Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved management increases soil mineral-protected organic carbon storage via plant-microbial-nutrient mediation in semi-arid grasslands
Alejandro Carrascosa
Forest Research Group, INDEHESA, University of Extremadura, 10600 Plasencia, Cáceres, Spain
Gerardo Moreno
Forest Research Group, INDEHESA, University of Extremadura, 10600 Plasencia, Cáceres, Spain
M. Francesca Cotrufo
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
Cristina Frade
Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
Sara Rodrigo
Forest Research Group, INDEHESA, University of Extremadura, 10600 Plasencia, Cáceres, Spain
Forest Research Group, INDEHESA, University of Extremadura, 10600 Plasencia, Cáceres, Spain
Related authors
No articles found.
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025, https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, the addition of N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. The addition of N and N+P increases carbon-exchange variability, driven by grass greenness.
Rebecca J. Even, Megan B. Machmuller, Jocelyn M. Lavallee, Tamara J. Zelikova, and M. Francesca Cotrufo
SOIL, 11, 17–34, https://doi.org/10.5194/soil-11-17-2025, https://doi.org/10.5194/soil-11-17-2025, 2025
Short summary
Short summary
We conducted a service soil laboratory comparison study and tested the individual effect of common sieving, grinding, drying, and quantification methods on total, inorganic, and organic soil carbon (C) measurements. We found that inter-lab variability is large and each soil processing step impacts C measurement accuracy and/or precision. Standardizing soil processing methods is needed to ensure C measurements are accurate and precise, especially for C credit allocation and model calibration.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Sam J. Leuthold, Jocelyn M. Lavallee, Bruno Basso, William F. Brinton, and M. Francesca Cotrufo
SOIL, 10, 307–319, https://doi.org/10.5194/soil-10-307-2024, https://doi.org/10.5194/soil-10-307-2024, 2024
Short summary
Short summary
We examined physical soil organic matter fractions to understand their relationship to temporal variability in crop yield at field scale. We found that interactions between crop productivity, topography, and climate led to variability in soil organic matter stocks among different yield stability zones. Our results imply that linkages between soil organic matter and yield stability may be scale-dependent and that particulate organic matter may be an indicator of unstable areas within croplands.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Cited articles
Acosta-Gallo, B., Casado, M. A., Montalvo, J., and Pineda, F. D.: Allometric patterns of below-ground biomass in Mediterranean grasslands, Plant Biosyst. – Int. J. Deal. Asp. Plant Biol., 145, 584–595, https://doi.org/10.1080/11263504.2011.578836, 2011.
Angst, G., Mueller, K. E., Kögel-Knabner, I., Freeman, K. H., and Mueller, C. W.: Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter, Biogeochemistry, 132, 307–324, https://doi.org/10.1007/s10533-017-0304-2, 2017.
Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter, Soil Biol. Biochem., 156, 108189, https://doi.org/10.1016/j.soilbio.2021.108189, 2021.
Angst, G., Mueller, K. E., Castellano, M. J., Vogel, C., Wiesmeier, M., and Mueller, C. W.: Unlocking complex soil systems as carbon sinks: multi-pool management as the key, Nat. Commun., 14, 2967, https://doi.org/10.1038/s41467-023-38700-5, 2023.
Arroyo, A. I., Pueyo, Y., Barrantes, O., and Alados, C. L.: Interplay between Livestock Grazing and Aridity on the Ecological and Nutritional Value of Forage in Semi-arid Mediterranean Rangelands (NE Spain), Environ. Manage., 73, 1005–1015, https://doi.org/10.1007/s00267-024-01939-9, 2024.
Augustine, D. J., Kearney, S. P., Raynor, E. J., Porensky, L. M., and Derner, J. D.: Adaptive, multi-paddock, rotational grazing management alters foraging behavior and spatial grazing distribution of free-ranging cattle, Agric. Ecosyst. Environ., 352, 108521, https://doi.org/10.1016/j.agee.2023.108521, 2023.
Austin, A. T. and Vivanco, L.: Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation, Nature, 442, 555–558, https://doi.org/10.1038/nature05038, 2006.
Bai, X., Zhai, G., Wang, B., An, S., Liu, J., Xue, Z., and Dippold, M. A.: Litter quality controls the contribution of microbial carbon to main microbial groups and soil organic carbon during its decomposition, Biol. Fertil. Soils, 60, 167–181, https://doi.org/10.1007/s00374-023-01792-8, 2024.
Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, challenges, and solutions, Science, 377, 603–608, https://doi.org/10.1126/science.abo2380, 2022.
Baldock, J. A. and Skjemstad, J. O.: Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Org. Geochem., 31, 697–710, https://doi.org/10.1016/S0146-6380(00)00049-8, 2000.
Bardgett, R. D., Jones, A. C., Jones, D. L., Kemmitt, S. J., Cook, R., and Hobbs, P. J.: Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems, Soil Biol. Biochem., 33, 1653–1664, https://doi.org/10.1016/S0038-0717(01)00086-4, 2001.
Bartholomew, P. W. and Williams, R. D.: Overseeding Unimproved Warm-Season Pasture with Cool- and Warm-Season Legumes to Enhance Forage Productivity, J. Sustain. Agric., 34, 125–140, https://doi.org/10.1080/10440040903482407, 2010.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Benbi, D. K., Boparai, A. K., and Brar, K.: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter, Soil Biol. Biochem., 70, 183–192, https://doi.org/10.1016/j.soilbio.2013.12.032, 2014.
Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J. J., Gross, N., Saiz, H., Maire, V., Lehmann, A., Rillig, M. C., Solé, R. V., and Maestre, F. T.: Global ecosystem thresholds driven by aridity, Science, 367, 787–790, https://doi.org/10.1126/science.aay5958, 2020.
Berenstecher, P., Conti, G., Faigón, A., and Piñeiro, G.: Tracing service crops' net carbon and nitrogen rhizodeposition into soil organic matter fractions using dual isotopic brush-labeling, Soil Biol. Biochem., 184, 109096, https://doi.org/10.1016/j.soilbio.2023.109096, 2023.
Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D. C., Kuyper, T. W., Guerrero-Ramirez, N., Valverde-Barrantes, O. J., Bruelheide, H., Freschet, G. T., Iversen, C. M., Kattge, J., McCormack, M. L., Meier, I. C., Rillig, M. C., Roumet, C., Semchenko, M., Sweeney, C. J., van Ruijven, J., York, L. M., and Mommer, L.: The fungal collaboration gradient dominates the root economics space in plants, Sci. Adv., 6, eaba3756, https://doi.org/10.1126/sciadv.aba3756, 2020.
Blagodatskaya, Å. and Kuzyakov, Y.: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review, Biol. Fertil. Soils, 45, 115–131, https://doi.org/10.1007/s00374-008-0334-y, 2008.
Briske, D. D., Derner, J. D., Brown, J. R., Fuhlendorf, S. D., Teague, W. R., Havstad, K. M., Gillen, R. L., Ash, A. J., and Willms, W. D.: Rotational Grazing on Rangelands: Reconciliation of Perception and Experimental Evidence, Rangel. Ecol. Manage., 61, 3–17, https://doi.org/10.2111/06-159R.1, 2008.
Byrnes, R. C., Eastburn, D. J., Tate, K. W., and Roche, L. M.: A Global Meta-Analysis of Grazing Impacts on Soil Health Indicators, J. Environ. Qual., 47, 758–765, https://doi.org/10.2134/jeq2017.08.0313, 2018.
Cappai, C., Kemanian, A. R., Lagomarsino, A., Roggero, P. P., Lai, R., Agnelli, A. E., and Seddaiu, G.: Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems, Geoderma, 304, 59–67, https://doi.org/10.1016/j.geoderma.2016.07.021, 2017.
Carmona, C. P., Rota, C., Azcárate, F. M., and Peco, B.: More for less: sampling strategies of plant functional traits across local environmental gradients, Funct. Ecol., 29, 579–588, https://doi.org/10.1111/1365-2435.12366, 2015.
Carranca, C., Castro, I. V., Figueiredo, N., Redondo, R., Rodrigues, A. R. F., Saraiva, I., Maricato, R., and Madeira, M. A. V.: Influence of tree canopy on N2 fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands, Sci. Total Environ., 506–507, 86–94, https://doi.org/10.1016/j.scitotenv.2014.10.111, 2015.
Carranca, C., Pedra, F., and Madeira, M.: Enhancing Carbon Sequestration in Mediterranean Agroforestry Systems: A Review, Agriculture, 12, 1598, https://doi.org/10.3390/agriculture12101598, 2022.
Carrascosa, A., Moreno, G., Rodrigo, S., and Rolo, V.: Unravelling the contribution of soil, climate and management to the productivity of ecologically intensified Mediterranean wood pastures, Sci. Total Environ., 957, 177575, hhttps://doi.org/10.1016/j.scitotenv.2024.177575, 2024.
Chang, Y., Sokol, N. W., van Groenigen, K. J., Bradford, M. A., Ji, D., Crowther, T. W., Liang, C., Luo, Y., Kuzyakov, Y., Wang, J., and Ding, F.: A stoichiometric approach to estimate sources of mineral-associated soil organic matter, Global Change Biol., 30, e17092, https://doi.org/10.1111/gcb.17092, 2024.
Cheng, J., Jing, G., Wei, L., and Jing, Z.: Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China, Ecol. Eng., 97, 170–178, https://doi.org/10.1016/j.ecoleng.2016.09.003, 2016.
Cheng, X., Xing, W., and Liu, J.: Litter chemical traits, microbial and soil stoichiometry regulate organic carbon accrual of particulate and mineral-associated organic matter, Biol. Fertil. Soils, 59, 777–790, https://doi.org/10.1007/s00374-023-01746-0, 2023.
Conant, R. T.: Grassland Soil Organic Carbon Stocks: Status, Opportunities, Vulnerability, in: Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle, edited by: Lal, R., Lorenz, K., Hüttl, R. F., Schneider, B. U., and von Braun, J., Springer Netherlands, Dordrecht, 275–302, https://doi.org/10.1007/978-94-007-4159-1_13, 2012.
Conant, R. T., Cerri, C. E. P., Osborne, B. B., and Paustian, K.: Grassland management impacts on soil carbon stocks: a new synthesis, Ecol. Appl., 27, 662–668, https://doi.org/10.1002/eap.1473, 2017.
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M.: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide, Ecol. Lett., 11, 1065–1071, https://doi.org/10.1111/j.1461-0248.2008.01219.x, 2008.
Cotrufo, M. F. and Lavallee, J. M.: Chapter One – Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, in: Advances in Agronomy, vol. 172, edited by: Sparks, D. L., Academic Press, 1–66, https://doi.org/10.1016/bs.agron.2021.11.002, 2022.
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Global Change Biol., 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Cotrufo, M. F., Haddix, M. L., Kroeger, M. E., and Stewart, C. E.: The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter, Soil Biol. Biochem., 168, 108648, https://doi.org/10.1016/j.soilbio.2022.108648, 2022.
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., Estiarte, M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B. R., Kröel-Dulay, G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L. N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I. K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J. M., and Bradford, M. A.: Quantifying global soil carbon losses in response to warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016.
Crowther, T. W., van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., Averill, C., and Maynard, D. S.: The global soil community and its influence on biogeochemistry, Science, 365, eaav0550, https://doi.org/10.1126/science.aav0550, 2019.
Dai, W., Xiao, R., Wei, C., and Yang, F.: Plant litter traits control the accumulation of mineral-associated organic carbon by influencing its molecular composition and diversity, Soil Tillage Res., 253, 106667, https://doi.org/10.1016/j.still.2025.106667, 2025.
Daou, L., Garnier, É., and Shipley, B.: Quantifying the relationship linking the community-weighted means of plant traits and soil fertility, Ecology, 102, e03454, https://doi.org/10.1002/ecy.3454, 2021.
De Deyn, G. B., Quirk, H., and Bardgett, R. D.: Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility, Biol. Lett., 7, 75–78, https://doi.org/10.1098/rsbl.2010.0575, 2010.
den Herder, M., Moreno, G., Mosquera-Losada, R. M., Palma, J. H. N., Sidiropoulou, A., Santiago Freijanes, J. J., Crous-Duran, J., Paulo, J. A., Tomé, M., Pantera, A., Papanastasis, V. P., Mantzanas, K., Pachana, P., Papadopoulos, A., Plieninger, T., and Burgess, P. J.: Current extent and stratification of agroforestry in the European Union, Agr. Ecosyst. Environ., 241, 121–132, https://doi.org/10.1016/j.agee.2017.03.005, 2017.
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Joseph Wright, S., Sheremet'ev, S. N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M. D., and Gorné, L. D.: The global spectrum of plant form and function, Nature, 529, 167–171, https://doi.org/10.1038/nature16489, 2016.
di Virgilio, A., Lambertucci, S. A., and Morales, J. M.: Sustainable grazing management in rangelands: Over a century searching for a silver bullet, Agr. Ecosyst. Environ., 283, 106561, https://doi.org/10.1016/j.agee.2019.05.020, 2019.
Dondini, M., Martin, M., De Camillis, C., Uwizeye, A., Soussana, J.-F., Robinson, T., and Steinfeld, H.: Global assessment of soil carbon in grasslands – From current stock estimates to sequestration potential, FAO, Rome, Italy, 76 pp., https://doi.org/10.4060/cc3981en, 2023.
Du, Z., Angers, D. A., Ren, T., Zhang, Q., and Li, G.: The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis, Agr. Ecosyst. Environ., 236, 1–11, https://doi.org/10.1016/j.agee.2016.11.007, 2017.
Dubeux Jr., J. C. B., Sollenberger, L. E., Vendramini, J. M. B., Interrante, S. M., and Lira Jr., M. A.: Stocking Method, Animal Behavior, and Soil Nutrient Redistribution: How are They Linked?, Crop Sci., 54, 2341–2350, https://doi.org/10.2135/cropsci2014.01.0076, 2014.
Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M. P., and Mommer, L.: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass, Sci. Rep., 7, 44641, https://doi.org/10.1038/srep44641, 2017.
Elias, D. M. O., Mason, K. E., Goodall, T., Taylor, A., Zhao, P., Otero-Fariña, A., Chen, H., Peacock, C. L., Ostle, N. J., Griffiths, R., Chapman, P. J., Holden, J., Banwart, S., McNamara, N. P., and Whitaker, J.: Microbial and mineral interactions decouple litter quality from soil organic matter formation, Nat. Commun., 15, 10063, https://doi.org/10.1038/s41467-024-54446-0, 2024.
Engedal, T., Magid, J., Hansen, V., Rasmussen, J., Sørensen, H., and Stoumann Jensen, L.: Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools, Global Change Biol., 29, 5677–5690, https://doi.org/10.1111/gcb.16870, 2023.
Eze, S., Palmer, S. M., and Chapman, P. J.: Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings, J. Environ. Manage., 223, 74–84, https://doi.org/10.1016/j.jenvman.2018.06.013, 2018.
Fanin, N., Kardol, P., Farrell, M., Nilsson, M.-C., Gundale, M. J., and Wardle, D. A.: The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils, Soil Biol. Biochem., 128, 111–114, https://doi.org/10.1016/j.soilbio.2018.10.010, 2019.
Faucon, M.-P., Houben, D., and Lambers, H.: Plant Functional Traits: Soil and Ecosystem Services, Trends Plant Sci., 22, 385–394, https://doi.org/10.1016/j.tplants.2017.01.005, 2017.
Fay, P. A., Prober, S. M., Harpole, W. S., Knops, J. M. H., Bakker, J. D., Borer, E. T., Lind, E. M., MacDougall, A. S., Seabloom, E. W., Wragg, P. D., Adler, P. B., Blumenthal, D. M., Buckley, Y. M., Chu, C., Cleland, E. E., Collins, S. L., Davies, K. F., Du, G., Feng, X., Firn, J., Gruner, D. S., Hagenah, N., Hautier, Y., Heckman, R. W., Jin, V. L., Kirkman, K. P., Klein, J., Ladwig, L. M., Li, Q., McCulley, R. L., Melbourne, B. A., Mitchell, C. E., Moore, J. L., Morgan, J. W., Risch, A. C., Schütz, M., Stevens, C. J., Wedin, D. A., and Yang, L. H.: Grassland productivity limited by multiple nutrients, Nat. Plants, 1, 1–5, https://doi.org/10.1038/nplants.2015.80, 2015.
Feßel, C., Meier, I. C., and Leuschner, C.: Relationship between species diversity, biomass and light transmittance in temperate semi-natural grasslands: is productivity enhanced by complementary light capture?, J. Veg. Sci., 27, 144–155, https://doi.org/10.1111/jvs.12326, 2016.
Fortunel, C., Garnier, E., Joffre, R., Kazakou, E., Quested, H., Grigulis, K., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., DoleŽal, J., Eriksson, O., Freitas, H., Golodets, C., Jouany, C., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V. P., Quétier, F., Robson, M., Sternberg, M., Theau, J.-P., Thébault, A., and Zarovali, M.: Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe, Ecology, 90, 598–611, https://doi.org/10.1890/08-0418.1, 2009.
Freschet, G. T., Aerts, R., and Cornelissen, J. H. C.: A plant economics spectrum of litter decomposability, Funct. Ecol., 26, 56–65, https://doi.org/10.1111/j.1365-2435.2011.01913.x, 2012.
Frongia, A., Pulina, A., Tanda, A., Seddaiu, G., Roggero, P. P., and Moreno, G.: Assessing the effect of rotational grazing adoption in Iberian silvopastoral systems with Normalized Difference Vegetation Index time series, Ital. J. Agron., https://doi.org/10.4081/ija.2023.2185, 2023.
Frostegård, A. and Bååth, E.: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil, Biol. Fertil. Soils, 22, 59–65, https://doi.org/10.1007/BF00384433, 1996.
Funk, J. L., Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J., Laughlin, D. C., Sutton-Grier, A. E., Williams, L., and Wright, J.: Revisiting the Holy Grail: using plant functional traits to understand ecological processes, Biol. Rev., 92, 1156–1173, https://doi.org/10.1111/brv.12275, 2017.
Galluzzi, G., Plaza, C., Giannetta, B., Priori, S., and Zaccone, C.: Time and climate roles in driving soil carbon distribution and stability in particulate and mineral-associated organic matter pools, Sci. Total Environ., 963, 178511, https://doi.org/10.1016/j.scitotenv.2025.178511, 2025.
Gang, C., Zhou, W., Chen, Y., Wang, Z., Sun, Z., Li, J., Qi, J., and Odeh, I.: Quantitative assessment of the contributions of climate change and human activities on global grassland degradation, Environ. Earth Sci., 72, 4273–4282, https://doi.org/10.1007/s12665-014-3322-6, 2014.
Gao, Y., Liu, J., Wang, D., An, Y., Ma, H., and Tong, S.: Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region, J. Environ. Manage., 373, 123877, https://doi.org/10.1016/j.jenvman.2024.123877, 2025.
García Bravo, N., Dimas, M., Murillo Díaz, J. M., Barranco Sanz, L. M., and Ruiz Hernández, J. M.: Case study of the new hydrogeological model in SIMPA to improve the water resources assessment at a national scale in Spain, Centro Nacional de Información Geográfica, España, https://doi.org/10.7419/162.07.2023, 2023.
Gaudet, C. L. and Keddy, P. A.: A comparative approach to predicting competitive ability from plant traits, Nature, 334, 242–243, https://doi.org/10.1038/334242a0, 1988.
Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., and Torn, M. S.: Global stocks and capacity of mineral-associated soil organic carbon, Nat. Commun., 13, 3797, https://doi.org/10.1038/s41467-022-31540-9, 2022.
Georgiou, K., Koven, C. D., Wieder, W. R., Hartman, M. D., Riley, W. J., Pett-Ridge, J., Bouskill, N. J., Abramoff, R. Z., Slessarev, E. W., Ahlström, A., Parton, W. J., Pellegrini, A. F. A., Pierson, D., Sulman, B. N., Zhu, Q., and Jackson, R. B.: Emergent temperature sensitivity of soil organic carbon driven by mineral associations, Nat. Geosci., 17, 205–212, https://doi.org/10.1038/s41561-024-01384-7, 2024.
Georgiou, K., Angers, D., Champiny, R. E., Cotrufo, M. F., Craig, M. E., Doetterl, S., Grandy, A. S., Lavallee, J. M., Lin, Y., Lugato, E., Poeplau, C., Rocci, K. S., Schweizer, S. A., Six, J., and Wieder, W. R.: Soil Carbon Saturation: What Do We Really Know?, Global Change Biol., 31, e70197, https://doi.org/10.1111/gcb.70197, 2025.
Gliksman, D., Navon, Y., Dumbur, R., Haenel, S., and Grünzweig, J. M.: Higher rates of decomposition in standing vs. surface litter in a Mediterranean ecosystem during the dry and the wet seasons, Plant Soil, 428, 427–439, https://doi.org/10.1007/s11104-018-3696-4, 2018.
Godde, C. M., Boone, R. B., Ash, A. J., Waha, K., Sloat, L. L., Thornton, P. K., and Herrero, M.: Global rangeland production systems and livelihoods at threat under climate change and variability, Environ. Res. Lett., 15, 044021, https://doi.org/10.1088/1748-9326/ab7395, 2020.
Godínez-Alvarez, H., Herrick, J. E., Mattocks, M., Toledo, D., and Van Zee, J.: Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring, Ecol. Indic., 9, 1001–1008, https://doi.org/10.1016/j.ecolind.2008.11.011, 2009.
Gómez-Rey, M. X., Garcês, A., and Madeira, M.: Soil organic-C accumulation and N availability under improved pastures established in Mediterranean oak woodlands, Soil Use Manage., 28, 497–507, https://doi.org/10.1111/j.1475-2743.2012.00428.x, 2012.
Gou, X., Reich, P. B., Qiu, L., Shao, M., Wei, G., Wang, J., and Wei, X.: Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types, Global Change Biol., 29, 4028–4043, https://doi.org/10.1111/gcb.16742, 2023.
Griepentrog, M., Bodé, S., Boeckx, P., Hagedorn, F., Heim, A., and Schmidt, M. W. I.: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions, Global Change Biol., 20, 327–340, https://doi.org/10.1111/gcb.12374, 2014.
Guyonnet, J. P., Cantarel, A. A. M., Simon, L., and el Zahar Haichar, F.: Root exudation rate as functional trait involved in plant nutrient-use strategy classification, Ecol. Evol., 8, 8573–8581, https://doi.org/10.1002/ece3.4383, 2018.
Haddix, M. L., Paul, E. A., and Cotrufo, M. F.: Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter, Global Change Biol., 22, 2301–2312, https://doi.org/10.1111/gcb.13237, 2016.
Hamilton, E. W., Frank, D. A., Hinchey, P. M., and Murray, T. R.: Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland, Soil Biol. Biochem., 40, 2865–2873, https://doi.org/10.1016/j.soilbio.2008.08.007, 2008.
Hansen, P. M., Even, R., King, A. E., Lavallee, J., Schipanski, M., and Cotrufo, M. F.: Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage, Global Change Biol., 30, e17080, https://doi.org/10.1111/gcb.17080, 2024.
Hawkins, H.-J.: A global assessment of Holistic Planned GrazingTM compared with season-long, continuous grazing: meta-analysis findings, Afr. J. Range Forage Sci., 34, 65–75, https://doi.org/10.2989/10220119.2017.1358213, 2017.
He, M., Zhou, G., Yuan, T., van Groenigen, K. J., Shao, J., and Zhou, X.: Grazing intensity significantly changes the C : N : P stoichiometry in grassland ecosystems, Global Ecol. Biogeogr., 29, 355–369, https://doi.org/10.1111/geb.13028, 2020.
Helsen, K., Ceulemans, T., Stevens, C. J., and Honnay, O.: Increasing Soil Nutrient Loads of European Semi-natural Grasslands Strongly Alter Plant Functional Diversity Independently of Species Loss, Ecosystems, 17, 169–181, https://doi.org/10.1007/s10021-013-9714-8, 2014.
Hernández-Esteban, A., López-Díaz, M. L., Cáceres, Y., and Moreno, G.: Are sown legume-rich pastures effective allies for the profitability and sustainability of Mediterranean dehesas?, Agrofor. Syst., 93, 2047–2065, https://doi.org/10.1007/s10457-018-0307-6, 2019.
Hou, Z., Wang, R., Chang, S., Zheng, Y., Ma, T., Xu, S., Zhang, X., Shi, X., Lu, J., Luo, D., Wang, B., Du, Z., and Wei, Y.: The contribution of microbial necromass to soil organic carbon and influencing factors along a variation of habitats in alpine ecosystems, Sci. Total Environ., 921, 171126, https://doi.org/10.1016/j.scitotenv.2024.171126, 2024.
Hu, Y., Deng, Q., Kätterer, T., Olesen, J. E., Ying, S. C., Ochoa-Hueso, R., Mueller, C. W., Weintraub, M. N., and Chen, J.: Depth-dependent responses of soil organic carbon under nitrogen deposition, Global Change Biol., 30, e17247, https://doi.org/10.1111/gcb.17247, 2024.
Huang, J., Liu, W., Pan, S., Wang, Z., Yang, S., Jia, Z., Wang, Z., Deng, M., Yang, L., Liu, C., Chang, P., and Liu, L.: Divergent contributions of living roots to turnover of different soil organic carbon pools and their links to plant traits, Funct. Ecol., 35, 2821–2830, https://doi.org/10.1111/1365-2435.13934, 2021.
IPCC – Intergovernmental Panel on Climate Change (Ed.): Climate Change Information for Regional Impact and for Risk Assessment, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1767–1926, https://doi.org/10.1017/9781009157896.014, 2023a.
IPCC – Intergovernmental Panel on Climate Change (Ed.): Global Carbon and Other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 673–816, https://doi.org/10.1017/9781009157896.007, 2023b.
Jacobo, E. J., Rodríguez, A. M., Bartoloni, N., and Deregibus, V. A.: Rotational Grazing Effects on Rangeland Vegetation at a Farm Scale, Rangel. Ecol. Manage., 59, 249–257, https://doi.org/10.2111/05-129R1.1, 2006.
Jaurena, M., Lezama, F., Salvo, L., Cardozo, G., Ayala, W., Terra, J., and Nabinger, C.: The Dilemma of Improving Native Grasslands by Overseeding Legumes: Production Intensification or Diversity Conservation, Rangel. Ecol. Manage., 69, 35–42, https://doi.org/10.1016/j.rama.2015.10.006, 2016.
Jongen, M., Förster, A. C., and Unger, S.: Overwhelming effects of autumn-time drought during seedling establishment impair recovery potential in sown and semi-natural pastures in Portugal, Plant Ecol., 220, 183–197, https://doi.org/10.1007/s11258-018-0869-4, 2019.
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls, Nat. Commun., 7, 13630, https://doi.org/10.1038/ncomms13630, 2016.
Kazakou, E., Violle, C., Roumet, C., Pintor, C., Gimenez, O., and Garnier, E.: Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply, Ann. Bot., 104, 1151–1161, https://doi.org/10.1093/aob/mcp202, 2009.
Khatiwada, B., Acharya, S. N., Larney, F. J., Lupwayi, N. Z., Smith, E. G., Islam, M. A., and Thomas, J. E.: Benefits of mixed grass–legume pastures and pasture rejuvenation using bloat-free legumes in western Canada: a review, Can. J. Plant Sci., 100, 463–476, https://doi.org/10.1139/cjps-2019-0212, 2020.
Khatri-Chhetri, U., Thompson, K. A., Quideau, S. A., Boyce, M. S., Chang, S. X., Bork, E. W., and Carlyle, C. N.: Adaptive multi-paddock grazing increases mineral associated soil carbon in Northern grasslands, Agr. Ecosyst. Environ., 369, 109000, https://doi.org/10.1016/j.agee.2024.109000, 2024.
King, A. E., Amsili, J. P., Córdova, S. C., Culman, S., Fonte, S. J., Kotcon, J., Liebig, M., Masters, M. D., McVay, K., Olk, D. C., Schipanski, M., Schneider, S. K., Stewart, C. E., and Cotrufo, M. F.: A soil matrix capacity index to predict mineral-associated but not particulate organic carbon across a range of climate and soil pH, Biogeochemistry, 165, 1–14, https://doi.org/10.1007/s10533-023-01066-3, 2023.
Klumpp, K., Fontaine, S., Attard, E., Le Roux, X., Gleixner, G., and Soussana, J.-F.: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community, J. Ecol., 97, 876–885, https://doi.org/10.1111/j.1365-2745.2009.01549.x, 2009.
Kramer, C. and Gleixner, G.: Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation, Soil Biol. Biochem., 40, 425–433, https://doi.org/10.1016/j.soilbio.2007.09.016, 2008.
Kramer-Walter, K. R., Bellingham, P. J., Millar, T. R., Smissen, R. D., Richardson, S. J., and Laughlin, D. C.: Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum, J. Ecol., 104, 1299–1310, https://doi.org/10.1111/1365-2745.12562, 2016.
Laliberté, E. and Legendre, P.: A distance-based framework for measuring functional diversity from multiple traits, Ecology, 91, 299–305, https://doi.org/10.1890/08-2244.1, 2010.
Laliberté, E. and Tylianakis, J. M.: Cascading effects of long-term land-use changes on plant traits and ecosystem functioning, Ecology, 93, 145–155, https://doi.org/10.1890/11-0338.1, 2012.
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., and Gleixner, G.: Plant diversity increases soil microbial activity and soil carbon storage, Nat. Commun., 6, 6707, https://doi.org/10.1038/ncomms7707, 2015.
Latimer Jr., G. W. (Ed.): Official Methods of Analysis of AOAC INTERNATIONAL, Oxford University Press, https://doi.org/10.1093/9780197610145.001.0001, 2023.
Lavallee, J. M., Conant, R. T., Paul, E. A., and Cotrufo, M. F.: Incorporation of shoot versus root-derived 13C and 15N into mineral-associated organic matter fractions: results of a soil slurry incubation with dual-labelled plant material, Biogeochemistry, 137, 379–393, https://doi.org/10.1007/s10533-018-0428-z, 2018.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Global Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Lefcheck, J. S.: piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics, Meth. Ecol. Evol., 7, 573–579, https://doi.org/10.1111/2041-210X.12512, 2016.
Lei, J., Guo, X., Zeng, Y., Zhou, J., Gao, Q., and Yang, Y.: Temporal changes in global soil respiration since 1987, Nat. Commun., 12, 403, https://doi.org/10.1038/s41467-020-20616-z, 2021.
Leuthold, S., Lavallee, J. M., Haddix, M. L., and Cotrufo, M. F.: Contrasting properties of soil organic matter fractions isolated by different physical separation methodologies, Geoderma, 445, 116870, https://doi.org/10.1016/j.geoderma.2024.116870, 2024.
Li, S. and Li, X.: Global understanding of farmland abandonment: A review and prospects, J. Geogr. Sci., 27, 1123–1150, https://doi.org/10.1007/s11442-017-1426-0, 2017.
Li, Y., Luo, T., and Lu, Q.: Plant height as a simple predictor of the root to shoot ratio: Evidence from alpine grasslands on the Tibetan Plateau, J. Veg. Sci., 19, 245–252, https://doi.org/10.3170/2007-8-18365, 2008.
Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative assessment of microbial necromass contribution to soil organic matter, Global Change Biol., 25, 3578–3590, https://doi.org/10.1111/gcb.14781, 2019.
Liu, H. Y., Huang, N., Zhao, C. M., and Li, J. H.: Responses of carbon cycling and soil organic carbon content to nitrogen addition in grasslands globally, Soil Biol. Biochem., 186, 109164, https://doi.org/10.1016/j.soilbio.2023.109164, 2023.
Liu, Y., Zhang, M., Wang, X., and Wang, C.: The impact of different grazing intensity and management measures on soil organic carbon density in Zhangye grassland, Sci. Rep., 14, 17556, https://doi.org/10.1038/s41598-024-68277-y, 2024.
Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., and Li, B.: Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis, Agr. Ecosyst. Environ., 140, 234–244, https://doi.org/10.1016/j.agee.2010.12.010, 2011.
Luo, R., Fan, J., Wang, W., Luo, J., Kuzyakov, Y., He, J.-S., Chu, H., and Ding, W.: Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau, Sci. Total Environ., 650, 303–312, https://doi.org/10.1016/j.scitotenv.2018.09.038, 2019.
Luo, R., Kuzyakov, Y., Liu, D., Fan, J., Luo, J., Lindsey, S., He, J.-S., and Ding, W.: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls, Soil Biol. Biochem., 144, 107764, https://doi.org/10.1016/j.soilbio.2020.107764, 2020.
Manning, P., de Vries, F. T., Tallowin, J. R. B., Smith, R., Mortimer, S. R., Pilgrim, E. S., Harrison, K. A., Wright, D. G., Quirk, H., Benson, J., Shipley, B., Cornelissen, J. H. C., Kattge, J., Bönisch, G., Wirth, C., and Bardgett, R. D.: Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks, J. Appl. Ecol., 52, 1188–1196, https://doi.org/10.1111/1365-2664.12478, 2015.
McSherry, M. E. and Ritchie, M. E.: Effects of grazing on grassland soil carbon: a global review, Global Change Biol., 19, 1347–1357, https://doi.org/10.1111/gcb.12144, 2013.
Mokany, K., Ash, J., and Roxburgh, S.: Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland, J. Ecol., 96, 884–893, https://doi.org/10.1111/j.1365-2745.2008.01395.x, 2008.
Moreno, G. and Pulido, F. J.: The Functioning, Management and Persistence of Dehesas, in: Agroforestry in Europe: Current Status and Future Prospects, edited by: Rigueiro-Rodróguez, A., McAdam, J., and Mosquera-Losada, M. R., Springer Netherlands, Dordrecht, 127–160, https://doi.org/10.1007/978-1-4020-8272-6_7, 2009.
Moreno, G., Obrador, J. J., Cubera, E., and Dupraz, C.: Fine Root Distribution in Dehesas of Central-Western Spain, Plant Soil, 277, 153–162, https://doi.org/10.1007/s11104-005-6805-0, 2005.
Moreno, G., Hernández-Esteban, A., Rolo, V., and Igual, J. M.: The enduring effects of sowing legume-rich mixtures on the soil microbial community and soil carbon in semi-arid wood pastures, Plant Soil, 465, 563–582, https://doi.org/10.1007/s11104-021-05023-7, 2021.
Moreno-Jiménez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M., and Maestre, F. T.: Aridity and reduced soil micronutrient availability in global drylands, Nat. Sustain., 2, 371–377, https://doi.org/10.1038/s41893-019-0262-x, 2019.
Mortensen, E. Ø., Abalos, D., Engedal, T., Lægsgaard, A. K., Enggrob, K., Mueller, C. W., and Rasmussen, J.: Smart Mixture Design Can Steer the Fate of Root-Derived Carbon Into Mineral-Associated and Particulate Organic Matter in Intensively Managed Grasslands, Global Change Biol., 31, e70117, https://doi.org/10.1111/gcb.70117, 2025.
Mosier, S., Apfelbaum, S., Byck, P., Calderon, F., Teague, R., Thompson, R., and Cotrufo, M. F.: Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands, J. Environ. Manage., 288, 112409, https://doi.org/10.1016/j.jenvman.2021.112409, 2021.
Murphy, M. V.: semEff: Automatic Calculation of Effects for Piecewise Structural Equation Models, R package version 0.7.2., https://CRAN.R-project.org/package=semEff (last access: 8 April 2025), 2020.
Nair, R. K. F., Morris, K. A., Hertel, M., Luo, Y., Moreno, G., Reichstein, M., Schrumpf, M., and Migliavacca, M.: N : P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics, Biogeosciences, 16, 1883–1901, https://doi.org/10.5194/bg-16-1883-2019, 2019.
Niu, W., Ding, J., Fu, B., Zhao, W., and Eldridge, D.: Global effects of livestock grazing on ecosystem functions vary with grazing management and environment, Agr. Ecosyst. Environ., 378, 109296, https://doi.org/10.1016/j.agee.2024.109296, 2025.
Novelly, P. E. and Watson, I. W.: Successful Grassland Regeneration in a Severely Degraded Catchment: a Whole of Government Approach in North West Australia, in: Climate and Land Degradation, edited by: Sivakumar, M. V. K. and Ndiang'ui, N., Springer, Berlin, Heidelberg, 469–485, https://doi.org/10.1007/978-3-540-72438-4_26, 2007.
Oggioni, S. D., Ochoa-Hueso, R., and Peco, B.: Livestock grazing abandonment reduces soil microbial activity and carbon storage in a Mediterranean Dehesa, Appl. Soil Ecol., 153, 103588, https://doi.org/10.1016/j.apsoil.2020.103588, 2020.
Oliveira Filho, J. de S., Vieira, J. N., Ribeiro da Silva, E. M., Beserra de Oliveira, J. G., Pereira, M. G., and Brasileiro, F. G.: Assessing the effects of 17 years of grazing exclusion in degraded semi-arid soils: Evaluation of soil fertility, nutrients pools and stoichiometry, J. Arid Environ., 166, 1–10, https://doi.org/10.1016/j.jaridenv.2019.03.006, 2019.
Ordoñez, J. C., Van Bodegom, P. M., Witte, J.-P. M., Wright, I. J., Reich, P. B., and Aerts, R.: A global study of relationships between leaf traits, climate and soil measures of nutrient fertility, Global Ecol. Biogeogr., 18, 137–149, https://doi.org/10.1111/j.1466-8238.2008.00441.x, 2009.
Palomo-Campesino, S., Ravera, F., González, J. A., and García-Llorente, M.: Exploring Current and Future Situation of Mediterranean Silvopastoral Systems: Case Study in Southern Spain, Rangel. Ecol. Manage., 71, 578–591, https://doi.org/10.1016/j.rama.2017.12.013, 2018.
Parras-Alcántara, L., Díaz-Jaimes, L., Lozano-García, B., Rebollo, P. F., Elcure, F. M., and Muñoz, M. D. C.: Organic farming has little effect on carbon stock in a Mediterranean dehesa (southern Spain), Catena, 113, 9–17, https://doi.org/10.1016/j.catena.2013.09.002, 2014.
Parras-Alcántara, L., Díaz-Jaimes, L., and Lozano-García, B.: Management Effects on Soil Organic Carbon Stock in Mediterranean Open Rangelands – Treeless Grasslands, Land Degrad. Dev., 26, 22–34, https://doi.org/10.1002/ldr.2269, 2015.
Peco, B., Navarro, E., Carmona, C. P., Medina, N. G., and Marques, M. J.: Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits, Agr. Ecosyst. Environ., 249, 215–225, https://doi.org/10.1016/j.agee.2017.08.013, 2017.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. de, Buchmann, N., Funes, G., Quétier, F., Hodgson, J. G., Thompson, K., Morgan, H. D., Steege, H. ter, Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, A. C., Aquino, S., and Cornelissen, J. H. C.: Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide, Aust. J. Bot., 64, 715–716, https://doi.org/10.1071/bt12225_co, 2016.
Phukubye, K., Mutema, M., Buthelezi, N., Muchaonyerwa, P., Cerri, C., and Chaplot, V.: On the impact of grassland management on soil carbon stocks: a worldwide meta-analysis, Geoderma Reg., 28, e00479, https://doi.org/10.1016/j.geodrs.2021.e00479, 2022.
Pino, A. D., Rodríguez, T., and Andión, J.: Production improvement through phosphorus fertilization and legume introduction in grazed native pastures of Uruguay, J. Agric. Sci., 154, 347–358, https://doi.org/10.1017/S002185961500101X, 2016.
Plaza, C., García-Palacios, P., Berhe, A. A., Barquero, J., Bastida, F., Png, G. K., Rey, A., Bardgett, R. D., and Delgado-Baquerizo, M.: Ecosystem productivity has a stronger influence than soil age on surface soil carbon storage across global biomes, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00567-7, 2022.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content, SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, 2017.
Poeplau, C., Helfrich, M., Dechow, R., Szoboszlay, M., Tebbe, C. C., Don, A., Greiner, B., Zopf, D., Thumm, U., Korevaar, H., and Geerts, R.: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands, Soil Biol. Biochem., 130, 167–176, https://doi.org/10.1016/j.soilbio.2018.12.019, 2019.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis, New Phytol., 182, 565–588, https://doi.org/10.1111/j.1469-8137.2009.02830.x, 2009.
Porqueddu, C., Ates, S., Louhaichi, M., Kyriazopoulos, A. P., Moreno, G., del Pozo, A., Ovalle, C., Ewing, M. A., and Nichols, P. G. H.: Grasslands in `Old World' and `New World' Mediterranean-climate zones: past trends, current status and future research priorities, Grass Forage Sci., 71, 1–35, https://doi.org/10.1111/gfs.12212, 2016.
Pulina, A., Rolo, V., Hernández-Esteban, A., Seddaiu, G., Roggero, P. P., and Moreno, G.: Long-term legacy of sowing legume-rich mixtures in Mediterranean wooded grasslands, Agr. Ecosyst. Environ., 348, 108397, https://doi.org/10.1016/j.agee.2023.108397, 2023.
Rama, G., Oyarzabal, M., Cardozo, G., Lezama, F., and Baeza, S.: Legume Overseeding along with P Fertilization Increase Forage Production of Temperate Natural Grasslands, Agronomy, 12, 2507, https://doi.org/10.3390/agronomy12102507, 2022.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 8 April 2025), 2024.
Ricotta, C. and Moretti, M.: CWM and Rao's quadratic diversity: a unified framework for functional ecology, Oecologia, 167, 181–188, https://doi.org/10.1007/s00442-011-1965-5, 2011.
Ridgeway, J. R., Morrissey, E. M., and Brzostek, E. R.: Plant litter traits control microbial decomposition and drive soil carbon stabilization, Soil Biol. Biochem., 175, 108857, https://doi.org/10.1016/j.soilbio.2022.108857, 2022.
Rocci, K. S., Lavallee, J. M., Stewart, C. E., and Cotrufo, M. F.: Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis, Sci. Total Environ., 793, 148569, https://doi.org/10.1016/j.scitotenv.2021.148569, 2021.
Rocci, K. S., Barker, K. S., Seabloom, E. W., Borer, E. T., Hobbie, S. E., Bakker, J. D., MacDougall, A. S., McCulley, R. L., Moore, J. L., Raynaud, X., Stevens, C. J., and Cotrufo, M. F.: Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands, Biogeochemistry, 159, 353–370, https://doi.org/10.1007/s10533-022-00932-w, 2022.
Rolo, V., Rivest, D., Lorente, M., Kattge, J., and Moreno, G.: Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity–productivity trade-off, J. Appl. Ecol., 53, 1575–1584, https://doi.org/10.1111/1365-2664.12685, 2016.
Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, K., and Stokes, A.: Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy, New Phytol., 210, 815–826, https://doi.org/10.1111/nph.13828, 2016.
Rovira, P., Sauras-Yera, T., and Romanyà, J.: Equivalent-mass versus fixed-depth as criteria for quantifying soil carbon sequestration: How relevant is the difference?, Catena, 214, 106283, https://doi.org/10.1016/j.catena.2022.106283, 2022.
Sanaullah, M., Chabbi, A., Lemaire, G., Charrier, X., and Rumpel, C.: How does plant leaf senescence of grassland species influence decomposition kinetics and litter compounds dynamics?, Nutr. Cycl. Agroecosyst., 88, 159–171, https://doi.org/10.1007/s10705-009-9323-2, 2010.
Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S., Rivard, C., and Savage, K.: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy, Biogeochemistry, 156, 97–114, https://doi.org/10.1007/s10533-021-00755-1, 2021.
Sanjari, G., Yu, B., Ghadiri, H., Ciesiolka, C. A. A., and Rose, C. W.: Effects of time-controlled grazing on runoff and sediment loss, Soil Res., 47, 796–808, https://doi.org/10.1071/SR09032, 2009.
Santos, R. S., Hamilton, E. K., Stanley, P. L., Paustian, K., Cotrufo, M. F., and Zhang, Y.: Simulating adaptive grazing management on soil organic carbon in the Southeast U.S.A. using MEMS 2, J. Environ. Manage., 365, 121657, https://doi.org/10.1016/j.jenvman.2024.121657, 2024.
Sherrod, L. A., Dunn, G., Peterson, G. A., and Kolberg, R. L.: Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method, Soil Sci. Soc. Am. J., 66, 299–305, https://doi.org/10.2136/sssaj2002.2990, 2002.
Shi, B., Delgado-Baquerizo, M., Knapp, A. K., Smith, M. D., Reed, S., Osborne, B., Carrillo, Y., Maestre, F. T., Zhu, Y., Chen, A., Wilkins, K., Holdrege, M. C., Kulmatiski, A., Picon-Cochard, C., Roscher, C., Power, S., Byrne, K. M., Churchill, A. C., Jentsch, A., Henry, H. A. L., Beard, K. H., Schuchardt, M. A., Eisenhauer, N., Otfinowski, R., Hautier, Y., Shen, H., Wang, Y., Wang, Z., Wang, C., Cusack, D. F., Petraglia, A., Carbognani, M., Forte, T. G. W., Flory, S., Hou, P., Zhang, T., Gao, W., and Sun, W.: Aridity drives the response of soil total and particulate organic carbon to drought in temperate grasslands and shrublands, Sci. Adv., 10, eadq2654, https://doi.org/10.1126/sciadv.adq2654, 2024.
Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L. Dantas, V., de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S. W., Kichenin, E., Kraft, N. J. B., Lagerström, A., Bagousse-Pinguet, Y. L., Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J. McC., Peltzer, D. A., Pérez-Ramos, I. M., Pillar, V. D., Prentice, H. C., Richardson, S., Sasaki, T., Schamp, B. S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M. T., Vandewalle, M., and Wardle, D. A.: A global meta-analysis of the relative extent of intraspecific trait variation in plant communities, Ecol. Lett., 18, 1406–1419, https://doi.org/10.1111/ele.12508, 2015.
Six, J., Guggenberger, G., Paustian, K., Haumaier, L., Elliott, E. T., and Zech, W.: Sources and composition of soil organic matter fractions between and within soil aggregates, Eur. J. Soil Sci., 52, 607–618, https://doi.org/10.1046/j.1365-2389.2001.00406.x, 2001.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant Soil, 241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Soliveres, S., Maestre, F. T., Eldridge, D. J., Delgado-Baquerizo, M., Quero, J. L., Bowker, M. A., and Gallardo, A.: Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands, Global Ecol. Biogeogr., 23, 1408–1416, https://doi.org/10.1111/geb.12215, 2014.
Soussana, J.-F. and Lemaire, G.: Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems, Agr. Ecosyst. Environ., 190, 9–17, https://doi.org/10.1016/j.agee.2013.10.012, 2014.
Spohn, M., Pötsch, E. M., Eichorst, S. A., Woebken, D., Wanek, W., and Richter, A.: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland, Soil Biol. Biochem., 97, 168–175, https://doi.org/10.1016/j.soilbio.2016.03.008, 2016.
Stanley, P., Roche, L., and Bowles, T.: Amping up soil carbon: soil carbon stocks in California rangelands under adaptive multi-paddock and conventional grazing management, Int. J. Agric. Sustain., 23, 2461826, https://doi.org/10.1080/14735903.2025.2461826, 2025.
Stanley, P. L., Wilson, C., Patterson, E., Machmuller, M. B., and Cotrufo, M. F.: Ruminating on soil carbon: Applying current understanding to inform grazing management, Global Change Biol., 30, e17223, https://doi.org/10.1111/gcb.17223, 2024.
Steinbeiss, S., Beßler, H., Engels, C., Temperton, V. M., Buchmann, N., Roscher, C., Kreutziger, Y., Baade, J., Habekost, M., and Gleixner, G.: Plant diversity positively affects short-term soil carbon storage in experimental grasslands, Global Change Biol., 14, 2937–2949, https://doi.org/10.1111/j.1365-2486.2008.01697.x, 2008.
Strickland, M. S. and Rousk, J.: Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications, Soil Biol. Biochem., 42, 1385–1395, https://doi.org/10.1016/j.soilbio.2010.05.007, 2010.
Tang, K., Wu, C., Wang, S., Liao, W., Yin, L., Zhou, W., and Cui, H.-J.: Distribution characteristics of soil organic carbon fractions in paddy profiles with 40 years of fertilization under two groundwater levels, J. Soils Sediments, 24, 681–691, https://doi.org/10.1007/s11368-023-03664-y, 2024.
Tang, Z., Feng, J., Chen, L., Chen, Z., Shao, X., and Xia, T.: Coupling amendment of microbial and compound fertilizers increases fungal necromass carbon and soil organic carbon by regulating microbial activity in flue-cured tobacco-planted field, Eur. J. Soil Biol., 117, 103518, https://doi.org/10.1016/j.ejsobi.2023.103518, 2023.
Tao, F., Huang, Y., Hungate, B. A., Manzoni, S., Frey, S. D., Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L., Lehmann, J., Wang, Y.-P., Houlton, B. Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T. D., Lu, X., Shi, Z., Viatkin, K., Vargas, R., Yigini, Y., Omuto, C., Malik, A. A., Peralta, G., Cuevas-Corona, R., Di Paolo, L. E., Luotto, I., Liao, C., Liang, Y.-S., Saynes, V. S., Huang, X., and Luo, Y.: Microbial carbon use efficiency promotes global soil carbon storage, Nature, 618, 981–985, https://doi.org/10.1038/s41586-023-06042-3, 2023.
Tate, K. W., Atwill, E. R., McDougald, N. K., and George, M. R.: Spatial and Temporal Patterns of Cattle Feces Deposition on Rangeland, J. Range Manage., 56, 432–438, https://doi.org/10.2307/4003833, 2003.
Teague, R., Provenza, F., Kreuter, U., Steffens, T., and Barnes, M.: Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience?, J. Environ. Manage., 128, 699–717, https://doi.org/10.1016/j.jenvman.2013.05.064, 2013.
Teague, W. R., Dowhower, S. L., and Waggoner, J. A.: Drought and grazing patch dynamics under different grazing management, J. Arid Environ., 58, 97–117, https://doi.org/10.1016/S0140-1963(03)00122-8, 2004.
Teague, W. R., Dowhower, S. L., Baker, S. A., Haile, N., DeLaune, P. B., and Conover, D. M.: Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie, Agr. Ecosyst. Environ., 141, 310–322, https://doi.org/10.1016/j.agee.2011.03.009, 2011.
Teixeira, R. F. M., Proença, V., Crespo, D., Valada, T., and Domingos, T.: A conceptual framework for the analysis of engineered biodiverse pastures, Ecol. Eng., 77, 85–97, https://doi.org/10.1016/j.ecoleng.2015.01.002, 2015.
Thomson, F. J., Moles, A. T., Auld, T. D., and Kingsford, R. T.: Seed dispersal distance is more strongly correlated with plant height than with seed mass, J. Ecol., 99, 1299–1307, https://doi.org/10.1111/j.1365-2745.2011.01867.x, 2011.
Tiessen, H., Cuevas, E., and Chacon, P.: The role of soil organic matter in sustaining soil fertility, Nature, 371, 783–785, https://doi.org/10.1038/371783a0, 1994.
Uribe, C., Inclán, R., Hernando, L., Román, M., Clavero, M. A., Roig, S., and Van Miegroet, H.: Grazing, tilling and canopy effects on carbon dioxide fluxes in a Spanish dehesa, Agroforest. Syst., 89, 305–318, https://doi.org/10.1007/s10457-014-9767-5, 2015.
Van Soest, P. J., Robertson, J. B., and Lewis, B. A.: Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, J. Dairy Sci., 74, 3583–3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2, 1991.
Villarino, S. H., Pinto, P., Jackson, R. B., and Piñeiro, G.: Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions, Sci. Adv., 7, eabd3176, https://doi.org/10.1126/sciadv.abd3176, 2021.
Waldrop, M. P. and Firestone, M. K.: Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities, Oecologia, 138, 275–284, https://doi.org/10.1007/s00442-003-1419-9, 2004.
Wang, J., Liu, L., Wang, X., and Chen, Y.: The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation, Global Change Biol., 21, 2095–2104, https://doi.org/10.1111/gcb.12812, 2015.
Wang, J., Liu, L., Wang, X., Yang, S., Zhang, B., Li, P., Qiao, C., Deng, M., and Liu, W.: High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape, Funct. Ecol., 31, 1659–1668, https://doi.org/10.1111/1365-2435.12854, 2017.
Wang, K., Ma, Z., Qin, W., Li, X., Shi, H., Hasi, B., and Liu, X.: Soil nutrients and pH modulate carbon dynamics in particulate and mineral-associated organic matter during restoration of a Tibetan alpine grassland, Ecol. Eng., 212, 107522, https://doi.org/10.1016/j.ecoleng.2025.107522, 2025.
Wang, X., McConkey, B. G., VandenBygaart, A. J., Fan, J., Iwaasa, A., and Schellenberg, M.: Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis, Sci. Rep., 6, 33190, https://doi.org/10.1038/srep33190, 2016.
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A., and Bardgett, R. D.: Legacy effects of grassland management on soil carbon to depth, Global Change Biol., 22, 2929–2938, https://doi.org/10.1111/gcb.13246, 2016.
Weigelt, A., Mommer, L., Andraczek, K., Iversen, C. M., Bergmann, J., Bruelheide, H., Fan, Y., Freschet, G. T., Guerrero-Ramírez, N. R., Kattge, J., Kuyper, T. W., Laughlin, D. C., Meier, I. C., van der Plas, F., Poorter, H., Roumet, C., van Ruijven, J., Sabatini, F. M., Semchenko, M., Sweeney, C. J., Valverde-Barrantes, O. J., York, L. M., and McCormack, M. L.: An integrated framework of plant form and function: the belowground perspective, New Phytol., 232, 42–59, https://doi.org/10.1111/nph.17590, 2021.
Westerband, A. C., Funk, J. L., and Barton, K. E.: Intraspecific trait variation in plants: a renewed focus on its role in ecological processes, Ann. Bot., 127, 397–410, https://doi.org/10.1093/aob/mcab011, 2021.
White, R. P., Murray, S., Rohweder, M., Prince, S. D., and Thompson, K. M.: Pilot analysis of global ecosystems: Grassland ecosystems, World Resources Institute, Washington, DC, ISBN 1-56973-461-5, 2000.
Willers, C., Jansen van Rensburg, P. J., and Claassens, S.: Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications, J. Appl. Microbiol., 119, 1207–1218, https://doi.org/10.1111/jam.12902, 2015.
Wilson, C. H., Strickland, M. S., Hutchings, J. A., Bianchi, T. S., and Flory, S. L.: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland, Global Change Biol., 24, 2997–3009, https://doi.org/10.1111/gcb.14070, 2018.
Wilson, P. J., Thompson, K., and Hodgson, J. G.: Specific leaf area and leaf dry matter content as alternative predictors of plant strategies, New Phytol., 143, 155–162, https://doi.org/10.1046/j.1469-8137.1999.00427.x, 1999.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and Villar, R.: The worldwide leaf economics spectrum, Nature, 428, 821–827, https://doi.org/10.1038/nature02403, 2004.
Xu, H., Zhu, B., Wei, X., Yu, M., and Cheng, X.: Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest, Soil Biol. Biochem., 162, 108431, https://doi.org/10.1016/j.soilbio.2021.108431, 2021.
Xu, X., Thornton, P. E., and Post, W. M.: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, Global Ecol. Biogeogr., 22, 737–749, https://doi.org/10.1111/geb.12029, 2013.
Yao, H., He, Z., Wilson, M. J., and Campbell, C. D.: Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use, Microb. Ecol., 40, 223–237, https://doi.org/10.1007/s002480000053, 2000.
Yu, L., Sun, W., and Huang, Y.: Grazing exclusion enhances plant and topsoil carbon stocks in arid and semiarid grasslands, Agr. Ecosyst. Environ., 320, 107605, https://doi.org/10.1016/j.agee.2021.107605, 2021.
Yu, W., Huang, W., Weintraub-Leff, S. R., and Hall, S. J.: Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils?, Soil Biol. Biochem., 172, 108756, https://doi.org/10.1016/j.soilbio.2022.108756, 2022.
Zhang, Q., Buyantuev, A., Li, F. Y., Jiang, L., Niu, J., Ding, Y., Kang, S., and Ma, W.: Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland, Ecol. Evol., 7, 1605–1615, https://doi.org/10.1002/ece3.2778, 2017.
Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian, K., and Cotrufo, M. F.: Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model, Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, 2021.
Zhang, Y., Wang, T., Yan, C., Li, Y., Mo, F., and Han, J.: Microbial life-history strategies and particulate organic carbon mediate formation of microbial necromass carbon and stabilization in response to biochar addition, Sci. Total Environ., 950, 175041, https://doi.org/10.1016/j.scitotenv.2024.175041, 2024.
Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q., and Shen, W.: The effects of mineral fertilizer and organic manure on soil microbial community and diversity, Plant Soil, 326, 511–522, https://doi.org/10.1007/s11104-009-9988-y, 2010.
Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., Zhou, H., and Hosseinibai, S.: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis, Global Change Biol., 23, 1167–1179, https://doi.org/10.1111/gcb.13431, 2017.
Zhou, G., Luo, Q., Chen, Y., He, M., Zhou, L., Frank, D., He, Y., Fu, Y., Zhang, B., and Zhou, X.: Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change, Global Change Biol., 25, 1119–1132, https://doi.org/10.1111/gcb.14533, 2019.
Zhou, Z., Ren, C., Wang, C., Delgado-Baquerizo, M., Luo, Y., Luo, Z., Du, Z., Zhu, B., Yang, Y., Jiao, S., Zhao, F., Cai, A., Yang, G., and Wei, G.: Global turnover of soil mineral-associated and particulate organic carbon, Nat. Commun., 15, 5329, https://doi.org/10.1038/s41467-024-49743-7, 2024.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M.: Mixed effects models and extensions in ecology with R, Springer, New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Improved management practices such as rotational grazing, grazing exclusion, and legume enrichment can boost climate change mitigation and adaptation in grasslands. We studied the effects of these practices on soil organic carbon (SOC) stocks and fractions in semi-arid grasslands. Rotational grazing increased SOC, especially mineral-protected fraction, while exclusion reduced particulate organic carbon stocks. These outcomes were linked to changes in plant traits, soil microbes, and nutrients.
Improved management practices such as rotational grazing, grazing exclusion, and legume...