Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-655-2025
https://doi.org/10.5194/soil-11-655-2025
Original research article
 | 
25 Sep 2025
Original research article |  | 25 Sep 2025

Combining electromagnetic induction and satellite-based NDVI data for improved determination of management zones for sustainable crop production

Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel M. Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman

Related authors

Long-term hourly stream-water flux data to study the effects of forest management on solute transport processes at the catchment scale
Heye R. Bogena, Frank Herrmann, Andreas Lücke, Thomas Pütz, and Harry Vereecken
Earth Syst. Sci. Data, 17, 6965–6992, https://doi.org/10.5194/essd-17-6965-2025,https://doi.org/10.5194/essd-17-6965-2025, 2025
Short summary
Preface: Illuminating soil's hidden dimensions, a decade of progress and future directions in agrogeophysics research
Alejandro Romero-Ruiz, Dave O'Leary, Dongxue Zhao, Yuxin Wu, and Sarah Garré
SOIL, 11, 1041–1051, https://doi.org/10.5194/soil-11-1041-2025,https://doi.org/10.5194/soil-11-1041-2025, 2025
Short summary
Spatiotemporal Characterization of Wheat Development Using UAV LiDAR Structure–Intensity Fusion with Multispectral and Thermal Data
Jordan Steven Bates, Carsten Montzka, Rajina Bajracharya, Harry Vereecken, and François Jonard
EGUsphere, https://doi.org/10.5194/egusphere-2025-5336,https://doi.org/10.5194/egusphere-2025-5336, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
The AgraSim (Agricultural Simulator) facility for the comprehensive experimental simulation and analysis of environmental impacts on processes in the soil-plant-atmosphere system
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
Geosci. Instrum. Method. Data Syst., 14, 353–377, https://doi.org/10.5194/gi-14-353-2025,https://doi.org/10.5194/gi-14-353-2025, 2025
Short summary
Enhanced weathering leads to substantial C accrual on crop macrocosms
François Rineau, Alexander H. Frank, Jannis Groh, Kristof Grosjean, Arnaud Legout, Daniil I. Kolokolov, Michel Mench, Maria Moreno-Druet, Benoît Pollier, Virmantas Povilaitis, Johanna Pausch, Thomas Puetz, Tjalling Rooks, Peter Schröder, Wieslaw Szulc, Beata Rutkowska, Xander Swinnen, Sofie Thijs, Harry Vereecken, Janna V. Veselovskaya, Mwahija Zubery, Renaldas Žydelis, and Evelin Loit
EGUsphere, https://doi.org/10.5194/egusphere-2025-4188,https://doi.org/10.5194/egusphere-2025-4188, 2025
Short summary

Cited articles

Abdu, H., Robinson, D. A., Seyfried, M., and Jones, S. B.: Geophysical imaging of watershed subsurface patterns and prediction of soil texture and water holding capacity, Water Resour. Res., 44, 1–10, https://doi.org/10.1029/2008wr007043, 2008. 
Adamchuk, V., Allred, B., Doolittle, J., Grote, K., and Viscarra Rossel, R. A.: Tools for proximal soil sensing, United States Dep. Agric., Soil Surv. Man. soil Sci. Div. Staff., Washington, DC, 355–356, 2017. 
Adhikari, K., Smith, D. R., Collins, H., Hajda, C., Acharya, B. S., and Owens, P. R.: Mapping Within-Field Soil Health Variations Using Apparent Electrical Conductivity, Topography, and Machine Learning, Agronomy, 12, 1–16, https://doi.org/10.3390/agronomy12051019, 2022. 
Ali, A., Rondelli, V., Martelli, R., Falsone, G., Lupia, F., and Barbanti, L.: Management Zones Delineation through Clustering Techniques Based on Soils Traits, NDVI Data, and Multiple Year Crop Yields, Agriculture, 12, https://doi.org/10.3390/agriculture12020231, 2022. 
Altdorff, D., von Hebel, C., Borchard, N., van der Kruk, J., Bogena, H. R., Vereecken, H., and Huisman, J. A.: Potential of catchment-wide soil water content prediction using electromagnetic induction in a forest ecosystem, Environ. Earth Sci., 76, 1–11, https://doi.org/10.1007/s12665-016-6361-3, 2017. 
Download
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Share