Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-833-2025
https://doi.org/10.5194/soil-11-833-2025
Original research article
 | 
15 Oct 2025
Original research article |  | 15 Oct 2025

Quantifying spatial uncertainty to improve soil predictions in data-sparse regions

Kerstin Rau, Katharina Eggensperger, Frank Schneider, Michael Blaschek, Philipp Hennig, and Thomas Scholten

Related authors

Soil information and soil property maps for the Kurdistan region, Dohuk governorate (Iraq)
Mathias Bellat, Mjahid Zebari, Benjamin Glissman, Tobias Rentschler, Paola Sconzo, Nafiseh Kakhani, Ruhollah Taghizadeh-Mehrjardi, Pegah Kohsravani, Bekas Brifany, Peter Pfälzner, and Thomas Scholten
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-418,https://doi.org/10.5194/essd-2025-418, 2025
Preprint under review for ESSD
Short summary
A GLUE-based assessment of WaTEM/SEDEM for simulating soil erosion, transport, and deposition in soil conservation optimised agricultural watersheds
Kay D. Seufferheld, Pedro V. G. Batista, Hadi Shokati, Thomas Scholten, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2025-3391,https://doi.org/10.5194/egusphere-2025-3391, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Rapid Flood Mapping from Aerial Imagery Using Fine-Tuned SAM and ResNet-Backboned U-Net
Hadi Shokati, Kay D. Seufferheld, Peter Fiener, and Thomas Scholten
EGUsphere, https://doi.org/10.5194/egusphere-2025-3146,https://doi.org/10.5194/egusphere-2025-3146, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Fully differentiable, fully distributed Rainfall-Runoff Modeling
Fedor Scholz, Manuel Traub, Christiane Zarfl, Thomas Scholten, and Martin V. Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-4119,https://doi.org/10.5194/egusphere-2024-4119, 2025
Short summary
Effects of moss restoration on surface runoff and initial soil erosion in a temperate vineyard
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
SOIL, 11, 199–212, https://doi.org/10.5194/soil-11-199-2025,https://doi.org/10.5194/soil-11-199-2025, 2025
Short summary

Cited articles

Abbaszadeh Afshar, F., Ayoubi, S., and Jafari, A.: The extrapolation of soil great groups using multinomial logistic regression at regional scale in arid regions of Iran, Geoderma, 315, 36–48, https://doi.org/10.1016/j.geoderma.2017.11.030, 2018. a
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. a
Amelung, W., Blume, H.-P., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., and Wilke, B.-M.: Scheffer/Schachtschabel Lehrbuch der Bodenkunde, Springer-Verlag, https://doi.org/10.1007/978-3-662-55871-3, 2018. a
Bao, Y., Yao, F., Meng, X., Wang, J., Liu, H., Wang, Y., Liu, Q., Zhang, J., and Mouazen, A. M.: A fine digital soil mapping by integrating remote sensing-based process model and deep learning method in Northeast China, Soil Till. Res., 238, 106010, https://doi.org/10.1016/j.still.2024.106010, 2024. a
Bauer, J., Rohdenburg, H., and Bork, H.: Ein digitales Reliefmodell als Vorraussetzung für ein deterministisches Modell der Wasser-und Stoff-Flüsse, Landschaftsgenese und Landschaftsökologie, 10–15, 1985. a
Download
Short summary
We developed an uncertainty method to show where machine learning (ML) models predicting soil units are most reliable, especially for transfer tasks. The model was able to correctly predict soil patterns, especially along rivers, in a new but similar region without retraining. It was too confident about common soil types, showing the need for balanced data. This helps improve soil maps and guides better planning for future data collection, saving time and resources while showing uncertainty.
Share