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Abstract. Accurate delineation of management zones is essential for optimizing resource use and improving
yield in precision agriculture. Electromagnetic induction (EMI) provides a rapid, non-invasive method to map
soil variability, while the Normalized Difference Vegetation Index (NDVI) obtained with remote sensing cap-
tures aboveground crop dynamics. Integrating these datasets may enhance management zone delineation but
presents challenges in data harmonization and analysis. This study presents a workflow combining unsupervised
classification (clustering) and statistical validation to delineate management zones using EMI and NDVI data in
a single 70 ha field of the patchCROP experiment in Tempelberg, Germany. Three datasets were investigated:
(1) EMI maps, (2) NDVI maps, and (3) a combined EMI–NDVI dataset. Historical yield data and soil samples
were used to refine the clusters through statistical analysis. The results demonstrate that four EMI-based zones
effectively captured subsurface soil heterogeneity, while three NDVI-based zones better represented yield vari-
ability. A combination of EMI and NDVI data resulted in three zones that provided a balanced representation of
both subsurface and aboveground variability. The final EMI–NDVI-derived map demonstrates the potential of
integrating multi-source datasets for field management. It provides actionable insights for precision agriculture,
including optimized fertilization, irrigation, and targeted interventions, while also serving as a valuable resource
for environmental modeling and soil surveying.
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1 Introduction

Reliable and accurate agricultural management zones that
capture within-field variability affecting crop development
can play a pivotal role in sustainable agriculture. Manage-
ment zones can be used in the context of precision agri-
culture to optimize farming practices, increase yields, and
reduce the use of available resources (Gebbers and Adam-
chuk, 2010; Janrao et al., 2019). This is not only valuable
for profit maximization (Adhikari et al., 2022), but is also
vital to meet future climate change and food security chal-
lenges (Antle et al., 2017; Chartzoulakis and Bertaki, 2015;
Bongiovanni and Lowenberg-Deboer, 2004), such as Goal 2
(Zero Hunger) and Goal 15 (Life on Land) of the United
Nations Sustainable Development Goals (SDGs) (Hou et al.,
2020; UN, 2021). Generally, management zones aim to con-
sider the impact of various factors that can influence crop
productivity and result in yield gaps, a key one being soil
heterogeneity and health (Licker et al., 2010). Soil systems
can be relatively static in time (Arshad et al., 1997) and
are fundamental due to their multifunctional role and impact
on ecosystem services (Hamidov et al., 2018). Within these
systems, soil properties such as texture, organic matter con-
tent, cation exchange capacity, and bulk density greatly in-
fluence soil moisture dynamics, salinity, nutrient availability,
and other variables affecting crop yield (Kibblewhite et al.,
2008; Dobarco et al., 2021) and are thus a good target for
management zone delineation. However, soil heterogeneity
is not solely responsible for yield losses, and effective man-
agement zones should also incorporate other influencing fac-
tors to provide a comprehensive and holistic management so-
lution.

Traditional methods for soil characterization to support
management zone delineation (Brogi et al., 2021; Geologis-
cher Dienst NRW, 2025) generally rely on laborious in situ
sampling and laboratory analysis, which may fail in captur-
ing soil variability with sufficient detail (Kuang et al., 2012).
In recent years, advances in proximal soil sensing, defined
as methods that utilize sensors positioned near or in direct
contact with the soil (Adamchuk et al., 2017), have provided
valid alternatives to direct soil sampling (Pradipta et al.,
2022). In particular, non-invasive agro-geophysical methods
such as electromagnetic induction (EMI) have proven suit-
able for management zone delineation due to their high mo-
bility (Binley et al., 2015; Garré et al., 2021) and the fact that
the measured apparent electrical conductivity (ECa) of the
soil is related to key soil properties, such as soil salinity, soil
water content, texture, compaction, and organic matter con-
tent (Corwin and Lesch, 2003; Abdu et al., 2008; Altdorff
et al., 2017; Jadoon et al., 2015; Robinet et al., 2018; Zhu
et al., 2010; von Hebel et al., 2018). Modern EMI devices are
able to efficiently provide soil information for multiple depth
ranges thanks to multi-coil instrumentation (Rudolph et al.,
2015; von Hebel et al., 2014; Blanchy et al., 2024; Lueck and
Ruehlmann, 2013; Corwin and Scudiero, 2019), especially

when supported by a moderate amount of ground-truth data
(Brogi et al., 2019). However, the use of EMI alone can show
limitations in capturing local aspects that have an impact on
yield but that are not strongly influenced by soil variabil-
ity. For instance, pest and weed infestations can drastically
reduce crop productivity, and these factors may not corre-
late directly with soil variability (Becker et al., 2022; López-
Granados, 2011). Additionally, climate change impacts, such
as altered precipitation patterns and temperature fluctuations,
can affect crop health and yield in ways that EMI cannot
detect (Pradipta et al., 2022). Finally, it is also important to
stress that accurate EMI mapping generally requires optimal
conditions like bare soil, favorable weather, and the absence
of confounding factors (James et al., 2003).

An alternative to proximal soil sensing for the delin-
eation of management zones is the use of remote sensing
approaches, which enables efficient large-scale data acquisi-
tion without the need for direct physical access to the inves-
tigated area (Weiss et al., 2020). By using sensors mounted
on satellites, airplanes, or drones, remote sensing monitors
parameters related to crop health and development (Jin et al.,
2019; Liaghat and Balasundram, 2010). For example, vege-
tation indices such as the Normalized Difference Vegetation
Index (NDVI) are generally well-established, simple, and ef-
fective proxies for crop health (Carfagna and Gallego, 2005;
Stamford et al., 2023; Wang et al., 2020; Xue and Su, 2017).
High-resolution (< 5 m) data products from satellites are be-
ing increasingly used in precision agriculture (Mohammed
et al., 2020; Trivedi et al., 2023). Also, remote sensing plat-
forms like PlanetScope, Sentinel-2, and Landsat offer fre-
quent revisit times, thus providing sufficient temporal reso-
lution to track changes in plant health throughout the grow-
ing season (Hunt et al., 2019; Skakun et al., 2021). Despite
these advantages, remote sensing data are affected by cloud
cover or other suboptimal meteorological conditions (Wil-
helm et al., 2000) and primarily capture aboveground infor-
mation on plant health and biomass; they can thus struggle to
provide direct information about the interplay between soil
conditions and crop development.

Several studies have explored a combination of EMI and
remote sensing methods for the delineation of management
zones. For example, von Hebel et al. (2021) combined EMI
and drone-based NDVI measurements and found that EMI-
based management zones offered consistent insights into soil
texture and water content, while the added value of NDVI
strongly depended on the timing of the drone measurements
and thus on the specific crop conditions. In a similar study,
Esteves et al. (2022) showed that integration of EMI and
NDVI from Sentinel-2 (10 m resolution) effectively provided
zones with distinct soil and crop nutrient characteristics.
However, they reported a negative relationship between ECa
and NDVI due to local magnesium imbalances and vegeta-
tion stress. In addition to EMI and remote sensing, historical
yield maps can help in identifying yield trends across years
and different cultivated crops. For example, Ali et al. (2022)
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integrated 7 years of yield data with Landsat-based NDVI
and soil sampling over a 9 ha field but ultimately could obtain
only a limited subdivision of the field into two management
zones with a relatively low resolution of 30 m. Overall, previ-
ous studies have made important contributions towards inte-
grating EMI and NDVI data for improved management zone
delineation (Corwin and Scudiero, 2019; Ciampalini et al.,
2015). However, the results can be influenced by data resolu-
tion and acquisition timing as well as by local management
and soil–plant interactions, with some studies suggesting that
EMI alone can offer sufficient insights into soil patterns (Es-
teves et al., 2022; von Hebel et al., 2021). Nonetheless, the
added value of NDVI holds unexplored potential due to the
higher spatial and temporal resolution of recent satellite plat-
forms (Breunig et al., 2020; Georgi et al., 2018).

Machine learning clustering algorithms have been widely
used to delineate management zones from spatially dis-
tributed datasets such as EMI or NDVI (Saifuzzaman et al.,
2019; Castrignanò et al., 2018; Chlingaryan et al., 2018;
Zhang and Wang, 2023). For example, Wang et al. (2021)
used supervised random forest classification for combining
EMI data with environmental covariates to predict soil salin-
ity. Similarly, Brogi et al. (2019) employed supervised learn-
ing to combine EMI with soil sampling and generate high-
resolution soil maps for a 1 km2 agricultural area. However,
the results of supervised classification approaches may de-
pend on the interpreter and often need expert knowledge as
well as extensive ground-truth data for training (Liakos et al.,
2018; Usama et al., 2019). K-means and ISODATA cluster-
ing are unsupervised methods used to delineate management
zones (Bijeesh and Narasimhamurthy, 2020; Ylagan et al.,
2022; Tagarakis et al., 2013), but these approaches can be
sensitive to initial conditions and struggle to handle non-
linear relationships in datasets (Geng et al., 2020; Li et al.,
2018). Thus, more advanced methods such as self-organizing
maps (SOMs) have been successfully used to analyze com-
plicated data structures provided by proximal and remote
sensing data (Romero-Ruiz et al., 2024; Moshou et al., 2006;
Taşdemir et al., 2012). A remaining key challenge of un-
supervised methods is the definition of the optimal num-
ber of clusters. Widely used approaches such as the elbow
and silhouette method (Saputra et al., 2020) often struggle
when applied to nonlinearly distributed or spatially com-
plex datasets (Schubert, 2023) and may thus require sub-
jective judgment or expert knowledge (Liang et al., 2012).
To address this challenge, the multi-cluster average standard
deviation (MCASD) approach that relies on an evaluation
of the intra-cluster variability has recently been introduced
(O’Leary et al., 2023) and successfully applied to the inte-
gration of complex spatial datasets (O’Leary et al., 2024).
However, many of these novel approaches have seen lim-
ited applications in agricultural contexts (Khan et al., 2021),
and the added value of delineating management zones from
datasets of different origin remains unaddressed (Koganti
et al., 2024).

Figure 1. Overview of the patchCROP study area in Tempelberg,
Brandenburg (ESRI, 2020). The yellow border indicates the bound-
ary of the investigated field, whereas the green boxes indicate the
30 patches of the patchCROP landscape experiment. The inset map
shows the location of the study site within Germany; the red dot
indicates the site location in Tempelberg.

Within this context, this study expands on previous re-
search by combining high-resolution multi-coil EMI and
satellite-based NDVI data within a harmonized framework,
applying consistent normalization, and validating the result-
ing zones with multiyear yield data and dense soil sampling.
The potential of delineating management zones by integrat-
ing EMI and NDVI is explored for a single 70 ha agricul-
tural field near Berlin, Germany. Management zones were
derived using three data sources: (i) ECa maps from nine
different depths of investigation (DOI) obtained with EMI
between 2022 and 2024, (ii) seven NDVI images obtained
from PlanetScope in 2019, and (iii) a combination of EMI
and NDVI data. Management zones were delineated using
SOMs, while the optimal number of clusters was obtained
with the MCASD method. In a following step, the num-
ber of clusters was refined using post hoc analysis using a
large dataset of soil samples and yield maps at 10 m resolu-
tion from 2011 to 2019. Finally, to what extent management
zones derived from EMI, NDVI, or a combination of both
represent soil characteristics and yield patterns was evaluated
using visual inspection and statistical analysis.
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2 Materials and methods

2.1 Study area

The study site is part of the patchCROP (patchCROP, 2020)
landscape laboratory of the Leibniz Centre for Agricultural
Landscape Research (ZALF) near Tempelberg, Branden-
burg, Germany (52.4426° N, 14.1607° E; altitude 68 m). It
is located in the transition zone between humid oceanic and
dry continental climate. The long-term average temperature
from 1980 to 2020 was 8.3 °C and the mean annual precipi-
tation for the same period was 533 mm (DWD, 2021; Koch
et al., 2023). The investigated field has an area of approx-
imately 70 ha (Fig. 1). Until 2020, this field was managed
as a single unit. In March 2020, the patchCROP experiment
was established to study the impact of landscape diversifica-
tion through the use of smaller field sizes, site-specific crop
rotations, different field management practices, and the use
of new technologies including proximal soil sensing, remote
sensing, and robotic technologies (Grahmann et al., 2021).
For this, 30 patches of 72 m× 72 m were established within
the investigated field (Donat et al., 2022) (Fig. 1). In terms
of geomorphology, the site is described as a young moraine
landscape shaped by past glaciations and characterized by
an undulating relief and heterogeneous soil characteristics
(Koch et al., 2023; Öttl et al., 2021; Meyer et al., 2019). The
topsoil is predominantly sandy, but a more clayey layer is
present at different depths in the subsoil (Hernández-Ochoa
et al., 2024).

2.2 Data collection and processing

The overall methodology of this study is summarized in
Fig. 2. This flowchart highlights the role of EMI and NDVI
datasets in the clustering process and the use of multiyear
yield maps and soil samples for validation and refinement of
the resulting management zones. More details are provided
in the subsequent sections.

2.2.1 Electromagnetic induction (EMI) measurements

Frequency-domain EMI devices generate a fixed-frequency
alternating current in a transmitter coil, which produces a
primary magnetic field. This primary magnetic field induces
eddy currents in the soil, thus generating a secondary mag-
netic field. The primary and secondary magnetic fields are
sensed by a receiver coil. The quadrature component of the
ratio between the primary and secondary magnetic fields is
directly proportional to the apparent electrical conductivity
(ECa) of the ground (Keller and Frischknecht, 1966; Ward
and Hohmann, 1988; McNeill, 1980). The measured ECa
is strongly affected by soil properties such as salinity, wa-
ter content, clay content (and thus texture), compaction, and
to a lesser degree organic matter content and cation exchange
capacity (Corwin and Lesch, 2005; Robinet et al., 2018). The

Figure 2. Workflow diagram showing the integration of proximal
(EMI) and remote sensing (NDVI) data for unsupervised clustering
using MCASD and SOMs. Yield and soil datasets were used for
post hoc validation and refinement of management zones.

depth sensitivity of EMI measurements depends on coil spac-
ing and coil orientation. Larger spacing results in increased
depths of investigation (DOI), while the coil orientation in-
fluences the sensitivity to the shallow or deep subsurface
(Lavoué et al., 2010; Simpson et al., 2009).

In this study, two EMI devices were used simultaneously:
a CMD Mini Explorer (GF Instruments, Brno, Czech Re-
public) with three receiver coils oriented in a vertical copla-
nar configuration (VCP) and a custom-made CMD Mini Ex-
plorer Special Edition equipped with six receiver coils ori-
ented in a horizontal coplanar configuration (HCP). The VCP
configuration is most sensitive to the shallow subsurface,
with decreasing sensitivity as depth increases. In contrast, the
HCP configuration is less sensitive to the shallow subsurface,
with sensitivity peaking at a depth of approximately 0.4 times
the coil separation (McNeill, 1980). As a rule of thumb, the
DOI for the VCP setup is approximately 0.75 times the coil
separation. For the HCP setup, the DOI is approximately
1.5 times the coil separation. For the setup used here, the
resulting DOI ranges from 0–24 to 0–270 cm. Details of the
EMI setup are summarized in Table 1.
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Table 1. Details of the two EMI devices with coil number, orientation, separation, DOI, and frequency.

EMI device Receivers Orientation Separation (cm) DOI (cm) Frequency (Hz)

Mini Explorer 3 VCP 32 0–24 30
VCP 71 0–53
VCP 118 0–89

Mini Explorer 6 HCP 35 0–52 25.17
Special Edition HCP 50 0–75

HCP 71 0–108
HCP 97 0–146
HCP 135 0–203
HCP 180 0–270

Due to the ongoing patchCROP experiment with small
patches using variable cropping systems, it was not possi-
ble to cover the entire field in a single EMI campaign. EMI
data were thus collected in four campaigns conducted be-
tween August 2022 and October 2024. During each cam-
paign, the EMI devices were placed in sleds and warmed up
for approximately 30 min before use. The sleds were then
pulled by an all-terrain vehicle (ATV) at a speed of approxi-
mately 6 to 8 kmh−1. Data collection occurred at a frequency
of 0.2 s, resulting in an inline spatial resolution of 0.25 to
0.50 m. A track spacing of ∼ 2.5 m was used within the ex-
perimental patches and a track spacing between 5 and 45 m
(typically well below 10 m) was used in the rest of the field.
A Real Time eXtended (RTX) center point differential global
positioning system (DGPS) (Trimble Inc., Sunnyvale, CA,
United States) was used to record the position of the sleds
with centimeter accuracy. For more information about the
setup for EMI measurements, the reader is referred to von
Hebel et al. (2018).

The measured ECa values were filtered using a Python-
based method similar to the approach of von Hebel et al.,
(2014), which has been successfully applied in several stud-
ies (Brogi et al., 2019; von Hebel et al., 2021; Kaufmann
et al., 2020; Schmäck et al., 2022). The first filter removes
values that are deemed too high or too low based on user-
defined thresholds (−50 and 50 mSm−1 in this study). A
second filter divides the data into a user-defined number of
bins (20 in this study) and removes the data from bins with a
low fraction of measurements (< 1 % in this study). In a third
step, a spatial filter is used to identify and discard ECa val-
ues that deviate from adjacent positions by more than a given
amount (1 mSm−1 in this study) to avoid unrealistically high
lateral ECa variations. After the application of these three
filters, ∼ 5 % of the measured ECa values were removed, al-
though this value varied between measurement campaigns.

Given that the EMI data were acquired in four campaigns
with different environmental conditions (e.g., soil water con-
tent, soil temperature), each EMI acquisition campaign was
separately normalized by using a standardized z-score nor-

malization method as used by Rudolph et al. (2015):

ECaz,i = (ECai −µi)/σi, (1)

where ECaz,i is the normalized ECa value for the ith cam-
paign, ECai is the measured ECa value for the ith campaign,
µi is the mean ECa value of the ith campaign, and σi is stan-
dard deviation of ECa values for the ith campaign. Following
normalization, manual cleaning was conducted in ArcMap
v10.8.2 (ESRI, Redlands CA, USA) to remove points typi-
cally occurring at the start and end of each campaign or in
short periods where the EMI system was left stationary. In
the final step, the normalized data for each of the nine coil
configurations were interpolated to a regular 3 m by 3 m grid
using ordinary kriging with a Gaussian semivariogram and
merged into a single multidimensional raster mosaic dataset.

2.2.2 Remotely sensed NDVI data

High-resolution PlanetScope Level 3B satellite images from
the 2019 growing season (winter rye) were used to obtain
NDVI maps. Between 1 January 2019 and 31 July 2019,
48 cloud-free images were available. Seven of these im-
ages were selected to represent crop development during
the growing season. PlanetScope image products are pre-
processed and have already undergone radiometric and at-
mospheric corrections. No additional pre-processing was re-
quired. The PlanetScope sensor captures spectral informa-
tion in four bands: blue (B1), green (B2), red (B3), and near-
infrared (NIR – B4) with a spatial resolution of 3 m. The Nor-
malized Difference Vegetation Index (NDVI) was calculated
using the reflectance in the red (R) and near-infrared bands
(NIR).

NDVI= (NIR−R)/(NIR+R) (2)

The resulting NDVI values range from−1 to 1, where val-
ues close to 1 indicate healthy vegetation, and values close
to zero or negative values generally represent non-vegetated
surfaces; senescent, stressed, or unhealthy plants or dry vege-
tation; or features such as clouds and water that exhibit lower
NIR reflectance (Sishodia et al., 2020).
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2.2.3 Yield data

Georeferenced yield maps of nine growing seasons (2011–
2019) were used. These yield maps were generated us-
ing a yield monitoring system (CLAAS Quantimeter,
Hersewinkel, Germany) mounted on two different combine
harvesters. From 2011 to 2013, data were collected using a
CLAAS 580. From 2014 onwards, a CLAAS Lexion 770 TT
was used. In the 2011–2019 period, the field was cultivated
with either winter rye (2011, 2013, 2014, 2016, 2017, and
2019) or rapeseed (2012, 2015, and 2018). For additional de-
tails on data processing and yield map generation, readers are
referred to Donat et al. (2022). The original yield data from
Donat et al. (2022) were available as georeferenced yield data
points with a spacing of ∼ 10 m. These points were interpo-
lated to a regular grid with 10 m resolution using ordinary
kriging.

2.2.4 Soil sampling and data on soil characteristics

Extensive soil sampling campaigns were conducted between
2020 and 2024, focusing on the experimental patches within
the 70 ha field. At 160 locations, soil samples up to 100 cm
depth were obtained using a Pürckhauer soil auger with an
18 mm inner diameter. The soil properties analyzed in this
study included the depth of soil texture transition, defined as
the depth (in cm) at which the sandy top layer ends (EOS
(end of sandy layer) in the following), as well as the soil tex-
ture (percentage of sand, silt, and clay) of the top sandy layer
and the layer below. Soil texture was determined by using
the wet-sieving and sedimentation method (DIN ISO, 2002).
The particle size distribution was defined according to the
IUSS Working Group 150 WRB guidelines (IUSS Working
Group, 2015). When multiple subsamples for a single layer
were available at a given location, weighted averages of the
sand, silt, and clay fraction for the whole layer were obtained
using the thickness of each subsample.

2.3 Clustering for delineation of management zones

Three different data combinations were created and inves-
tigated: (a) EMI maps, (b) time series of NDVI maps, and
(c) a combination of the EMI maps and NDVI maps. Be-
fore clustering, a standard pre-processing step of normaliza-
tion was applied to each dataset to ensure that variables with
different ranges and units contribute equally to the classifi-
cation process. The choice of normalization method can be
particularly important when combining datasets with differ-
ent scales, such as EMI and NDVI, to prevent dominance of
one dataset over the other and to maintain the integrity of the
input features. In this study, a min–max scaling was applied,
where all values were rescaled to a standard range between 0
and 1 (Patro and Sahu, 2015). For EMI, a single normaliza-
tion was applied to the nine ECaz maps. In this case, the
min–max normalization used the minimum (ECaz min) and

maximum value (ECaz max) from all nine maps:

ECa′z =
ECaz−ECaz min

ECaz max−ECaz min
, (3)

where ECaz is the original value, and ECa′z is the normalized
value. For NDVI, each of the seven NDVI maps was normal-
ized independently:

NDVI′i =
NDVIi −NDVIi,min

NDVIi,max−NDVIi,min
, (4)

where NDVI′i is the normalized value for the ith map,
NDVIi is the original value of NDVI of the ith map, and
NDVIi,min and NDVIi,max are the minimum and maximum
values of the ith NDVI map. This difference in normalization
was necessary to preserve the depth-dependent structure of
EMI data, as ECa represents a bulk measurement where each
reading is influenced by adjacent depths. In contrast, NDVI
measurements are independent and acquired at different time
points and thus reflect temporal variations in vegetation dy-
namics.

In this study, a self-organizing map (SOM), an unsuper-
vised machine learning classification technique, was used for
clustering (Kohonen, 2013). SOM is a centroid-based clus-
tering technique, similar in some respects to K-means clus-
tering (Celebi et al., 2013). While K-means clustering as-
signs each data point to a cluster based on the minimum
distance to the cluster centroid in the data space, SOM uti-
lizes an artificial neural network to organize and visualize
high-dimensional data (Valentine and Kalnins, 2016). The
key distinction lies in how SOM projects the data onto a two-
dimensional grid while preserving the topological relation-
ships of the input data. Each data vector in SOM is assigned
to a numerical cluster, where the cluster center is represen-
tative of all the data points associated with it. These cluster
centers, which have dimensions similar to the input data vec-
tors, adjust iteratively during the training process to better
represent the underlying data distribution. This approach al-
lows SOM to effectively map complex data patterns while
maintaining the spatial relationships between clusters.

The multi-cluster average standard deviation (MCASD)
approach was used to determine the optimal number of clus-
ters for SOM. This method evaluates the stability of the clus-
ter centers in the data space over multiple clustering attempts
as the number of clusters increases. This metric assumes that
an appropriate number of clusters for a dataset is any at which
the cluster centers do not vary significantly when the cluster-
ing algorithm is run multiple times. In this study, MCASD
analysis was tested with a maximum number of 20 clusters
with 100 SOM clustering runs for each number of clusters to
calculate the MCASD stability metric. The number of clus-
tering runs was determined during preliminary testing, where
it was observed that most datasets stabilized in terms of vari-
ability between 70 and 80 iterations. To ensure consistency
and reproducibility, we adopted 100 runs per cluster number.
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Upon completion of MCASD analysis, the highest number of
clusters with a low MCASD metric was selected, as this rep-
resents the maximum resolution of the spatial variability that
can be obtained through clustering (O’Leary et al., 2023).
This clustering process was performed in MATLAB v2023a
(MathWorks, Natick, Massachusetts, USA).

2.3.1 Statistical analysis

To assess the differences between clusters derived from the
three datasets, a one-way analysis of variance (ANOVA)
was conducted in SPSS (IBM, Chicago, IL, United States).
ANOVA was used to determine whether there were signifi-
cant differences between clusters in terms of soil properties
or yield using a significance threshold of p< 0.05. Follow-
ing the ANOVA, a Tukey’s HSD (honestly significant differ-
ence) test was used as a post hoc analysis to determine which
of the clusters were significantly different. In this step, the
depth of the sandy layer, the texture of the overlying layer,
the texture of the layer below, and the yield data were used.
Thus, this step is complementary to the previous cluster se-
lection step with MCASD, which did not consider soil and
yield data. Clusters that did not exhibit significant differences
were merged during a reclassification step, refining the clus-
tering results to ensure that each final cluster was distinct and
statistically meaningful in terms of both the input datasets
and soil properties and yield. The latter was confirmed using
two-tailed t tests between matching layers of adjacent soil
classes in the reclassified map.

3 Results and discussion

3.1 ECaz, NDVI, and yield maps

The ECaz, NDVI, and yield maps highlight unique aspects
of field heterogeneity and offer insights into subsurface soil
properties, aboveground crop performance, and their com-
bined effects on productivity. In the following, these input
datasets for management zone delineation are briefly intro-
duced.

3.1.1 EMI maps

Nine ECa maps with 3 m resolution were obtained from the
interpolation of the nine coil configurations recorded during
the EMI measurements. The results for one coil configura-
tion (HCP 050 cm) are exemplarily shown in (Fig. 3) before
and after normalization. The study area was measured under
varying conditions in terms of soil temperature, soil mois-
ture, and effect of agricultural management. This resulted in
differences of average ECa and spatial patterns (Fig. 3a). Al-
though it is well known that temperature affects measured
ECa (Pedrera-Parrilla et al., 2016; Vogel et al., 2019), it was
not possible to perform a comprehensive temperature correc-
tion in this study due to the lack of sufficient soil tempera-

ture data. Moreover, it has been shown that temperature cor-
rection has limitations compared to normalization methods
when the dataset is composed of various depths of investi-
gation and is affected by multiple agricultural management
practices (Brogi et al., 2019; Rudolph et al., 2015). Thus, z-
score normalization was applied for each measurement cam-
paign to reduce the differences between data measured on
different days. Figure 3b shows the normalized EMI map
for the same coil configuration as shown in Fig. 3a. The
normalization successfully harmonized the data, minimiz-
ing the influence of varying soil moisture and temperature
during acquisition, resulting in more consistent spatial pat-
terns that better represent subsurface soil properties. How-
ever, some localized artifacts in the normalized maps still
persist. For example, areas near the field boundaries or ex-
perimental patches exhibit subtle inconsistencies that may be
influenced by edge effects or localized disturbances. Despite
these minor limitations, the normalized ECa maps provide a
robust foundation for further analysis and management zone
delineation.

Figure 4 shows the nine normalized ECaz maps for the
VCP and HCP configurations. These maps display hetero-
geneous patterns of ECa, primarily attributed to variations
in soil characteristics in space and with depth. A prominent
feature is the elongated channel extending from the north-
east to the southwest of the field, which represents areas
with lower ECaz values. This feature is associated with sandy
soils that generally hold less water and nutrients, indicating
a coarse-textured zone with lower electrical conductivity. In
contrast, the northwest and southeast regions of the field ex-
hibit medium to high ECaz values, which may reflect areas
of higher moisture content and finer soil particles, such as
loamy textures. Additionally, in the northeastern part of the
field, a more heterogeneous area with short-scale variations
can be observed where the ECaz values vary considerably
between the nine maps. For the shallow VCP configurations,
this area shows low ECaz values, which are indicative of
sandy soils or dry conditions near the surface. For the deeper
HCP configurations, this same area shows higher ECaz val-
ues, suggesting an increase in soil moisture or finer soil tex-
ture at greater depths. This pattern highlights the layered soil
heterogeneity in this region, with subsurface properties dif-
fering significantly from the surface. Overall, the EMI data
reveal a high degree of spatial variability and provide valu-
able insights into subsurface soil variability, which is critical
for precision agricultural management.

3.1.2 NDVI maps

All available PlanetScope satellite images for the growing
season 2019 (winter rye) were visually evaluated to assess
their usability. Before April 2019, no meaningful patterns in
NDVI were observed due to the relatively short height (10 to
20 cm) and low biomass of winter rye and the lack of water-
or nutrient-induced stress in this early growth stage. More-
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Figure 3. Comparison of apparent electrical conductivity (ECa) maps before and after z-score normalization for the HCP 50 cm configuration
with (a) the non-normalized ECa map, where the zoomed-in section highlights the influence of varying environmental conditions such as
soil moisture and temperature, leading to inconsistent patterns, and (b) the z-score-normalized ECa map, which minimizes the influence of
these external factors.

over, images from July 2019 were excluded from the analy-
sis as the crop had reached maturity, and no further growth or
development was evident. By this time, the physiological ac-
tivity of the plants had ceased, and harvesting was completed
on 4 August 2019.

After this initial analysis, seven NDVI images spanning
the period between April and June, hence from flowering to
maturity, were selected for further analysis (Fig. 5). The de-
scriptive statistics of the NDVI data are given in Table 2 and
show a high degree of temporal variation. Following crop
development during the growing season, the mean NDVI
peaked on 30 April 2019 (221 d after sowing). Afterwards,
NDVI values gradually declined as the crop approached ma-
turity, which is consistent with physiological changes during
growth of winter rye (Hatfield and Prueger, 2010). Figure 5
illustrates the temporal development of the spatial variation
of NDVI, highlighting the spatial heterogeneity of crop per-
formance within the field (especially Fig. 5d–g), where areas
of lower NDVI are associated with poorer crop performance
and areas of higher NDVI indicate healthier crops. Gener-
ally, the key patterns in crop performance are in good agree-
ment with the patterns observed in the EMI maps. Areas with
persistently low NDVI values generally correspond to areas
with low ECaz, and areas with high NDVI values mostly cor-
respond to areas with high ECaz. However, differences be-
tween patterns in NDVI and EMI can also be found. This is
expected given that the dynamic changes in crop vigor and
vegetation health shown by NDVI are not solely related to
subsurface soil conditions captured by EMI. For example,
specific areas with low NDVI values were observed in re-
gions of medium to high ECaz, possibly reflecting localized
crop stress due to non-soil-related factors such as disease,
waterlogging, or nutrient imbalances.

3.1.3 Yield maps

Figure 6 presents 9 years (2011–2019) of yield maps inter-
polated at a 10 m resolution to represent spatial variability
across the field. The maps illustrate distinct patterns of high-
and low-productivity areas. Yield variability is consistent
across multiple years, although variations in measured yield
can be observed between years. The years 2012 and 2013
show lower-quality yield data due to incomplete datasets
(Donat et al., 2022) caused by equipment issues and envi-
ronmental challenges during data collection. Despite these
limitations, they were retained for spatial context as they
still exhibited consistent patterns with other years, and the
maps successfully captured the general spatial yield trends
and heterogeneity of the field. These years were not weighted
differently during validation, and the potential influence of
this lack of weighting was mitigated by evaluating multi-
year trends and conducting year-by-year comparisons (see
Sect. 3.4). The high- and low-yield zones align with known
intrinsic field characteristics, such as soil texture, moisture
retention, and nutrient availability (Grahmann et al., 2024).
These yield patterns will serve as validation for comparing
the management zones derived from EMI and NDVI data, as
both datasets aim to explain the variability in productivity.

3.2 Clustering of EMI and NDVI

The MCASD analysis for the three datasets provided a robust
method to determine the optimal number of clusters (Fig. 7).
The analysis suggested a maximum of five clusters for the
EMI data (Fig. 7b). These clusters reflect differences in sub-
surface properties such as soil texture, moisture, and com-
paction. Cluster 1 corresponds to areas with the highest ECaz
values, which gradually decrease with each subsequent clus-
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Figure 4. Normalized apparent electrical conductivity (ECaz) maps derived from electromagnetic induction (EMI) measurements using
multiple coil separations in vertical coplanar (VCP) and horizontal coplanar (HCP) configurations (see Table 1 for more details). These maps
highlight the spatial variability of subsurface soil properties, with higher ECaz values (red) indicating areas of higher moisture retention or
finer soil textures and lower ECaz values (blue) corresponding to sandy soils with lower conductivity.

Table 2. Summary of remotely sensed NDVI imagery and corresponding dates after sowing.

Date of acquisition Days after sowing Mean NDVI Max NDVI Min NDVI

5 Apr 2019 196 0.67 0.78 0.42
16 Apr 2019 207 0.72 0.85 0.46
30 Apr 2019 221 0.76 0.88 0.38
11 May 2019 232 0.61 0.71 0.34
30 May 2019 251 0.58 0.66 0.41
12 Jun 2019 263 0.49 0.65 0.31
24 Jun 2019 276 0.49 0.71 0.30
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Figure 5. Seven NDVI maps derived from PlanetScope satellite imagery representing the temporal variability in vegetation development
during the 2019 growing season. The images, dated from 5 April to 24 June 2019, capture critical crop growth stages, including flowering
and maturity.

ter. Cluster 5 represents the lowest ECaz values. For NDVI
(Fig. 7e), a maximum of four clusters was selected. While
a five-cluster solution was initially identified as viable for
NDVI, increasing the number of clusters beyond four did not
significantly reduce variability. This made the four-cluster
solution more practical and efficient for representing spatial
variability in the NDVI data. Cluster 1 identifies areas with
relatively high NDVI values, indicative of healthy, dense veg-
etation and higher crop performance. NDVI values progres-
sively decrease with higher cluster numbers, with cluster 4
showing the lowest values, representing stressed or less pro-
ductive areas. The combined EMI and NDVI dataset resulted
in four clusters (Fig. 7h). Visual inspection suggests that both
the EMI- and NDVI-based patterns are preserved in the com-
bined dataset, likely due to the min–max scaling applied to
standardize each dataset before MCASD analysis (see Ap-
pendix A). Clusters 1 and 2 represent areas with high val-

ues for both ECaz and NDVI, while cluster 4 identifies zones
with low values for both variables, integrating both above-
ground and subsurface variability effectively.

3.3 Post hoc analysis

Starting from the optimal number of clusters identified with
MCASD, a post hoc analysis based on the nine available
yield maps and the point-scale soil samples was conducted.
The aim was to verify that the clusters are statistically sep-
arated not only in terms of the input data (i.e., EMI, NDVI,
or a combination of EMI and NDVI), but also in terms of
yield and soil characteristics (i.e., texture of the first and sec-
ond layers, depth to the second layer). For the EMI-based
clusters, 18 soil sampling locations were within cluster 4 and
only four of these had an EOS layer within 100 cm depth.
The other 14 locations had an EOS layer below the sampling
depth of 100 cm and thus no textural values for the lower
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Figure 6. Nine interpolated yield maps (2011–2019) for the patchCROP field showing spatial variability of crop yield at a 10 m resolution.
The maps illustrate yield distributions for winter rye (2011, 2013, 2014, 2016, 2017, 2019) and rapeseed (2012, 2015, 2018). High-yield areas
(green) and low-yield areas (red) reflect the inherent field heterogeneity. Variability is observed both within and across years, influenced by
crop type, management practices, and environmental conditions. The yield range for each year is provided in decitonnes per hectare (dtha−1).

layer. Thus, the EOS layer depth of cluster 4 was assumed to
be below 100 cm, and the texture of the lower layer was ex-
cluded from further analysis to have a more consistent char-
acterization of the prevailing soil characteristics.

Post hoc analysis indicated that not all clusters were sig-
nificantly different from each other in terms of yield or soil
characteristics. Based on the results of the post hoc analysis,
clusters were either left separated when yield or soil charac-
teristics were statistically different (p< 0.05) or grouped to-
gether when no statistical separation was identified. For ex-
ample, clusters 1, 2, and 3 of the EMI-based classification
had at least one significant difference in texture, EOS layer,
or yield. On the contrary, clusters 4 and 5 did not show sta-

tistically significant differences for any of the investigated
properties. Thus, clusters 4 and 5 were merged together and
the resulting EMI-based cluster map had four clusters with
statistically significant separation of input data (i.e., EMI),
yield, and soil characteristics. A more detailed breakdown of
this post hoc analysis and the resulting merging decisions is
provided in Appendix B.

After this post hoc analysis, the resulting refined maps
(Fig. 7c, f, and i) have clusters that are statistically sepa-
rated in terms of the input dataset (i.e., EMI and NDVI) but
also in terms of the target variables, which are yield and
soil characteristics. Therefore, they are referred to as man-
agement zones instead of clusters from this point onwards.
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Figure 7. Clustering results for the patchCROP experimental site. (a) MCASD analysis showing appropriate cluster numbers for EMI
data. (b) Spatial distribution of original EMI clusters (ESRI, 2020). (c) Spatial distribution of refined EMI clusters after post hoc analysis.
(d) MCASD analysis for NDVI data. (e) Spatial distribution of original NDVI clusters. (f) Spatial distribution of refined NDVI clusters after
post hoc analysis. (g) MCASD analysis for the combined (EMI+NDVI) dataset. (h) Spatial distribution of the original clusters based on the
EMI and NDVI data. (i) Spatial distribution of the refined clusters for the combined dataset after post hoc analysis.

These management zone maps appear to be a simplification
of the original clustered maps (Fig. 7b, e, and h), but they
provide a more holistic understanding of the field by inte-
grating belowground (EMI) and aboveground (NDVI) infor-
mation with yield and soil data.

3.4 Assessment of management zones derived from
different datasets

For each management zone of the maps derived from EMI,
NDVI, and a combination of EMI–NDVI, Table 3 shows the
average yield between 2011 and 2019 and average soil char-
acteristics, specifically the depth of the soil texture transi-
tion (EOS) and the textural fractions (percentages of sand,
silt, and clay) of two layers up to 100 cm depth. The average
yields of Table 3 vary considerably between different years
and follow a general trend of decreasing yields with increas-

ing cluster number. Thus, yields decrease with decreasing
ECaz and NDVI.

Figure 8 shows the variation in rye yield (dtha−1) for the
management zones derived from different data sources for
the year 2019, which is considered representative for most
previous years while also allowing a direct comparison with
the NDVI data for the 2019 growing season. For the EMI-
based management zones (Fig. 8a), the yield distributions for
zones 1–3 are relatively similar, with overlapping interquar-
tile ranges and medians. This indicates that the EMI-based
management zones are more reflective of subsurface soil
properties than yield variability for this particular field. How-
ever, zone 4 showed significantly lower yields, correspond-
ing to sandy soils with poor moisture retention (see Table 3).
The NDVI-based management zones (Fig. 8b) demonstrate
stronger differentiation in yield distribution and a more con-
sistent decline in yield between zones, reflecting the ability
of NDVI to capture aboveground vegetation vigor and crop
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Table 3. Average values of yield (dtha−1) and soil properties for the management zones (MZs) derived from EMI, NDVI, and a combination
of EMI and NDVI.

EMI NDVI EMI–NDVI

Y
ie

ld

MZs 1 2 3 4 1 2 3 1 2 3
2011 49.5 44.7 46.5 31.7 55.9 41.1 27.5 50.7 33.1 25.7
2012 53.4 53.1 52.6 38 57.9 52.2 34.4 56.2 41.2 32.6
2013 106.3 105.6 106.5 98.1 111.1 104.9 94.49 108.8 99.1 93.4
2014 86.4 83.9 86.3 72.5 95.3 78.5 69.0 89.3 72.5 67.8
2015 55.1 53.7 51.0 28.5 62.9 50.1 22.2 59.1 31.1 20.5
2016 94.0 93.1 90.2 62.3 108.5 85.2 53.4 101 61.4 53.0
2017 78.7 76.0 73.7 47.9 89.4 69.4 41.0 83.3 48.5 39.5
2018 40.3 39.6 38.8 26.9 44.8 37.6 23.7 42.6 29.0 21.9
2019 71.0 69.1 67.2 48.1 80.2 62.5 43.1 74.6 47.7 42.2

So
il

ch
ar

ac
te

ri
st

ic
s Layer 1 (above EOS) Sand % 68.2 72.4 78.1 86.2 68.6 79.5 87.2 69.8 88.4 85.2

Silt % 23.3 20.0 16.1 9.6 23.0 15.2 8.9 22.2 8.1 10.4
Clay % 8.5 6.9 5.7 4.1 8.0 5.2 3.8 7.7 3.4 4.3
Depth (cm) 54.0 66.9 73.1 100 62.7 71.0 87.4 63.8 77.0 100

Layer 2 (below EOS) Sand % 58.3 58.0 60.6 NA 58.1 57.8 66.1 58.1 64.9 NA
Silt % 23.0 23.2 21.9 NA 23.1 23.1 19.3 23.1 19.9 NA
Clay % 18.6 18.7 17.5 NA 18.7 19.0 14.5 18.8 15.1 NA

NA: not available.

health. In particular, zone 2 reflects an intermediate yield
zone between zones 1 and 3, showcasing the ability of NDVI
to differentiate changes in crop performance. The manage-
ment zones derived from combining EMI and NDVI (Fig. 8c)
offer narrower interquartile ranges, particularly in zone 2,
compared to NDVI-based management zones. This indicates
that the integration of EMI and NDVI provides a more con-
sistent and stable representation of yield variability, combin-
ing subsurface soil properties with aboveground dynamics.
Although NDVI alone offers slightly more pronounced yield
differentiation, the combined dataset balances both subsur-
face and vegetation-related factors effectively, making it a
robust approach for management zone delineation. Similar
box plots for additional years are provided in Appendix C.

The refined management zones can be associated with a
typical soil profile based on the average soil characteristics
(Fig. 9). The soil profiles show the textural properties of the
first two soil layers and the depth of the interface between
these layers (EOS) up to a depth of 100 cm. In some pro-
files, the EOS layer reaches 100 cm, and thus the textural
properties of the second layer are not available. In the case
of the EMI-based zones (Fig. 9a and b), zone 1 is charac-
terized by generally higher ECaz values and identifies areas
with a substantial average clay content, especially in the sec-
ond soil layer (18.6 %). Moreover, the sandier top layer is
rather shallow and reaches a depth of around 54 cm. Mov-
ing from zone 1 to zone 4, ECaz generally decreases. At the
same time, the depth of the top layer (EOS) becomes deeper
while the clay and silt content of the soil decreases and the
sand content increases. In zone 4, the average clay content up
to 100 cm is 4.1 %, while the sand content is 86.2 %. In the

case of the NDVI-based management zones (Fig. 9c and d),
the three zones appear to be more indicative of crop develop-
ment, which results in typical soil profiles with differences
that seem less pronounced compared to the case of EMI-
based zonation. In this case, NDVI is generally higher in
cluster 1 and lowest in cluster 3. The change in soil char-
acteristics between zones follows a similar trend compared
to that of EMI-based zones. The depth of the interface be-
tween soil layers 1 and 2 increases from 62.7 to 87.4 cm
from zone 1 to 3, while the sand content of both layers also
increases (from 68.6 % to 87.2 % and 58.1 % to 66.1 %, re-
spectively). The management zones derived from the com-
bined EMI–NDVI dataset (Fig. 9e and f) have typical soil
profiles that are similar to those based on NDVI. Also, the
sand, silt, and clay contents of the first soil layer appear to be
rather similar. However, the range of the depth of the inter-
face between soil layers 1 and 2 is higher for the EMI–NDVI
clustered map (63.8 to 100 cm) compared to that of NDVI-
based profiles (62.7 to 87.4 cm). At the same time, the dif-
ference in texture between the second soil layer of clusters 1
and 2 is stronger in the profiles based on a combination of
EMI and NDVI data (see Table 3). These two factors show
that the management zones from EMI and NDVI have a rel-
atively high variation between soils of different management
zones, which is an improvement compared to the case of the
NDVI-based management zones.

In a final step, statistical validation of the management
zones was conducted using pairwise t tests to evaluate the
degree of significant differences in yield and soil properties
across consecutive zones. The results are summarized in Ta-
ble 4. A pairwise t test for neighboring zones derived from
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Table 4. Results of the pairwise t tests for yield and soil properties between management zones derived from EMI, NDVI, and EMI–NDVI.
Bold font indicates significant differences.

EMI NDVI EMI – NDVI

Y
ie

ld

Cluster 1vs2 2vs3 3vs4 1vs2 2vs3 1vs2 2vs3
2011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2012 0.603 0.209 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2013 0.060 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2015 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2016 0.253 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2017 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2018 0.039 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
2019 0.002 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

So
il

Layer 1 (above EOS) Sand % < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Silt % < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Clay % < 0.001 0.014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Depth (cm) 0.004 0.167 NA 0.147 0.004 0.002 NA

Layer 2 (below EOS) Sand % 0.498 0.010 NA 0.558 < 0.001 < 0.001 NA
Silt % 0.636 0.009 NA 0.986 0.004 0.003 NA
Clay % 0.805 0.056 NA 0.627 < 0.001 < 0.001 NA

NA: not available.

EMI indicated that the yield of 2012, 2013, and 2016 was not
significantly different between zone 1 and zone 2 (p= 0.603,
0.060, 0.253), while the yield of 2012 was not significantly
different between zones 2 and 3 (p= 0.209). All other pair-
wise comparisons indicated significant differences in mean
yield. The textural composition of layer 1 was significantly
different between all EMI-derived zones. On the contrary, the
depth of the top layer was not significantly different between
zones 2 and 3 (p= 0.167). In addition, the composition of
soil layer 2 was not significantly different between zones 1
and 2 (p of 0.498 for sand, 0.636 for silt, and 0.805 for clay).

The pairwise t tests between neighboring zones based on
NDVI indicated that differences in yield among all inves-
tigated years were statistically significant. On the contrary,
both the depth of the top layer and the composition of soil
layer 2 were not significantly different between zones 1 and 2
(p of 0.147 for depth, 0.558 for sand, 0.986 for silt, and 0.627
for clay). These results show that EMI-based zones subdi-
vided the area into one additional class and provided a more
comprehensive representation of soil properties up to 100 cm
compared to the NDVI-based zones for the investigated field.
At the same time, the NDVI-based zones offered a better rep-
resentation of yield from 2011 to 2019.

The pairwise t test between neighboring zones based on
the combined EMI–NDVI dataset showed that the three
zones were significantly different for both yield and soil char-
acteristics. This indicates that integrating EMI and NDVI
datasets allows for the delineation of zones that are robust
in representing both yield variability and soil heterogeneity.
Moreover, a visual inspection of the management zone maps
(Fig. 9) shows that both maps based solely on EMI or NDVI

are affected by west–east-oriented patterns due to measure-
ment direction for EMI and tractor lines in NDVI. These fea-
tures are not present in the management zone map that inte-
grates EMI and NDVI, suggesting that it also provides a rep-
resentation of the field that is less affected by external factors.
These results underscore the added value of integrating com-
plementary datasets to capture the full spectrum of variability
within the field, supporting more informed and effective pre-
cision agriculture practices.

3.5 Limitations and perspectives for future work

This study successfully demonstrated the integration of EMI
and NDVI datasets for the delineation of management zones,
but some limitations are still present and should be addressed
in future research. The EMI data were collected during differ-
ent campaigns under varying environmental conditions (e.g.,
soil temperature and moisture) and thus required z-score nor-
malization to minimize variability. While effective in this
study, this approach may not fully account for certain ex-
ternal factors such as the impact of different management
practices in different parts of the field. Similarly, the NDVI
dataset was limited to the 2019 growing season as (a) Plan-
etScope imagery became accessible for this region only in
2019, and (b) the subdivision of the field into differently cul-
tivated patches from 2020 prevented the use of later satellite
products. Nonetheless, the choice of PlanetScope imagery
(3 m resolution) enabled capturing detailed within-field vari-
ability in NDVI, which was particularly important in this
study area due to the spatial heterogeneity introduced by soil
variation. If coarser-resolution imagery such as Sentinel-2
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Figure 8. Box plots illustrating rye yield (dtha−1) for 2019 across
management zones (MZs) derived from (a) EMI, (b) NDVI, and
(c) a combination of EMI and NDVI datasets.

(10 m) were used instead, smaller-scale patterns in crop de-
velopment or soil-related variation would have been less de-
tectable due to spatial averaging. This could have reduced
the effectiveness of the SOM clustering in identifying dis-
tinct management zones. However, for more homogeneous
or large-scale fields, Sentinel-2 data could be a practical and
freely accessible alternative (Kaya et al., 2025). Another lim-
itation of this study is that the 2019 dataset was considered
to be representative of the investigated area. However, a sin-
gle season of NDVI data may not fully capture interannual
variability driven by climatic conditions or crop management
practices (Scudiero et al., 2018). Incorporating NDVI data
from multiple years in future studies could enable a more

comprehensive analysis of temporal dynamics and their im-
pact on management zone delineation to capture yield and
soil variability.

A further limitation of the study design was the distri-
bution of soil sampling locations. Although the 160 sam-
pling points provided valuable insights, leveraging EMI-
based maps to guide targeted soil sampling could improve
spatial representativeness. Additionally, while EMI in this
study had a depth of investigation of up to 270 cm, soil sam-
pling was limited to 100 cm depth, potentially missing soil
heterogeneity that can affect crops.

Regarding data processing, min–max scaling was a suit-
able method in this study due to the relatively smooth and
filtered input data for both EMI and NDVI. However, this
scaling approach is known to be sensitive to outliers and data
range extremes (Pedregosa et al., 2011). For datasets with
greater variability or different pre-processing methods, alter-
native scaling approaches such as standardization or robust
scaling could be more appropriate (de Amorim et al., 2023).
Another factor was the proper application of data normal-
ization prior to clustering, which was essential for obtaining
meaningful results in this study (see Appendix A). Future
studies should assess the impact of different scaling and nor-
malization strategies on clustering outcomes, especially in
settings with noisier or unfiltered sensor data.

In this study, clustering relied on a combination of multi-
cluster average standard deviation (MCASD) to determine
the optimal number of clusters and self-organized maps
(SOMs). While cluster variability was addressed using the
MCASD across 100 SOM runs to a large extent, future stud-
ies may benefit from incorporating additional stability met-
rics such as the adjusted rand index (ARI) or cluster over-
lap measures to better assess classification consistency. The
availability of yield and soil data supported the refinement
of SOM-based clusters, enabling the merging of groups that
were not agronomically distinct. These datasets helped to en-
sure that the final management zones were both data-driven
and interpretable. However, in scenarios where such ground-
truth data are limited or unavailable, the initial clusters may
still offer useful insights, albeit with greater uncertainty in
their agronomic interpretation. Thus, the presented post hoc
validation step added confidence in the results but is not
strictly required.

The SOM algorithm and the statistical methods used in
this study (ANOVA, Tukey’s HSD, and t tests) do not explic-
itly account for spatial autocorrelation, which is inherently
present in the interpolated geospatial datasets used here. This
may influence statistical outcomes or lead to less spatially
coherent clusters in some cases. For instance, kriging in-
terpolation introduces a spatial structure that may challenge
the assumption of independence underlying post hoc statis-
tical tests. However, the use of multiyear yield trends and
high-resolution soil data helped reduce uncertainty in post
hoc validation. Future studies may benefit from incorporat-
ing spatially explicit methods, such as spatially constrained
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Figure 9. Final management zone maps derived from (a) EMI, (c) NDVI, and (e) a combination of EMI and NDVI datasets. Each zone
represents areas with similar subsurface and/or aboveground characteristics. (b, d, f) Corresponding soil profiles for each management zone,
detailing soil texture (sand, silt, clay %); dotted lines between zones indicate the depth of textural change (layer 1: above EOS; layer 2: below
EOS), and the error bar represents the standard error.

clustering, variogram-based diagnostics, or spatial ANOVA,
to better account for spatial dependence during both classifi-
cation and validation stages. In addition to these methodolog-
ical considerations, future studies should focus on improving
the temporal consistency of data collection and increasing
the density and depth of soil sampling. The quantification of
uncertainty in management zone delineation could also be

investigated, for example through ensemble clustering or by
incorporating uncertainty from spatial inputs such as EMI
interpolation. Finally, long-term monitoring using datasets
from multiple years could provide insights into the tempo-
ral stability of management zones and their relationship with
yield.
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The detailed management zone maps complemented with
soil characterization obtained in this study should in a next
step be integrated into agroecosystem models. This enables
simulating and predicting the impact of different manage-
ment strategies under future environmental and climatic
conditions, thus helping to optimize irrigation, fertilization,
and other field management practices, further supporting
decision-making for sustainable and resource-efficient agri-
culture.

4 Conclusions

This study integrated proximal soil sensing (EMI) and re-
mote sensing (NDVI) data to delineate high-resolution man-
agement zones in a 70 ha agricultural field. Self-organizing
maps (SOMs), an advanced unsupervised machine learning
technique, were combined with statistical validation meth-
ods to identify spatial areas with similar aboveground and
belowground properties. Historical yield maps and detailed
soil information up to a depth of 100 cm were used to refine
and validate the clustering results, ensuring both their accu-
racy and practical applicability.

To address the variability introduced by environmental
conditions during data collection, EMI measurements from
multiple campaigns were standardized using z-score normal-
ization, ensuring consistent input for further analysis of the
investigated field. Similarly, NDVI data from the 2019 grow-
ing season were selected as they represented an uninterrupted
crop cycle prior to the subdivision of the investigated field
in multiple patches. Before clustering, data were appropri-
ately normalized. The multi-cluster average standard devia-
tion (MCASD) method was applied to determine the opti-
mal number of clusters for different datasets. The optimal
number of clusters was determined to be five using the EMI
data, four for the NDVI data, and four for the combination
of EMI and NDVI datasets. However, statistical validation
through Tukey’s post hoc analysis using independent yield
maps and soil samples reduced the cluster numbers to four,
three, and three, respectively. This ensured that the clusters
were not only computationally distinct with respect to the in-
put data, but also significantly different in terms of soil char-
acteristics and yield data, thereby increasing their practical
relevance in precision agriculture.

Results showed that EMI-based management zones pro-
vided a better representation of subsurface properties, partic-
ularly soil texture and the depth at which textural changes oc-
cur, which underlines the utility of EMI for guiding soil man-
agement practices. In comparison, NDVI-based management
zones aligned more closely with topsoil characteristics and
yield maps, effectively capturing aboveground variability. In
general, the integration of EMI and NDVI datasets provided
a more comprehensive representation of the spatial variabil-
ity of both soil characteristics and yield, resulting in man-
agement zones that linked both subsurface soil conditions
and aboveground vegetation performance. These combined
zones effectively explained productivity patterns by bridging
the gap between soil properties and crop health.

The product of this study is a high-resolution manage-
ment zonation map which would provide significant added
value in precision and sustainable agriculture. Moreover, it
can help in setting up agroecosystem models for the simula-
tion of crop performance and yield and in guiding future soil
sampling campaigns. Finally, the workflow proposed in this
study can provide a robust blueprint for unsupervised clus-
tering of proximal soil sensing and remote sensing data in
agriculture, and future studies should explore the scalability
of this methodology in different climatic conditions or other
crop systems, as well as investigating additional data sources
to further enhance the representation of within-field hetero-
geneity in soil and crops.
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Appendix A: Influence of data normalization

Figure A1 shows a visual comparison of management
zone delineation using different normalization approaches.
These are (Fig. A1a) EMI-based clustering of ECaz maps,
(Fig. A1b) combined EMI–NDVI clustering with dataset-
wise normalization (i.e., normalized by using the mini-
mum and maximum values for all the available data), and
(Fig. A1c) combined EMI–NDVI clustering with dataset-
wise normalization of EMI data and separate column-wise
normalization of NDVI data. As apparent in Fig. A1b, the
EMI measurements dominate the clustering results when an
inappropriate normalization is used. On the contrary, the nor-
malization strategy used here (Fig. A1c) provides a clustering
result where both EMI and NDVI meaningfully contribute.

Figure A1. Comparison of management zone delineation using different normalization approaches: (a) EMI-based clustering without nor-
malization, (b) combined EMI and NDVI clustering with dataset-wise normalization, and (c) combined EMI and NDVI clustering with
individual normalization, where EMI data were normalized as a dataset, while NDVI data were normalized column-wise.
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Appendix B: Additional results for post hoc analysis

For the EMI dataset (VCP+HCP, nine coils), the MCASD
analysis suggested five clusters. The results of the post hoc
analysis are shown in Table B1. Statistically significant dif-
ferences between two clusters are indicated by anO, whereas
an X indicates no significant differences. When two clus-
ters have no statistically significant difference for any of the
evaluated properties, they are merged. Therefore, clusters 4
and 5 were merged into a new cluster, cluster 4. For the NDVI
dataset, the MCASD analysis suggested four clusters and the
results of the post hoc analysis (Table B2) merged clusters
3 and 4 into a new cluster, cluster 3. For the combined dataset
(EMI+NDVI), the MCASD analysis suggested four clusters
and the results of the post hoc analysis (Table B3) merged
clusters 1 and 2 into a new cluster, cluster 1.

Table B1. Post hoc analysis of soil characteristics and yield for the
EMI-based clusters leading to cluster merging. Statistically signif-
icant (O) or nonsignificant differences (X) are provided between
clusters for soil texture, EOS layer, and yield.

Clusters 1vs2 2vs3 3vs4 4vs5

End of sandy layer (depth cm− ) O X O X

Layer 1 (above EOS) Sand X O O X

Silt X O O X

Clay X O O X

Layer 2 (below EOS) Sand X X O X

Silt X X O X

Clay X X O X

Yield X X O X

Table B2. Post hoc analysis of soil characteristics and yield for the
NDVI-based clusters leading to cluster merging. Statistically sig-
nificant (O) or nonsignificant differences (X) are provided between
clusters for soil texture, EOS layer, and yield.

Clusters 1vs2 2vs3 3vs4

End of sandy layer (depth cm− ) X O X

Layer 1 (above EOS) Sand O O X

Silt O O X

Clay O O X

Layer 2 (below EOS) Sand X O X

Silt X O X

Clay X O X

Yield X O X

Table B3. Post hoc analysis of soil characteristics and yield for the
clusters based on EMI and NDVI leading to cluster merging. Statis-
tically significant (O) or nonsignificant differences (X) are provided
between clusters for soil texture, EOS layer, and yield.

Clusters 1vs2 2vs3 3vs4

End of sandy layer (depth cm− ) X O O

Layer 1 (above EOS) Sand X O O

Silt X O O

Clay X O O

Layer 2 (below EOS) Sand X O X

Silt X O X

Clay X O X

Yield X O X
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Appendix C: Differences in yield between derived
management zones

Figure C1 presents box plots illustrating yield variabil-
ity (dtha−1) for two additional years: winter rye in 2017
(Fig. C1a) and rapeseed in 2018 (Fig. C1b). Results are pre-
sented for management zones derived from three cluster-
ing approaches: EMI-based (left), NDVI-based (middle), and
combined EMI+NDVI (right). These 2 years were selected
as additional representative examples, as the overall yield
variation across the full 9-year dataset followed the same
trend. In the EMI-based management zones, yield distribu-
tion is relatively similar across the first three zones, with a
noticeable drop in the fourth zone. In contrast, NDVI-based
and EMI+NDVI zones show a progressive decline in yield
across clusters, indicating a clearer trend of decreasing pro-
ductivity.

Figure C1. Yield distribution across final management zones based on EMI, NDVI, and combined EMI–NDVI datasets.
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