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Abstract. Artificial neural networks (ANNs) are valuable tools for predicting soil properties using large
datasets. However, a common challenge in soil sciences is the uneven distribution of soil samples, which of-
ten results from past sampling projects that heavily sample certain areas while leaving similar yet geographically
distant regions under-sampled. One potential solution to this problem is to transfer an already trained model
to other similar regions. Robust spatial uncertainty quantification is crucial for this purpose, yet this is often
overlooked in current research. We address this issue by using a Bayesian deep learning technique, Laplace ap-
proximations, to quantify spatial uncertainty. This produces a probability measure encoding where the model’s
prediction is deemed to be reliable and where a lack of data should lead to a high uncertainty. We train such an
ANN on a soil landscape dataset from a specific region in southern Germany and then transfer the trained model
to another unseen but, to some extent, similar region without any further model training. The model effectively
generalized alluvial patterns, demonstrating its ability to recognize repetitive features of river systems. However,
the model showed a tendency to favour overrepresented soil units, underscoring the importance of balancing
training datasets to reduce overconfidence in dominant classes. Quantifying uncertainty in this way allows stake-
holders to better identify regions and settings in need of further data collection, enhancing decision-making and
prioritizing efforts in data collection. Our approach is computationally lightweight and can be added post hoc
to existing deep learning solutions for soil prediction, thus offering a practical tool to improve soil property
predictions in under-sampled areas, as well as optimizing future sampling strategies, ensuring that resources are
allocated efficiently for maximum data coverage and accuracy.
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1 Introduction

Machine learning (ML) has become an indispensable tool in
scientific research, leading to significant advances in many
fields, including soil science (Zhang et al., 2022). Since the
early 2000s, ML methods have been steadily integrated into
soil mapping (McBratney et al., 2003; Scull et al., 2003;
Behrens et al., 2005). Over the last 2 decades, the use of ML
in soil science has grown substantially, reflecting its increas-
ing importance and effectiveness (Minasny and McBratney,
2016; Rentschler et al., 2022; Zhang et al., 2022; Kebonye
et al., 2023; Taghizadeh-Mehrjardi et al., 2024). However,
new research challenges have emerged as ML methods be-
come more widely used. One key challenge is improving
model interpretability in order to promote scientific knowl-
edge (Padarian et al., 2020b). Chen et al. (2022) further
added that future research should focus on making the most
of legacy datasets, using smarter sampling strategies, im-
proving model accuracy and interpretability, and develop-
ing advanced mapping methods to create detailed and high-
quality soil maps. In line with this, Bohn and Miller (2024)
showed that a locally enhanced, bottom-up oriented digital
soil mapping (DSM) approach has been shown to deliver
higher accuracy compared to both conventional soil maps
and global DSM products in many cases.

Using legacy datasets effectively means applying data
from already sampled areas to predict conditions in similar
but unsampled regions. This extrapolation process has been
discussed for many years. For example, Lagacherie et al.
(1995) pointed out the need to develop self-learning systems
that dynamically adapt predictions. Bui and Moran (2003)
demonstrated that existing soil maps can be combined with
environmental and geological data to extend their usefulness
beyond their original boundaries. Additionally, Scull et al.
(2005) showed with classification trees that this technique al-
lows soil experts to focus field mapping on unique areas and
efficiently extrapolate soil-landscape relationships, making
it a valuable tool for soil surveys. Extrapolation approaches
also address the challenges of traditional soil mapping, which
relies on cartographers manually surveying landscapes, a
process that is both costly and time-consuming. These meth-
ods offer a particularly cost-effective solution for predicting
soil classes in regions with limited data, helping to fill the
gaps in soil maps and improving the efficiency of digital soil
mapping (DSM) (Taghizadeh-Mehrjardi et al., 2022). For ex-
ample, decision trees demonstrated a 46.00 % overall accu-
racy for extrapolating soil subgroups using digital mapping
methods, making them a cost-effective option for areas with
limited data or challenging sampling conditions (Neyestani
et al., 2021). Similarly, multinomial logistic regression and
classification trees have been used successfully to extrapo-
late soil classes (Abbaszadeh Afshar et al., 2018; Lemercier
et al., 2012; Grinand et al., 2008). To summarize, the increas-
ing adoption of machine learning is driven not only by its rel-
evance to soil science but also by its ability to significantly
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reduce the effort required for mapping, especially in large or
hard-to-access areas (Hewitt, 1993; Grunwald et al., 2011;
Stumpf et al., 2017).

More advanced methods, particularly artificial neural net-
works (ANNs), have proven to be effective for extrapolation
in soil mapping. For instance, the study by de Arruda et al.
(2016) demonstrated the potential of ANNs to produce digi-
tal soil maps, providing initial classifications for unexplored
areas. Building on this, Coelho et al. (2021) introduced an
innovative methodology that combined georeferenced soil
profile point data and ANN models for extrapolation tasks.
Responding to the growing demand for high-resolution soil
maps in, for instance, precision agriculture, environmental
management, and land use planning, ANNs are becoming
more and more popular due to their ability to process large
amounts of data and to provide predictions comparably fast
(Haykin, 1994; Schmidhuber, 2015; Silveira et al., 2013).
Brungard et al. (2015) demonstrated the superior accuracy
of complex models containing neural networks in predict-
ing soil taxonomy classes compared to simpler models. Sim-
ilarly, Zhu (2000) highlighted the capability of ANNs in gen-
erating high-resolution soil maps.

Despite their advantages, one notable challenge is the lack
of inherent interpretability (Heung et al., 2016). As “black-
box” models, ANNs make predictions through complex in-
ternal processes that are difficult to understand and interpret.
Recent studies have addressed this limitation by introducing
model-agnostic interpretation techniques and game-theory-
based Shapley additive explanations (SHAPs), which pro-
vide valuable insights into the relationships between envi-
ronmental covariates and model predictions (Padarian et al.,
2020a; Wadoux and Molnar, 2022). In addition, ANNSs typ-
ically lack built-in uncertainty quantification, which compli-
cates the evaluation of their predictive reliability and may
lead to misinterpretations or suboptimal decision-making
(Guo et al., 2017). They often produce overly confident pre-
dictions, sometimes reaching 100.00 % certainty, even when
the input data are flawed or noisy (Breiman, 2001; Nguyen
et al., 2015; Hein et al., 2019). In the context of DSM, this
issue is compounded by the broader challenge of quantifying
spatial uncertainty in soil maps (Hengl et al., 2017; Wadoux
et al., 2020; Rau et al., 2024). Between 2017 and 2022, only
35.00 % of studies that addressed significant DSM tasks in-
corporated uncertainty into their analysis (Belkadi and Drias,
2023). Similarly, while DSM research is expanding in coun-
tries such as India and Iran, the integration of uncertainty
mapping remains limited. In India, only 34.00 % of DSM
studies include uncertainty maps, while in Iran, fewer than
20.00 % address uncertainty (Zeraatpisheh et al., 2020; Dash
et al., 2022). Typically, these maps then present just an over-
all accuracy expressed as a single statistical measure, often
derived through cross-validation techniques, an iterative pro-
cess that partitions the training data into multiple subsets
to repeatedly train and validate the model to estimate over-
all performance uncertainty (Wadoux et al., 2020). Although
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this approach offers some insight, it falls short, especially for
applications involving unbalanced datasets. This gap has led
to calls for more detailed uncertainty analysis (Meyer and
Pebesma, 2022), particularly for tasks involving extrapola-
tion to new areas because of poor uncertainty performance
in such contexts (Grinand et al., 2008). Some recent stud-
ies have made strides in incorporating uncertainty quantifi-
cation. For instance, Carvalho Monteiro et al. (2023) and van
der Westhuizen et al. (2023) have demonstrated progress in
quantifying uncertainties for random forests, while Saygin
et al. (2023) have explored the use of ANNs. However, many
of these methods rely on variance estimates, which fail to
adequately address critical issues such as model overconfi-
dence. This problem emerged in the study by Schmidinger
and Heuvelink (2023), in which ANNs produced overly op-
timistic probabilistic predictions, resulting in low-reliability
scores. Additionally, these approaches frequently neglect
spatial uncertainty, an essential aspect of practical soil map-
ping (Bao et al., 2024). The most commonly used meth-
ods for uncertainty quantification in DL algorithms, partic-
ularly in ANNSs, include Monte Carlo (MC) dropout, en-
semble methods, and full Bayesian approaches. These meth-
ods, while effective, often require significant computational
resources and memory (Abdar et al., 2021). These tech-
niques have begun to gain traction in soil science applica-
tions, particularly for estimating uncertainty in soil moisture
retrieval or soil spectral models (Li et al., 2023). For ex-
ample, Padarian et al. (2022) and Huang et al. (2025) uti-
lized these approaches to assess uncertainty in their models,
demonstrating their relevance and utility despite the com-
putational demands. These findings underscore the urgent
need for methodological advancements that go beyond vari-
ance estimation to also tackle overconfidence together with
spatial uncertainty while remaining computationally efficient
and easy to integrate into existing workflows. Such improve-
ments are crucial to ensure that machine learning models for
DSM provide both accurate and reliable predictions. Our pre-
vious work (Rau et al., 2024) introduced for DSM the last-
layer Laplace approximation (LLLA), a computationally ef-
ficient technique that addresses these challenges. Building on
this methodological foundation, the current study applies an
ANN model to an extrapolation task, predicting soil unit non-
adjacent target areas outside the training area. To identify and
correct the overconfidence of the ANN and perform a spatial
analysis of the model’s predictions and associated uncertain-
ties, we use the LLLA, providing corrected uncertainty es-
timates for every pixel in the target area. Through this, we
assess the transferability of the ANN by improving its inter-
pretability and reliability for soil mapping tasks. Ultimately,
our work aims to promote more robust, accurate, and insight-
ful applications of DSM.
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2 Material and methods

2.1 Study area

This study investigates two regions in central Baden-
Wiirttemberg, Germany, near the city of Tiibingen. The ref-
erence area is located northwest of the city, and the target
area lies to the southwest, as shown in Fig. la. These re-
gions were chosen because they share similar geology, cli-
mate, and cultural development, making them suitable for
comparative analysis. The reference area, named after the
Goldersbach stream, covers 8.86 kmz, with an average ele-
vation of 445.51 ma.s.l,, ranging from 325.31 to 552.48 m. It
represents the lower section of the upstream part of the Gold-
ersbach River and its catchment. The main land use since the
19th century in this area is forestry, and, since 1972, it has
been part of a nature park. The target area, named after the
Biihlertalbach stream, is larger, covering 18.5 kmz, with an
average elevation of 498.26 ma.s.1., ranging from 388.86 to
583.04 m. It includes the entire Biihlertalbach stream valley,
from its upstream to downstream sections. Similarly to the
reference area, forestry is the main land use, and this area is
extensively used for forest-related activities. Both areas have
the same underlying geology, belonging to the Middle and
Upper Keuper series, which consist of layers of sandstone,
claystone, and marlstone, creating typical soil patterns of the
Keuperbergland. The climate in both regions is cool tem-
perate moist, with an average annual temperature between
8.3 and 8.7°C and annual precipitation ranging from 740
to 770 mm. The target area was deliberately chosen to be
larger, encompassing the entire catchment of the Biihlertal-
bach River. This strategic decision allows for the investiga-
tion into how predictions and findings extend beyond the up-
stream areas on which the reference area is based. By includ-
ing the full catchment, this approach provides a broader and
more comprehensive understanding of processes in similar
but not equal landscapes.

2.2 Data

Figure 1 illustrates the distribution of soil units across the
reference area (blue, subfigure b) and target area (red, sub-
figure c), with each number corresponding to a specific soil
unit and its associated characterization. The classification of
the soil types in these units follows the LGRB soil classi-
fication system, a local variant of the German soil classifi-
cation KAS, which is structured around soil formation pro-
cesses and properties (Eckelmann et al., 2005). Within the
reference area, there are eight distinct soil units, alongside an
urban zone represented as unit 0. In contrast, the target area
exhibits greater diversity, comprising 14 unique soil units. A
comprehensive description of all of these units is provided in
Table 1, including their correspondence with the World Ref-
erence Base (WRB) soil classification system (IUSS Work-
ing Group, 2022).
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Figure 1. (a) Digital elevation model of the study area, with the location of the study area in Germany, the reference area in blue, and the
target area in red. Panels (b) and (c) show soil unit maps over the reference and target areas, created by the State Authority for Geology,

Mineral Resources and Mining (LGRB), Baden-Wiirttemberg.

For international understanding, we use the WRB classifi-
cation system. The soil unit maps, initially sourced from the
State Authority for Geology, Mineral Resources and Mining
(LGRB), were provided in vector format. To facilitate our
analysis, these polygons were converted into raster files using
a rasterization process based on digital elevation grids. The
original map scale of 1:50000 was rasterized to produce a
10 m x 10 m resolution. It should be noted that this study is
based entirely on pixel-based soil unit prediction using these
rasterized soil maps as training and validation labels rather
than direct field observations. To enhance the performance
of the neural network and ensure detailed analysis, spatially
dense covariate data were required for the entire region. For
this purpose, digital elevation models (Fig. 1a) were used for
both areas. These models offer a 10 m resolution and serve as
the basis for calculating topographic indices, also at 10 m res-
olution. The variable selection was informed by local expert
geographical knowledge, guided by commonly used proxies
representing the SCORPAN model introduced by McBratney
et al. (2003), which draws upon Jenny (1941). In addition,
we included spectral indices based on satellite data from the
Copernicus Sentinel-2 programme. Since 2017, Sentinel-2
has provided data in 13 spectral bands with a 5 d revisit time.
For this study, we focused on the visible (R, G, B) and near-
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infrared bands, which have a 10 m resolution. Using these
bands, we calculated indices such as the normalized differ-
ence vegetation index (NDVI) to measure vegetation cover.
To ensure robust data representation and reduce the impact
of outliers, we computed the median values of these indices
for the time series of cloud-free images from March to May
2019. We also included geological maps, scaled at 1 : 50000,
provided by the LGRB. These maps were rasterized in the
same way as the soil unit maps. Table 2 summarizes the in-
dices and variables used for the ANN as covariates and their
respective references. To compare the covariates in the ref-
erence and target areas, we applied the cosine similarity in-
dex, as outlined by Schiitze et al. (2008). This method, which
measures similarity on a scale from —1 (completely oppo-
site) to 1 (identical), resulted in a mean value of 0.85. Using
this score confirmed a strong similarity between the areas.
In addition, we collaborated with experts from the LGRB,
whose extensive regional knowledge ensured the appropriate
selection of study areas. Both the similarity assessment and
the expert consultation were carried out in recognition of the
fact that, even at the local scale, it is crucial to apply models
only where they are valid, a principle already established in
global-scale research (Ludwig et al., 2023).
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Table 1. Detailed description of the soil units.

Class Label

German soil classification

WRB classification

Detailed information

no.
0 None None None Ablation, order, settlement
1 Al Brauner Auenboden, Auenbraunerde Fluvisol, Cambisol Partly with gleying in the near subsoil,
alluvial sand and alluvial loam
2 A3 Auengley, Auenpseudogley-Auengley, Fluvisol From alluvial sand and alluvial clay
Brauner Auenboden-Auengley
3 A7 Auenbraunerde, Auenparabraunerde Cambisol From older alluvial sediment
4 B2 Braunerde, Pelosol-Braunerde, Cambisol From solifluction soils and partly
Pseudogley-Braunerde alluvial and flood loam
5 B4 Braunerde, Podsol-Braunerde Arenosol Mostly podzolic, From sandstone,
debris-rich fluvial soils, and slope
debris
6 D1 Pelosol, Braunerde-Pelosol, Luvisol—Vertisol From solifluction soils, subordinate
Pseudogley-Pelosol from alluvial debris
7 K1 Kolluvium Anthrosol Partly over Braunerde and
Parabraunerde, From alluvial deposits
over solifluction soils
8 K2 Pseudogley-Kolluvium, Gleyic Anthrosol From alluvial deposits
Gley-Kolluvium
9 L2 Parabraunerde, Luvisol Of loess loam and loess-loam-rich
Braunerde-Parabraunerde, solifluction soils
Pseudogley-Parabraunerde
10 L3 Parabraunerde, Pelosol-Parabraunerde,  Luvisol From solifluction soils and slope debris
Terra fusca-Parabraunerde,
Pseudogley-Parabraunerde
11 N1 Ranker und Braunerde-Ranker Leptosol-Cambisol From sandstone
12 S1 Pseudogley, Braunerde-Pseudogley, Planosol-Cambisol From solifluction soils, partly
Pelosol-Pseudogley Pleistocene alluvial debris
13 S2 Pseudogley, Parabraunerde-Pseudogley =~ Planosol-Luvisol Of loess loam and loess-loam-rich
solifluction soils
14 71 Pararendzina, Pelosol-Pararendzina, Leptosol—Vertisol From solifluction soils and slope
Braunerde-Pararendzina debris, partly from landslide masses
15 R3 Rendzina und Terra fusca-Rendzina Leptosol From river gravels

2.3 Model design

Artificial neural networks (ANNs) originated in the field
of image recognition, particularly for classification tasks
(Goodfellow et al., 2016). These models are highly effec-
tive at identifying patterns and relationships in data, even
without prior domain knowledge, and excel in handling large
datasets. ANNs are composed of layers of neurons leverag-
ing activation functions to learn complex patterns. The struc-
ture of an ANN can vary widely in terms of its architec-
ture, the number and type of layers, their dimensions, and the
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activation functions used. Since our research prioritizes un-
derstanding uncertainty in machine learning models applied
to soil data rather than optimizing model performance, we
opted for a straightforward design: a fully connected multi-
layer perceptron, as described in Fig. 3. For the hidden lay-
ers, we employed the rectified linear unit (ReLU) activation
function, which is defined as follows:

ReLU(x) = max(0, x), (D

where x is the input into a neuron (Fukushima, 1969; Glo-
rot et al., 2011; Nair and Hinton, 2010). For training and

SOIL, 11, 833-847, 2025
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Table 2. Overview of the covariates for the neural network.

Environmental Definition after
input data
Topographic Eastness, elevation, northness, slope Bauer et al. (1985)
indices Diffuse radiation, direct radiation, slope Bock et al. (2007)
discontinuities, terrain classification index for lowlands
Relative height above the depth line, soil moisture Bohner and Kothe (2003)
Catchment area Freeman (1991)
Plan curvature, Profile curvature Heerdegen and Beran (1982)
Convergence divergence index, crest index for Ko6the and Bock (2006)
lowlands, crest index for mountain areas, culmination
line for lowlands, culmination line for mountain areas,
elevation below the culmination line for lowlands,
elevation below the culmination line for mountain
areas, horizontal distance to the depth line, relative hill
slope position for lowlands, relative hill slope position
for mountain areas, relative altitude, relief
Depth of closed surface depressions Wang and Liu (2006)
Spectral Brightness index, colouration index, hue index, Hounkpatin et al. (2018)
indices normalized difference vegetation index, redness index,
saturation index
Geological Geological map Department 9: State Authority for
variable Geology, Mineral Resources and

Mining (LGRB)

validation, we used data from the reference area, which in-
cludes 33 covariates (listed in Fig. 2) and soil unit labels.
The reference area comprises eight distinct soil units, which
the model aims to predict. To evaluate the model’s perfor-
mance, we tested it on the ground truth map of soil units from
the target area (Fig. 1c). The training and validation dataset
consisted of 142569 data points, i.e. the number of raster
cells, which were separated through random sampling into
a 70 %-30 % split, while the test dataset contained 378 214
data points. We used the architecture mentioned above. A
detailed description of the model tuning protocol is provided
in Rau et al. (2024), where the method was first tested in a
simplified, controlled soil classification setup. The optimized
hyperparameters derived from this process were successfully
transferred and applied to the reference area, yielding excel-
lent results. To enhance the model’s robustness and prevent
overfitting, we implemented an early-stopping criterion. The
training process was halted when the model’s training ac-
curacy, defined as the percentage of correctly predicted pix-
els, exceeded 95.00 % and no significant improvement in test
dataset accuracy was observed.

2.4 Uncertainty measurement of ANNs with last-layer
Laplace approximation

For ANNs, commonly, the Softmax function in the output
layer is used to convert raw scores into a probability dis-
tribution over the predicted classes. The Softmax function
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Table 3. Architecture of the artificial neural network.

Layer Number of neurons  Activation function
Input layer 33  ReLU

Layer 1 395 ReLU

Layer 2 510 ReLU

Layer 3 489 ReLU

Output layer 9  Softmax

transforms the output of the previous layer into a vector of
probabilities, essentially forming a distribution across input
classes. The Softmax function is defined as follows:

exp(x;)
> exp(x;)’

where x is the vector of raw score for all classes (Bridle,
1990; Goodfellow et al., 2016). These probability values can
be interpreted as uncertainty regarding the classification out-
put. A higher probability indicates greater certainty, while a
lower value signifies uncertainty. In other words, the ANN
has predicted a class with low uncertainty and is therefore
very confident about the prediction. Nevertheless, relying
solely on Softmax-derived uncertainty measures has limita-
tions, particularly in regions where the ANN encounters data
points far from its training distribution as these do not ac-
count for the uncertainty in the model’s parameters or struc-
ture (Hein et al., 2019; Guo et al., 2017). To address these

Softmax(x;) =

2
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limitations and to quantify model uncertainty, i.e. epistemic
uncertainty, we employ the last-layer Laplace approximation
(LLLA) following Daxberger et al. (2021). This method is
based on Bayesian principles and provides a computation-
ally efficient approach to estimate posterior uncertainties for
neural network parameters. The LLLA approximates the pos-
terior distribution of the weights as

p(® | D)~ N(O; Opmap, ) with
Y= (Véﬁ(’D; ®)|@MAP)_1, 3)

Here, ®Map represents the maximum a posteriori estimate of
the last-layer parameters, obtained by minimizing the nega-
tive log posterior £(D; ©®), typically the cross-entropy loss
with an isotropic Gaussian prior. Epistemic uncertainty is
captured by the LLLA through the local curvature (Hessian)
of the loss: flat directions in this geometry indicate parame-
ters that are weakly constrained by the data and thus remain
uncertain. Such flatness arises in regions of limited data,
structural uncertainty, or poor transferability, all of which re-
flect ambiguity in the posterior distribution over model pa-
rameters. The method is accessible through the open-source
laplace.torch package https://aleximmer.com/Laplace/ (last
access: 12 December 2024), which facilitates easy integra-
tion into PyTorch-based workflows. The LLLA method of-
fers key advantages: it is computationally efficient as a re-
sult of focusing on the last layer (Kristiadi et al., 2020) and
has the benefit that the point estimate (®wap) is unaffected
by the uncertainty estimation, which simplifies development
and tuning. We have already shown that LLLA effectively
identifies areas of high uncertainty in soil classification tasks
(Rau et al., 2024), making it crucial for generating uncer-
tainty maps with uneven training data coverage.

3 Results and discussion

3.1 Loss and accuracy of the ANN

In our study, we used a simple neural network architecture
rather than a highly specialized one tailored to the soil clas-
sification extrapolation task. This decision reflects common
scenarios where pre-built models are preferred due to their
ease of use and quick deployment. Our goal was to assess and
enhance the neural network’s ability to extrapolate and not
to achieve the highest possible overall accuracy, outperform-
ing other state-of-the-art ANNs, an objective that could be
pursued through deliberate and targeted hyperparameter op-
timization (Probst et al., 2019). For this reason, we focus on
the spatial uncertainty at the pixel level rather than the total
uncertainty of the soil map, which is used in DSM (Wadoux
et al., 2020). The study was therefore based on two differ-
ent areas: a well-sampled reference area and a completely
unsampled target area (Fig. 1). This setup simulated a re-
alistic challenge, where models are often required to make
predictions in areas with limited or no prior information
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(Heuvelink and Webster, 2001). The results indicated that
the model learned the training data effectively, achieving a
low loss value of 0.01, a high training accuracy of 98.57 %,
and a validation accuracy of 96.73 %. However, when applied
to the target area, the test accuracy dropped significantly to
47.38 %. This decrease was expected since there was no area-
specific tuning for the neural network and because our target
area is substantially larger than the reference area, includ-
ing the entire course of the river. The reference area thus
cannot fully represent the target area (Warrick, 2001). Com-
pared with other studies in DSM that use neural networks for
soil classification (e.g. Zhu, 2000; Behrens et al., 2005; Boru-
vka and Penizek, 2006; Bodaghabad et al., 2015; Neyestani
et al., 2021), our model performed at an average level, con-
sistently with our expectations, due to similar parent mate-
rial and climate, as well as similar cultural developments in
the areas over the last centuries. These initial findings em-
phasize the trade-offs between simplicity and predictive per-
formance when using simple neural networks in soil map-
ping applications. While these are convenient and easy to
deploy, their performance is often limited in data-sparse re-
gions. This highlights the importance of complementing neu-
ral network predictions with uncertainty quantification to ef-
fectively identify data gaps.

3.2 Prediction of the ANN

The prediction of soil units across the target area reveals sev-
eral notable patterns and challenges when we compare the
ANN-predicted map in Fig. 2a with our ground truth derived
from the LGRB in Fig. 1c. Not all soil units were predicted,
which is expected as certain soil units (in this, case soil units
1,3,7,8, 10, 14, and 15) were absent from the reference area.
The ANN could not predict these soil units due to its lack of
training data. This phenomenon is not uncommon in practice
as soil units in complex areas often remain untested in reality
(Heuvelink and Webster, 2001). For example, units 1 and 3
belong to floodplain soils, more precisely to Fluvisols after
WRB, and are not included in the reference area. Similarly,
soil unit 14, representing soils over the Gipskeuper forma-
tion, is also missing. The absence of certain soil units in the
training dataset reveals how the neural network handles such
cases and provides insight into the associated uncertainty. A
detailed breakdown of the soil units is provided in Fig. 1.
An overall evaluation of the predictions reveals that certain
regions, particularly the northern and southwestern parts of
the target area, were predicted wrong (Fig. 2b). Interestingly,
these areas correspond to the upstream and downstream sec-
tions of the river, which were areas not well represented in
the reference area. We can see that predictions were more ac-
curate in the middle stream of the river, which closely aligns
with the reference area, compared to the downstream and up-
stream regions. This is likely to be due to the increasing dis-
tance from the training data. A brief and selected breakdown
of the prediction of the specific soil units is now given and
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Figure 2. (a) Prediction map of the soil unit in our target area by the ANN. (b) Comparison of the prediction with the ground truth: green

means a correct prediction of the soil unit.

can be followed by the comparison of the ground truth map
in Fig. 1c with the prediction of the ANN in Fig. 2a and with
the confusion matrix in Fig. 3.

Unit 0, which represents the settlements, was completely
misclassified and often predicted to be unit 2 or, more often,
units 4 and 6. Because unit O is found in the river valley and
extends towards the receiving stream, these predictions are
not surprising. It is interesting to see what happens to soil
units 1 and 3, both alluvial soil units, neither of which occur
in the reference area. Soil unit 1, a Fluvisol from alluvial sand
and loam, was predicted to be soil unit 2, which is the only
Fluvisol in the reference area, also from alluvial sand and
clay. Meanwhile, unit 3, classified as Cambisol, is often pre-
dicted to be soil unit 4, representing Cambisol formed from
alluvial deposits, which aligns with unit 3’s characteristics
as a floodplain Cambisol from older sediments. In conclu-
sion, the model’s predictions for units 1 and 3 demonstrate
its ability to recognize and generalize alluvial patterns, even
when specific soil units are missing from the reference data.
These results suggest that floodplain soils maintain recog-
nizable characteristics across regions and that the model ef-
fectively learns the repetitive patterns of river systems, such
as floodplains and channel deposits, during training. Unit 4
is dominant in both the reference and target areas, as con-
firmed by the ground truth map. Its proportion increased from
51.09 % in the ground truth from the target area to 64.21 %
in the prediction by the ANN. However, this soil unit was
overestimated in the central region and underestimated in the
south, demonstrating the importance of spatial analysis. This
is also the case for soil unit 5. This soil unit was underes-
timated in the central region but correctly identified in the
southwest and north. Overestimations occurred in the south,
and misclassifications primarily involved unit 4. This can be
explained by the fact that both represent the most common
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soil units in Germany and the domination of 4 in the train-
ing data (Amelung et al., 2018; Wiechmann, 2000). As a
result, the neural network tends to predict them more often
in the output (Johnson and Khoshgoftaar, 2019). Soil unit
6 was also underestimated overall but maintained its propor-
tional representation due to false predictions along the south-
ern margins. The colluvial soil units 7 and 8 were not part
of the training set, and so they were misclassified as 4 and 6;
soil unit 7 specifically was predicted to be unit 6 in the south-
west and unit 4 in the north. Unit 9 was extremely accurately
detected in four areas in the south, east, and west but was
underrepresented overall. In the southwest, areas belonging
to unit 9 were often predicted to be unit 13, which is also a
Luvisol from loess loam.

The model effectively recognizes familiar soil units, indi-
cating that it successfully learns and applies process-based
rules of soil formation, as demonstrated by the predictions
for soil units 1 and 3. However, it shows a tendency to gen-
eralize soil units based on shared properties, as seen in the
misclassification of soil unit 13 as unit 9 due to their similar
origin as Luvisols from loess. This suggests that the model is
adept at identifying broad patterns but lacks sensitivity to re-
gional nuances and finer distinctions between similar units.
The substantial regional variability in the predictions high-
lights the need for spatial uncertainty analyses to improve
accuracy and address the model’s limitations in handling less
common or unfamiliar soil units.

3.3 Confidence of the ANN

Based on the previous results, especially the large distribu-
tion of correctly and incorrectly predicted classes in a unit
and a non-spatial accuracy of 47.38 %, we now analyse the
uncertainty of the ANN prediction of every single soil unit

https://doi.org/10.5194/s0il-11-833-2025
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Figure 3. The confusion matrix of the ANN displays true vs. predicted classifications, with diagonal values indicating correct predictions

and off-diagonal values showing misclassifications.

before applying the LLLA. In the case of an ANN, be-
sides cross-validation methods and other techniques, a com-
mon step is to evaluate the probability of the predicted class
(Wadoux et al., 2020). This probability can be interpreted
as the confidence of the model in its predictions — thus, the
degree of uncertainty of the model with regard to the predic-
tions per pixel (see Fig. 4a).

Notably, the highest confidence values, often reaching
100 %, are observed at the borders in the south, west, and
north, as well as in the central region near the river. In con-
trast, the intermediate regions display a more diverse confi-
dence distribution, though the values remain generally high.
This trend is reflected in the mean confidence value, which
stands at 96.22 %. When examining the relationship between
confidence and prediction accuracy, it can be seen that, in ar-
eas where the ANN performs poorly (Fig. 2b), the confidence
values paradoxically remain high (Fig. 4a). This indicates
overconfidence in regions, which happens with ANNs when
the training data do not represent the target area. For exam-
ple, pixels where soil units are correctly predicted exhibit a
mean confidence of 97.17 %, while incorrectly predicted pix-
els also demonstrate a high mean confidence of 95.36 %. This
pattern underscores the ANN’s tendency to assign high con-
fidence to both correct and incorrect predictions, exacerbat-
ing the issue of overconfidence. Such behaviour aligns with
findings from previous studies, which have highlighted the
tendency of ANNs to exhibit overconfidence in data-scarce
regions (Kasiviswanathan et al., 2018; Hein et al., 2019; Rau
et al., 2024).
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Further analysis of the confidence distribution for each soil
unit is presented using a violin plot in Fig. 5. The blue curves
represent the distribution of confidence values for each unit,
focusing only on soil units present in the reference area as
these are the only ones the ANN can predict. The width of
the plot indicates where confidence values are more frequent,
and the shape shows the range of these values. For most soil
units, there are sharp peaks around 100 %, which means that
the ANN is overly confident in all units. However, soil units
11 and 12 stand out as the ANN also shows high confidence
here, but the shape is in a wider range. This analysis high-
lights the issue of overconfidence in ANNs: here, the ANN
is too confident, even in areas where it performs poorly. This
overconfidence is especially apparent in regions far from
the training data or underrepresented areas. To improve the
ANN’s reliability, its ability to estimate its uncertainty needs
to be enhanced. Further detailed analysis by soil units will be
provided when comparing the ANN’s predictions with those
after applying the LLLA method as described in Sect. 2.4.

3.4 Uncertainty of the ANN from last-layer Laplace
approximation

As discussed in Fig. 2.4, the application of the LLL A method
enabled us to generate uncertainty estimates for the model
predictions, addressing the overconfidence issue typically
associated with ANNs (Kristiadi et al., 2020). It is impor-
tant to note that LLLA captures only epistemic uncertainty.
Aleatoric uncertainty remains as predictions are inherently
constrained by the data on which they are based. After ap-
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Figure 5. Distributions of the probability of predictions across the soil units (blue: before LLLA; orange: after LLLA).

plying LLLA, the model’s adjusted confidence values are
shown in Fig. 4b, where lighter colours indicate higher un-
certainty. Some areas, like the western edge and the river
region, showed almost no change, but overall, the average
confidence dropped from 96.22 % to 88.66 %. This decrease
shows that the LLLA method helped adjust the ANN’s con-
fidence to be more realistic. When looking at areas where
the ANN made correct predictions, the mean confidence
decreased by 5.97 %, and so only minor adjustments are
needed. A larger reduction can be observed in areas where
the predictions are wrong. The mean confidence decreased
more, by 9.00 %. This shows that LLLA was effective in re-
ducing the model’s overconfidence, especially where it pre-
viously made incorrect predictions. Considering spatial dif-
ferences inside correctly predicted areas, confidence reduc-
tions mainly occur along the edges. The opposite is true for
wrongly predicted areas, where larger reductions occur more
in the centre, which is particularly apparent in the northern
and southern regions. This indicates that it is important to
look at the spatial variability of the single soil units. A first in-
sight is provided by the violin plot (Fig. 5), where the orange-
coloured part shows the confidence after LLLA. It shows that
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the spread of confidence values has increased for some soil
units, like units 0, 5, 6, 11, and 12. This suggests that LLLA
made the model uncertainty more precise for these units. For
other units, like 2, 4, 9, and 13, the confidence distribution
stayed mostly the same. The highest points of confidence,
called peaks, shifted for some units. For example, units 0, 5,
and 6 still had high peaks, but units 11 and 12 showed much
lower peaks after LLLA. For most other units, the peaks re-
mained high, meaning the ANN stayed confident in its pre-
dictions for those units.

Examining the behaviour of individual soil units gives fur-
ther insights. For soil unit O, which was completely misclas-
sified, the confidence in the areas where it was predicted
dropped significantly, and the same happened for areas where
this soil unit was wrongly predicted. In contrast, soil unit
1, which was mostly misclassified as soil unit 2, maintained
high confidence in the correct areas, except for one point in
the north, where it was misclassified as soil unit 4. This pat-
tern indicates that, when the model predicted soil unit 2, a
familiar and similar soil unit, it remained confident, whereas
the misclassification to soil unit 4, a less related unit, trig-
gered a higher uncertainty adjustment. This finding indicates
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that the model is capable of differentiating between plausi-
ble misclassifications and more significant errors. A similar
pattern is observed with soil unit 3, which was often mis-
classified as soil unit 4, a closely related soil unit, where the
confidence remained high after LLLA. The most extreme ex-
ample of a plausible misclassification is soil unit 9, which
was misclassified as unit 13 for a large area in the west. No-
tably, there was no reduction in confidence despite the large
spatial error, suggesting that the LLLA method failed to de-
tect the misclassification, likely because soil units 9 and 13
are very similar. This highlights a limitation of the LLLA
adjustment when soil units have closely overlapping charac-
teristics, making it difficult for the model to recognize the
need for uncertainty in such cases. Soil unit 2, which was
well-predicted overall, maintained high confidence in both
the correct areas and the false-positive areas, where it was
misclassified as soil unit 1. In the correct areas, it retained
the highest confidence levels of all soil units, indicating that
the ANN remained highly confident after the LLLA in its
accurate predictions. The behaviour of the LLLA for soil
unit 4 is more complex. Recall that it was overestimated in
the centre and north and underestimated in the south. After
applying LLLA (Fig. 4b), the confidence decreased signifi-
cantly in the central areas, where it was wrongly predicted
over soil units 5, 9, and 12, indicating that the model rec-
ognized uncertainty in those regions. However, in most of
the other misclassified areas, with a small exception in the
north, the model’s confidence remained high, suggesting that
it did not adjust sufficiently for those errors. This lack of un-
certainty adjustment could be explained by the large propor-
tion of soil unit 4 in the training data, leading the model to
overtrust its predictions for this unit. The model seems to
favour overrepresented units, even when faced with evidence
of misclassification, which highlights the importance of bal-
ancing the training dataset to avoid overconfidence in dom-
inant soil units (Kotzé and van Tol, 2023). The soil units 7
and 8, both absent from the training data, were misclassi-
fied as units 4 and 6. However, these misclassifications were
detected extremely well by the LLLA adjustment. Initially,
the model assigned high confidence to these areas, but af-
ter LLLA, the regions corresponding to soil unit 8§ showed
some of the lowest confidence values. This indicates that
LLLA effectively identified areas of high uncertainty, partic-
ularly where the model faced unknown soil units, suggesting
that the method is highly effective in detecting errors related
to unfamiliar inputs. Soil unit 6 was underestimated over-
all, with false predictions along the southern margins. In the
correct areas, where this unit should have been identified,
LLLA significantly lowered the confidence, indicating that
the model recognized the initial overconfidence. However, in
the wrongly predicted areas, the confidence decrease varied
spatially. In the south and east, the model remained highly
confident, even where soil unit 6 was misclassified as unit 4,
showing that LLLA had difficulties detecting the uncertainty
of soil unit 4. This is another example of overtrusted predic-
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tions of the model in regions where dominant units like soil
unit 4 were prevalent in the training set. Conversely, in the
centre and north, LLLA effectively detected the misclassi-
fication, leading to a clear reduction in confidence. In con-
clusion, the application of LLLA effectively addressed the
overconfidence issue of the ANN by providing uncertainty
estimates and adjusting confidence levels in both correct and
incorrect predictions. The method successfully reduced con-
fidence in misclassified areas, particularly for unknown soil
units like 7 and 8, indicating its effectiveness in detecting un-
familiar inputs. However, the results also show regional vari-
ability in the uncertainty adjustments. For some soil units,
such as unit 4, the model remained overconfident in dominant
units, especially for units that were prevalent in the train-
ing data. This highlights a limitation of LLLA in handling
closely related or overrepresented soil units, emphasizing the
need for balanced training data to improve the model’s uncer-
tainty calibration and overall robustness. Nevertheless, com-
pared to broader global approaches like Homosoils, where
even the study by Nenkam et al. (2022) acknowledged that
model accuracy improved significantly when incorporating
local data, LLLA provides a key advantage by offering spa-
tially resolved uncertainty estimates. This allows for more
localized and detailed insights into the reliability of predic-
tions, making it a valuable tool for identifying regional vari-
ations in model performance and improving uncertainty cal-
ibration at finer scales. In addition to established uncertainty
quantification methods for ANNs, such as MC Dropout, en-
sembles, and full Bayesian neural networks, the application
of LLLA presents a practical and computationally efficient
alternative. As a post hoc method, LLLA enables uncertainty
estimation to be incorporated after model training without re-
quiring any modifications to the architecture or learning pro-
cess. This simplicity made it especially attractive for our soil
prediction task, where retraining the model or restructuring
the network would have been costly and unnecessary. LLLA
operates by approximating the posterior distribution of the fi-
nal layer weights, capturing model uncertainty with a single
forward pass at inference time. Though the computation of
the Hessian or its approximation introduces a one-time cost,
it does not impact the efficiency of prediction, unlike MC
Dropout, which multiplies inference costs with repeated for-
ward passes (Daxberger et al., 2021; Kristiadi et al., 2020). In
our case, LLLA was highly effective at mitigating overcon-
fidence and highlighting spatial uncertainty in the extrapola-
tion domain, especially in under-sampled areas, confirming
its value as a robust, scalable, and lightweight uncertainty
quantification tool for DSM applications.

4 Conclusion
This study explored the use of artificial neural networks

(ANNSs) for extrapolation tasks in digital soil mapping
(DSM) in under-sampled regions and proposed a novel un-
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certainty quantification approach using last-layer Laplace ap-
proximation (LLLA). The uneven distribution of soil samples
limits the reliability of models when extrapolating to new ar-
eas. Our research addressed this issue by training an ANN
on soil data from a reference area and applying it to a similar
but unsampled target area. The results showed that, while the
ANN could recognize familiar soil patterns, it often produced
overconfident predictions, particularly in regions outside the
training domain. By applying the LLLA method, we success-
fully reduced the overconfidence of the ANN and generated
spatial uncertainty estimates. This approach provided more
realistic confidence values and identified regions where the
model’s predictions were less reliable. Importantly, LLLA
was particularly effective in detecting areas with unfamil-
iar soil units, reducing confidence in those regions and high-
lighting the need for further data collection. Our findings un-
derline the importance of uncertainty quantification in DSM,
particularly when using machine learning models in spatially
diverse landscapes. While ANNs excel in recognizing pat-
terns and extrapolating soil units, their inherent black-box
nature and tendency for overconfidence pose significant risks
when models are deployed in new areas. The LLLA method
offers a practical, computationally lightweight solution to ad-
dress these issues, making it a valuable tool for improving the
reliability of soil predictions.

Future work should focus on improving the balance and
representativeness of training datasets to enhance the ac-
curacy of uncertainty estimates. Integrating spatial uncer-
tainty maps into sampling strategies can further optimize
data collection by directing limited resources to regions of
high model uncertainty. Additionally, research should exam-
ine how the LLLA responds to established strategies for im-
proving model transferability through the targeted addition
of samples, as shown for example by Broeg et al. (2023).
In particular, evaluating how LLLA-based uncertainty esti-
mates evolve with such sample augmentation under transfer
learning conditions is essential. To further assess the gen-
eralizability of LLLA, systematic benchmarking on diverse
datasets is necessary. A valuable foundation for this purpose
offers, for example, the LimeSoDa dataset collection, with
its broad range of environmental conditions and standard-
ized DSM features (Schmidinger and Heuvelink, 2023). In
conclusion, our research demonstrates that combining ANNs
with post hoc Bayesian uncertainty quantification techniques
can significantly enhance the interpretability, reliability, and
transferability of DSM models. This advancement is essen-
tial for making machine learning models more robust and
trustworthy in practical applications, particularly in regions
with sparse or uneven soil data.
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