungal communities, Sci. Rep., 9, https://doi.org/10.1038/s41598-019-39829-4, 2019.
Byers, A. K., Wakelin, S. A., Condron, L., and Black, A.: Land use change disrupts the network complexity and stability of soil microbial carbon cycling genes across an agricultural mosaic landscape, Microb. Ecol., 87, https://doi.org/10.1007/s00248-024-02487-9, 2024..
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Choreño-Parra, E. M. and Treseder, K. K.: Mycorrhizal fungi modify decomposition: a meta-analysis, New Phytol., 242, 2763–2774, https://doi.org/10.1111/nph.19748, 2024.
De Miguel, A. M., Águeda, B., Sánchez, S., and Parladé, J.: Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: Applying lessons learned to future truffle culture, Mycorrhiza, 24, 5–18, https://doi.org/10.1007/s00572-013-0554-3, 2014.
De Miguel, A. M., Águeda, B., Sáez, R., Sánchez, S., and Parladé, J.: Diversity of ectomycorrhizal Thelephoraceae in Tuber melanosporum-cultivated orchards of Northern Spain, Mycorrhiza, 26, 227–236, https://doi.org/10.1007/s00572-015-0665-0, 2016.
Deguchi, T., Takahashi, K., Takayasu, H., and Takayasu, M.: Hubs and authorities in the world trade network using a weighted HITS algorithm, PLOS ONE, 9, e100338, https://doi.org/10.1371/journal.pone.0100338, 2014.
Egidi, E., Delgado-Baquerizo, M., Plett, J. M., Wang, J., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., and Singh, B. K.: A few Ascomycota taxa dominate soil fungal communities worldwide, Nat. Commun., 10, https://doi.org/10.1038/s41467-019-10373-z, 2019.
Fernandez, C. W. and Kennedy, P. G.: Revisiting the `Gadgil effect': Do interguild fungal interactions control carbon cycling in forest soils? New Phytol., 209, 1382–1394, https://doi.org/10.1111/nph.13648, 2016.
Flores-Rentería, D., Rincón, A., Morán-López, T., Hereş, A.-M., Pérez-Izquierdo, L., Valladares, F., and Curiel Yuste, J.: Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak forests, PeerJ, 6, e5857, https://doi.org/10.7717/peerj.5857, 2018.
Fruchterman, T. M. J. and Reingold, E. M.: Graph drawing by force-directed placement, Softw. - Pract. Exper., 21, 1129–1164, https://doi.org/10.1002/spe.4380211102, 1991.
Fu, Y., Li, X., Li, Q., Wu, H., Xiong, C., Geng, Q., Sun, H., and Sun, Q.: Soil microbial communities of three major Chinese truffles in southwest China, Can. J. Microbiol., 62, 970–979, https://doi.org/10.1139/cjm-2016-0139, 2016.
Garcia-Barreda, S., Sánchez, S., Marco, P., and Serrano-Notivoli, R.: Agro-climatic zoning of Spanish forests naturally producing black truffle, Agric. For. Meteorol., 269–270, 231–238, https://doi.org/10.1016/j.agrformet.2019.02.020, 2019.
Garcia-Barreda, S., Camarero, J. J., Vicente-Serrano, S. M., and Serrano-Notivoli, R.: Variability and trends of black truffle production in Spain (1970–2017): Linkages to climate, host growth, and human factors, Agric. For. Meteorol., 287, 107951, https://doi.org/10.1016/j.agrformet.2020.107951, 2020.
García-Montero, L. G., Manjón, J. L., Pascual, C., and García-Abril, A.: Ecological patterns of Tuber melanosporum and different Quercus Mediterranean forests: Quantitative production of truffles, burn sizes and soil studies, For. Ecol. Manag., 242, 288–296, https://doi.org/10.1016/j.foreco.2007.01.045, 2007.
García-Montero, L. G., Monleón, V. J., Valverde-Asenjo, I., Menta, C., and Kuyper, T. W.: Niche construction by two ectomycorrhizal truffle species (Tuber aestivum and T. melanosporum), Soil Biol. Biochem., 189, 109276, https://doi.org/10.1016/j.soilbio.2023.109276, 2024.
Gardes, M. and Bruns, T. D.: ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts, Mol. Ecol., 2, 113–118, https://doi.org/10.1111/j.1365-294X.1993.tb00005.x, 1993.
Goberna, M. and Verdú, M.: Cautionary notes on the use of co-occurrence networks in soil ecology, Soil Biol. Biochem., 166, 108534, https://doi.org/10.1016/j.soilbio.2021.108534, 2022.
Griffiths, B. S. and Philippot, L.: Insights into the resistance and resilience of the soil microbial community, FEMS Microbiol. Rev., 37, 112–129, https://doi.org/10.1111/j.1574-6976.2012.00343.x, 2013.
Guiot, J. and Cramer, W.: Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems, Science, 354, 465–468, https://doi.org/10.1126/science.aah5015, 2016.
Guseva, K., Darcy, S., Simon, E., Alteio, L. V., Montesinos-Navarro, A., and Kaiser, C.: From diversity to complexity: Microbial networks in soils, Soil Biol. Biochem., 169, 108604, https://doi.org/10.1016/j.soilbio.2022.108604, 2022.
Herrero de Aza, C., Armenteros, S., McDermott, J., Mauceri, S., Olaizola, J., Hernández-Rodríguez, M., and Mediavilla, O.: Fungal and bacterial communities in Tuber melanosporum plantations from Northern Spain, Forests, 13, 385, https://doi.org/10.3390/f13030385, 2022.
Horner-Devine, M. C., Silver, J. M., Leibold, M. A., Bohannan, B. J. M., Colwell, R. K., Fuhrman, J. A., Green, J. L., Kuske, C. R., Martiny, J. B. H., Muyzer, G., Øvreås, L., Reysenbach, A.-L., and Smith, V. H.: A comparison of taxon cooccurrence patterns for macro- and microorganisms, Ecology, 88, 1345–1353, https://doi.org/10.1890/06-0286, 2007.
Idbella, M. and Bonanomi, G.: Uncovering the dark side of agriculture: How land use intensity shapes soil microbiome and increases potential plant pathogens, Appl. Soil Ecol., 192, 105090, https://doi.org/10.1016/j.apsoil.2023.105090, 2023.
Itoo, Z. A. and Reshi, Z. A.: The multifunctional role of ectomycorrhizal associations in forest ecosystem processes, Bot. Rev., 79, 371–400, https://doi.org/10.1007/s12229-013-9126-7, 2013.
Jacomy, M., Venturini, T., Heymann, S., and Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software, PLOS ONE, 9, e98679, https://doi.org/10.1371/journal.pone.0098679, 2014.
Júnior, L., Vieira, G., Noronha, M. F., Cabral, L., Delforno, T. P., de Sousa, S. T. P., Júnior, P. I., Melo, I. S., and Oliveira, V. M.: Land use and seasonal effects on the soil microbiome of a Brazilian dry forest, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.00648, 2019.
Kennedy, P. G. and Bruns, T. D.: Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings, New Phytol., 166, 631–638, https://doi.org/10.1111/j.1469-8137.2005.01355.x, 2005.
Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., and Richter, A.: Seasonal variation in functional properties of microbial communities in beech forest soil, Soil Biol. Biochem., 60, 95–104, https://doi.org/10.1016/j.soilbio.2013.01.025, 2013.
Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A.: Sparse and compositionally robust inference of microbial ecological networks, PLOS Comput. Biol., 11, e1004226, https://doi.org/10.1371/journal.pcbi.1004226, 2015.
Labouyrie, M., Ballabio, C., Romero, F., Panagos, P., Jones, A., Schmid, M. W., Mikryukov, V., Dulya, O., Tedersoo, L., Bahram, M., Lugato, E., Van Der Heijden, M. G. A., and Orgiazzi, A.: Patterns in soil microbial diversity across Europe, Nat. Commun., 14, 3311, https://doi.org/10.1038/s41467-023-37937-4, 2023.
Lan, G., Yang, C., Wu, Z., Sun, R., Chen, B., and Zhang, X.: Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi, SOIL, 8, 149–161, https://doi.org/10.5194/soil-8-149-2022, 2022.
Lebreton, A., Zeng, Q., Miyauchi, S., Kohler, A., Dai, Y.-C., and Martin, F. M.: Evolution of the mode of nutrition in symbiotic and saprotrophic fungi in forest ecosystems, Annu. Rev. Ecol. Evol. Syst., 52, 385–404, https://doi.org/10.1146/annurev-ecolsys-012021-114902, 2021.
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., and Rillig, M. C.: The concept and future prospects of soil health, Nat. Rev. Earth Environ., 1, 544–553, https://doi.org/10.1038/s43017-020-0080-8, 2020.
Lenth, R. V.: Least-Squares Means: The R Package lsmeans, J. Stat. Softw., 69, https://doi.org/10.18637/jss.v069.i01, 2016.
Leonardi, M., Iotti, M., Pacioni, G., R. Hall, I., and Zambonelli, A.: Truffles: Biodiversity, ecological significances, and biotechnological applications, in: Industrially important fungi for sustainable development, edited by: Abdel-Azeem, A. M., Yadav, A. N., Yadav, N., and Usmani, Z., Fungal Biology, Springer, Cham, https://doi.org/10.1007/978-3-030-67561-5_4, 2021.
Liu, C., Cui, Y., Li, X., and Yao, M.: microeco: An R package for data mining in microbial community ecology, FEMS Microbiol. Ecol., 97, fiaa255, https://doi.org/10.1093/femsec/fiaa255, 2021.
Liu, H., Roeder, K., and Wasserman, L.: Stability approach to regularization selection (StARS) for high dimensional graphical models, Adv. Neural Inf. Process. Syst., 24, 1432–1440, 2010.
Luo, X., Wang, M. K., Hu, G., and Weng, B.: Seasonal change in microbial diversity and its relationship with soil chemical properties in an orchard, PLOS ONE, 14, e0215556, https://doi.org/10.1371/journal.pone.0215556, 2019.
Maaß, S., Migliorini, M., Rillig, M. C., and Caruso, T.: Disturbance, neutral theory, and patterns of beta diversity in soil communities, Ecol. Evol., 4, 4766–4774, https://doi.org/10.1002/ece3.1313, 2014.
Marjanović, Ž., Nawaz, A., Stevanović, K., Saljnikov, E., Maček, I., Oehl, F., and Wubet, T.: Root-associated mycobiome differentiate between habitats supporting production of different truffle species in Serbian riparian forests, Microorganisms, 8, 1331, https://doi.org/10.3390/microorganisms8091331, 2020.
Meinshausen, N. and Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso, Ann. Stat., 34, https://doi.org/10.1214/009053606000000281, 2006.
Mello, A., Lumini, E., Napoli, C., Bianciotto, V., and Bonfante, P.: Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé, Fungal Biol., 119, 518–527, https://doi.org/10.1016/j.funbio.2015.02.003, 2015.
Nakayama, M., Imamura, S., Taniguchi, T., and Tateno, R.: Does conversion from natural forest to plantation affect fungal and bacterial biodiversity, community structure, and co-occurrence networks in the organic horizon and mineral soil?, Forest Ecol. Manag., 446, 238–250, https://doi.org/10.1016/j.foreco.2019.05.042, 2019.
Napoli, C., Mello, A., Borra, A., Vizzini, A., Sourzat, P., and Bonfante, P.: Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds, New Phytol., 185, 237–247, https://doi.org/10.1111/j.1469-8137.2009.03053.x, 2010.
Newman, M. E. J.: Modularity and community structure in networks, Proceedings of the National Academy of Sciences, 103, 8577–8582, https://doi.org/10.1073/pnas.0601602103, 2006.
Nguyen, N. H., Smith, D., Peay, K., and Kennedy, P.: Parsing ecological signal from noise in next generation amplicon sequencing, New Phytol., 205, 1389–1393, https://doi.org/10.1111/nph.12923, 2015.
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan: Community ecology package (R package version 2.6-4), CRAN [code], https://CRAN.R-project.org/package=vegan (last access: 5 January 2026), 2022.
Oliach, D., Castaño, C., Fischer, C. R., Barry-Etienne, D., Bonet, J. A., Colinas, C., and Oliva, J.: Soil fungal community and mating type development of Tuber melanosporum in a 20-year chronosequence of black truffle plantations, Soil Biol. Biochem., 165, 108510, https://doi.org/10.1016/j.soilbio.2021.108510, 2022.
Orgiazzi, A., Lumini, E., Nilsson, R. H., Girlanda, M., Vizzini, A., Bonfante, P., and Bianciotto, V.: Unravelling soil fungal communities from different Mediterranean land-use backgrounds, PLoS ONE, 7, e34847, https://doi.org/10.1371/journal.pone.0034847, 2012.
Osorio, N. W. and Habte, M.: Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol, Arid Land Res. Manag., 15, 263–274, https://doi.org/10.1080/15324980152119810, 2001.
Pérez-Izquierdo, L., Zabal-Aguirre, M., Flores-Rentería, D., González-Martínez, S. C., Buée, M., and Rincón, A.: Functional outcomes of structural shifts in fungal communities driven by tree genotype and spatial-temporal factors in Mediterranean pine forests, Environ. Microbiol., 19, 1639–1645, https://doi.org/10.1111/1462-2920.13690, 2017.
Perez-Lamarque, B., Petrolli, R., Strullu-Derrien, C., Strasberg, D., Morlon, H., Selosse, M.-A. and Martos, F.: Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities, Environ. Microbiome, 17, 38, https://doi.org/10.1186/s40793-022-00434-0, 2022.
Phillips, R. P., Brzostek, E., and Midgley, M. G.: The mycorrhizal-associated nutrient economy: A new framework for predicting carbon–nutrient couplings in temperate forests, New Phytol., 199, 41–51, https://doi.org/10.1111/nph.12221, 2013.
Piñuela, Y., Alday, J. G., Oliach, D., Castaño, C., Büntgen, U., Egli, S., Martínez Peña, F., Dashevskaya, S., Colinas, C., Peter, M., and Bonet, J. A.: Habitat is more important than climate for structuring soil fungal communities associated in truffle sites, Fungal Biol., 128, 1724–1734, https://doi.org/10.1016/j.funbio.2024.02.006, 2024.
Prieto-Rubio, J., Garrido, J. L., Alcántara, J. M., Azcón-Aguilar, C., Rincón, A., and López-García, Á.: Ectomycorrhizal fungal network complexity determines soil multi-enzymatic activity, SOIL, 10, 425–439, https://doi.org/10.5194/soil-10-425-2024, 2024.
Querejeta, J. I., Schlaeppi, K., López-García, Á., Ondoño, S., Prieto, I., van der Heijden, M. G. A., and del Mar Alguacil, M.: Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition, New Phytol., 232, 1399–1413, https://doi.org/10.1111/nph.17661, 2021.
R Core Team.: R: A language and environment for statistical computing, R foundation for statistical computing [Software], https://www.R-project.org (last access: 5 January 2026), 2022.
Reyna, S. and Garcia-Barreda, S.: Black truffle cultivation: A global reality, For. Syst., 23, 317–328, https://doi.org/10.5424/fs/2014232-04771, 2014.
Romero, F., Labouyrie, M., Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Tedersoo, L., Bahram, M., Guerra, C. A., Eisenhauer, N., Tao, D., Delgado-Baquerizo, M., García-Palacios, P., and van der Heijden, M.: Soil health is associated with higher primary productivity across Europe, Nat. Ecol. Evol., 8, 1847–1855, https://doi.org/10.1038/s41559-024-02511-8, 2024.
Saitta, A., Anslan, S., Bahram, M., Brocca, L., and Tedersoo, L.: Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem, Mycorrhiza, 28, 39–47, https://doi.org/10.1007/s00572-017-0806-8, 2018.
Schneider-Maunoury, L., Leclercq, S., Clément, C., Covès, H., Lambourdière, J., Sauve, M., Richard, F., Selosse, M.-A., and Taschen, E.: Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants?, Fungal Ecol., 31, 59–68, https://doi.org/10.1016/j.funeco.2017.10.004, 2018.
Siles, J. A. and Margesin, R.: Seasonal soil microbial responses are limited to changes in functionality at two Alpineforest sites differing in altitude and vegetation, Sci. Rep., 7, https://doi.org/10.1038/s41598-017-02363-2, 2017.
Song, H., Singh, D., Tomlinson, K. W., Yang, X., Ogwu, M. C., Slik, J. W. F., and Adams, J. M.: Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity, FEMS Microbiol. Ecol., 95, fiz092, https://doi.org/10.1093/femsec/fiz092, 2019.
Streiblová, E., Gryndlerová, H., and Gryndler, M.: Truffle brûlé: An efficient fungal life strategy, FEMS Microbiol. Ecol., 80, 1–8, https://doi.org/10.1111/j.1574-6941.2011.01283.x, 2012.
Tamayo-Velez, A. and Osorio, N. W.: Co-inoculation with an arbuscular mycorrhizal fungus and a phosphate-solubilizing fungus promotes the plant growth and phosphate uptake of avocado plantlets in a nursery, Botany, 95, 539–545, https://doi.org/10.1139/cjb-2016-0224, 2017.
Tang, X., Yang, J., Lin, D., Lin, H., Xiao, X., Chen, S., Huang, Y., and Qian, X.: Community assembly of ectomycorrhizal fungal communities in pure and mixed Pinus massoniana forests, J. Environ. Manag., 362, 121312, https://doi.org/10.1016/j.jenvman.2024.121312, 2024.
Tedersoo, L. and Smith, M. E.: Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground, Fungal Biol. Rev., 27, 83–99, https://doi.org/10.1016/j.fbr.2013.09.001, 2013.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L., Lodge, D. J., Lee, S. S., Larsson, K. H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T. W., Harend, H., Guo, L. D., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S., and Abarenkov, K.: Global diversity and geography of soil fungi, Science, 346, 1256688, https://doi.org/10.1126/science.1256688, 2014.
Toju, H., Tanabe, A. S., and Sato, H.: Network hubs in root-associated fungal metacommunities, Microbiome, 6, https://doi.org/10.1186/s40168-018-0497-1, 2018.
Vořiškova, J., Brabcová, V., Cajthaml, T., and Baldrian, P.: Seasonal dynamics of fungal communities in a temperate oak forest soil, New Phytol., 201, 269–278, https://doi.org/10.1111/nph.12481, 2014.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., and Van Der Heijden, M. G. A.: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning, Nat. Commun., 10, 4841, https://doi.org/10.1038/s41467-019-12798-y, 2019.
Wagg, C., Hautier, Y., Pellkofer, S., Banerjee, S., Schmid, B., and Van Der Heijden, M. G.: Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning, eLife, 10, e62813, https://doi.org/10.7554/eLife.62813, 2021.
Wang, M., Masoudi, A., Wang, C., Zhao, L., Yang, J., and Yu, Z.: Seasonal variations affect the ecosystem functioning and microbial assembly processes in plantation forest soils, Front. Microbiol., 15, 1391193, https://doi.org/10.3389/fmicb.2024.1391193, 2024a.
Wang, M., Sui, X., Wang, X., Zhang, X., and Zeng, X.: Soil fungal community differences in manual plantation larch forest and natural larch forest in northeast China, Microorganisms, 12, 1322, https://doi.org/10.3390/microorganisms12071322, 2024b.
Yang, H.-X., Ai, H.-L., Feng, T., Wang, W.-X., Wu, B., Zheng, Y.-S., Sun, H., He, J., Li, Z.-H., and Liu, J.-K.: Trichothecrotocins A–C, antiphytopathogenic agents from potato endophytic fungus Trichothecium crotocinigenum, Org. Lett., 20, 8069–8072, https://doi.org/10.1021/acs.orglett.8b03735, 2018a.
Yang, H.-X., He, J., Zhang, F.-L., Zhang, X.-D., Li, Z.-H., Feng, T., Ai, H.-L., and Liu, J.-K.: Trichothecrotocins D–L, antifungal agents from a potato-associated Trichothecium crotocinigenum, J. Nat. Prod., 83, 2756–2763, https://doi.org/10.1021/acs.jnatprod.0c00695, 2020.
Yang, R.-H., Su, J.-H., Shang, J.-J., Wu, Y.-Y., Li, Y, Bao, D.-P., and Yao, Y.-J.: Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing, PLOS ONE, 13, e0206428, https://doi.org/10.1371/journal.pone.0206428, 2018b.
Zhao, P., Gao, G., Ding, G., Zhang, Y., and Ren, Y.: Fungal complexity and stability across afforestation areas in changing desert environments, Sci. Total Environ., 912, https://doi.org/10.1016/j.scitotenv.2023.169398, 2024.
Zou, H. and Hastie, T.: Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Methodol., 67, 301–320, https://doi.org/10.1111/j.1467-9868.2005.00503.x, 2005.
Short summary
Black truffle's impact on soil fungi was studied in plantations and forests across seasons via network analysis. Plantations showed more homogeneous and connected fungal network than forests, suggesting greater stability. Black truffle lacked a central role in either system's fungal network. Saprotrophic fungi mainly drove carbon and nutrient cycling. This work improves the understanding of fungal dynamics in black truffle soils and offers insights for better black truffle cultivation.
Black truffle's impact on soil fungi was studied in plantations and forests across seasons via...