Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-251-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling biogeographical patterns and environmental drivers of soil fungal diversity at the French national scale
Christophe Djemiel
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Samuel Dequiedt
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Walid Horrigue
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Arthur Bailly
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Mélanie Lelièvre
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Julie Tripied
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Charles Guilland
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
present address: Novasol experts, 21000 Dijon, France
Solène Perrin
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Gwendoline Comment
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Nicolas P. A. Saby
INRAE, Info&Sols, 45075 Orléans, France
Claudy Jolivet
INRAE, Info&Sols, 45075 Orléans, France
Antonio Bispo
INRAE, Info&Sols, 45075 Orléans, France
Line Boulonne
INRAE, Info&Sols, 45075 Orléans, France
Antoine Pierart
ADEME, Service Agriculture et Forêt, 49004 Angers, France
Patrick Wincker
Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
Corinne Cruaud
Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
Pierre-Alain Maron
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Sébastien Terrat
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Lionel Ranjard
CORRESPONDING AUTHOR
Agroécologie, INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, 21000 Dijon, France
Related authors
No articles found.
Amicie A. Delahaie, Lauric Cécillon, Marija Stojanova, Samuel Abiven, Pierre Arbelet, Dominique Arrouays, François Baudin, Antonio Bispo, Line Boulonne, Claire Chenu, Jussi Heinonsalo, Claudy Jolivet, Kristiina Karhu, Manuel Martin, Lorenza Pacini, Christopher Poeplau, Céline Ratié, Pierre Roudier, Nicolas P. A. Saby, Florence Savignac, and Pierre Barré
SOIL, 10, 795–812, https://doi.org/10.5194/soil-10-795-2024, https://doi.org/10.5194/soil-10-795-2024, 2024
Short summary
Short summary
This paper compares the soil organic carbon fractions obtained from a new thermal fractionation scheme and a well-known physical fractionation scheme on an unprecedented dataset of French topsoil samples. For each fraction, we use a machine learning model to determine its environmental drivers (pedology, climate, and land cover). Our results suggest that these two fractionation schemes provide different fractions, which means they provide complementary information.
Amicie A. Delahaie, Pierre Barré, François Baudin, Dominique Arrouays, Antonio Bispo, Line Boulonne, Claire Chenu, Claudy Jolivet, Manuel P. Martin, Céline Ratié, Nicolas P. A. Saby, Florence Savignac, and Lauric Cécillon
SOIL, 9, 209–229, https://doi.org/10.5194/soil-9-209-2023, https://doi.org/10.5194/soil-9-209-2023, 2023
Short summary
Short summary
We characterized organic matter in French soils by analysing samples from the French RMQS network using Rock-Eval thermal analysis. We found that thermal analysis is appropriate to characterize large set of samples (ca. 2000) and provides interpretation references for Rock-Eval parameter values. This shows that organic matter in managed soils is on average more oxidized and more thermally stable and that some Rock-Eval parameters are good proxies for organic matter biogeochemical stability.
Kenji Fujisaki, Tiphaine Chevallier, Antonio Bispo, Jean-Baptiste Laurent, François Thevenin, Lydie Chapuis-Lardy, Rémi Cardinael, Christine Le Bas, Vincent Freycon, Fabrice Bénédet, Vincent Blanfort, Michel Brossard, Marie Tella, and Julien Demenois
SOIL, 9, 89–100, https://doi.org/10.5194/soil-9-89-2023, https://doi.org/10.5194/soil-9-89-2023, 2023
Short summary
Short summary
This paper presents a first comprehensive thesaurus for management practices driving soil organic carbon (SOC) storage. So far, a comprehensive thesaurus of management practices in agriculture and forestry has been lacking. It will help to merge datasets, a promising way to evaluate the impacts of management practices in agriculture and forestry on SOC. Identifying the drivers of SOC stock changes is of utmost importance to contribute to global challenges (climate change, food security).
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023, https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
Short summary
We introduce Shapley values for machine learning model interpretation and reveal the local and global controlling factors of soil organic carbon (SOC) stocks. The method enables spatial analysis of the important variables. Vegetation and topography determine much of the SOC stock variation in mainland France. We conclude that SOC stock variation is complex and should be interpreted at multiple levels.
Claire Froger, Nicolas P. A. Saby, Claudy C. Jolivet, Line Boulonne, Giovanni Caria, Xavier Freulon, Chantal de Fouquet, Hélène Roussel, Franck Marot, and Antonio Bispo
SOIL, 7, 161–178, https://doi.org/10.5194/soil-7-161-2021, https://doi.org/10.5194/soil-7-161-2021, 2021
Short summary
Short summary
Pollution of French soils by polycyclic aromatic hydrocarbons (PAHs), known as carcinogenic pollutants, was quantified in this work using an extended data set of 2154 soils sampled across France. The map of PAH concentrations in French soils revealed strong trends in regions with heavy industries and around cities. The PAH signatures indicated the influence of PAH emissions in Europe during the industrial revolution. Health risks posed by PAHs in soils were low but need to be considered.
Virginie Moreaux, Simon Martel, Alexandre Bosc, Delphine Picart, David Achat, Christophe Moisy, Raphael Aussenac, Christophe Chipeaux, Jean-Marc Bonnefond, Soisick Figuères, Pierre Trichet, Rémi Vezy, Vincent Badeau, Bernard Longdoz, André Granier, Olivier Roupsard, Manuel Nicolas, Kim Pilegaard, Giorgio Matteucci, Claudy Jolivet, Andrew T. Black, Olivier Picard, and Denis Loustau
Geosci. Model Dev., 13, 5973–6009, https://doi.org/10.5194/gmd-13-5973-2020, https://doi.org/10.5194/gmd-13-5973-2020, 2020
Short summary
Short summary
The model GO+ describes the functioning of managed forests based upon biophysical and biogeochemical processes. It accounts for the impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes versatile descriptions of management operations. Its sensitivity and uncertainty are detailed and predictions are compared with observations about mass and energy exchanges, hydrological data, and tree growth variables from different sites.
Related subject area
Soil biodiversity and soil health
Moderate N fertilizer reduction with straw return modulates cropland functions and microbial traits in a meadow soil
Ectomycorrhizal fungal network complexity determines soil multi-enzymatic activity
Biochar promotes soil aggregate stability and associated organic carbon sequestration and regulates microbial community structures in Mollisols from northeast China
Only a minority of bacteria grow after wetting in both natural and post-mining biocrusts in a hyperarid phosphate mine
Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics
Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI)
Network complexity of rubber plantations is lower than tropical forests for soil bacteria but not for fungi
Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system
Microbial communities and their predictive functional profiles in the arid soil of Saudi Arabia
Development of a soil biological quality index for soils of semi-arid tropics
What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?
Soil microbial biomass and function are altered by 12 years of crop rotation
Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems
Knowledge needs, available practices, and future challenges in agricultural soils
Technological advancements and their importance for nematode identification
Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie
Case study of microarthropod communities to assess soil quality in different managed vineyards
A meta-analysis of soil biodiversity impacts on the carbon cycle
Yan Duan, Minghui Cao, Wenling Zhong, Yuming Wang, Zheng Ni, Mengxia Zhang, Jiangye Li, Yumei Li, Xianghai Meng, and Lifang Wu
SOIL, 10, 779–794, https://doi.org/10.5194/soil-10-779-2024, https://doi.org/10.5194/soil-10-779-2024, 2024
Short summary
Short summary
Nitrogen (N) fertilization has received worldwide attention due to its effects on soil functions. However, soil multifunctionality and the underlying microbial mechanisms remain unclear. Therefore, we carried out in situ field and incubation experiments. We propose that straw return with 25 % N fertilizer reduction may achieve high soil multifunctionality by regulating the soil C:N ratio and N input level and specific keystone taxa-driven community contributions to soil functions.
Jorge Prieto-Rubio, José L. Garrido, Julio M. Alcántara, Concepción Azcón-Aguilar, Ana Rincón, and Álvaro López-García
SOIL, 10, 425–439, https://doi.org/10.5194/soil-10-425-2024, https://doi.org/10.5194/soil-10-425-2024, 2024
Short summary
Short summary
Changes in soil biological activity when microbial taxa interact remain little understood. To address this, we approach network analyses of ectomycorrhizal fungal communities. The study highlights how distinct fungi contribute to explaining community structure, whilst others mainly do for soil enzymatic activity. This differentiation between structural and functional roles of ectomycorrhizal fungi adds new insights to understand soil fungal community complexity and its functionality in soils.
Jing Sun, Xinrui Lu, Guoshuang Chen, Nana Luo, Qilin Zhang, and Xiujun Li
SOIL, 9, 261–275, https://doi.org/10.5194/soil-9-261-2023, https://doi.org/10.5194/soil-9-261-2023, 2023
Short summary
Short summary
A field experiment was conducted to compare and analyze the effects of combined application of biochar and nitrogen fertilizer on soil aggregate stability mechanism, the dynamic characteristics of aggregate organic carbon, and the microbial community structure in northeast black soil. We provide a scientific basis for formulating effective strategies to slow down soil quality degradation and ensure the sustainable development of the agroecosystem.
Talia Gabay, Eva Petrova, Osnat Gillor, Yaron Ziv, and Roey Angel
SOIL, 9, 231–242, https://doi.org/10.5194/soil-9-231-2023, https://doi.org/10.5194/soil-9-231-2023, 2023
Short summary
Short summary
This paper evaluates bacterial growth in biocrusts after a large-scale mining disturbance in a hyperarid desert, using a stable isotope probing assay.
We discovered that biocrust bacteria from both natural and post-mining plots resumed photosynthetic activity but did not grow following hydration. Our paper provides insights into the effects of a large-scale disturbance (mining) on biocrusts and their response to hydration, with implications for biocrust restoration practices in Zin mines.
Huaihai Chen, Kayan Ma, Yu Huang, Qi Fu, Yingbo Qiu, Jiajiang Lin, Christopher W. Schadt, and Hao Chen
SOIL, 8, 297–308, https://doi.org/10.5194/soil-8-297-2022, https://doi.org/10.5194/soil-8-297-2022, 2022
Short summary
Short summary
By analyzing and generalizing microbial taxonomic and functional profiles, we provide strong evidence that the degree of soil microbial functional redundancy differs significantly between “broad” and “narrow” functions across the globe. Future sequencing efforts will likely increase our confidence in comparative metagenomes and provide time-series information to further identify to what extent microbial functional redundancy regulates dynamic ecological fluxes across space and time.
Anne Daebeler, Eva Petrová, Elena Kinz, Susanne Grausenburger, Helene Berthold, Taru Sandén, Roey Angel, and the high-school students of biology project groups I, II, and
III from 2018–2019
SOIL, 8, 163–176, https://doi.org/10.5194/soil-8-163-2022, https://doi.org/10.5194/soil-8-163-2022, 2022
Short summary
Short summary
In this citizen science project, we combined a standardised litter bag method (Tea Bag Index) with microbiome analysis of bacteria and fungi colonising the teabags to gain a holistic understanding of the carbon degradation dynamics in temperate European soils. Our method focuses only on the active part of the soil microbiome. The results show that about one-third of the prokaryotes and one-fifth of the fungal species (ASVs) in the soil were enriched in response to the presence of fresh OM.
Guoyu Lan, Chuan Yang, Zhixiang Wu, Rui Sun, Bangqian Chen, and Xicai Zhang
SOIL, 8, 149–161, https://doi.org/10.5194/soil-8-149-2022, https://doi.org/10.5194/soil-8-149-2022, 2022
Short summary
Short summary
Forest conversion alters both bacterial and fungal soil networks: it reduces bacterial network complexity and enhances fungal network complexity. This is because forest conversion changes the soil pH and other soil properties, which alters the bacterial composition and subsequent network structure. Our study demonstrates the impact of forest conversion on soil network structure, which has important implications for ecosystem functions and the health of soil ecosystems in tropical regions.
Zijun Zhou, Zengqiang Li, Kun Chen, Zhaoming Chen, Xiangzhong Zeng, Hua Yu, Song Guo, Yuxian Shangguan, Qingrui Chen, Hongzhu Fan, Shihua Tu, Mingjiang He, and Yusheng Qin
SOIL, 7, 595–609, https://doi.org/10.5194/soil-7-595-2021, https://doi.org/10.5194/soil-7-595-2021, 2021
Short summary
Short summary
Straw mulching is not always combined with no-till systems during conservation tillage. We explored the effects of long-term straw mulching on soil attributes with soil depths under a no-till system. Compared to straw removal, straw mulching had various effects on soil properties at different depths, the biggest difference occurring at the topsoil depth. Overall, straw mulch is highly recommended for use under the no-till system because of its benefits to soil fertility and bacterial abundance.
Munawwar A. Khan and Shams T. Khan
SOIL, 6, 513–521, https://doi.org/10.5194/soil-6-513-2020, https://doi.org/10.5194/soil-6-513-2020, 2020
Short summary
Short summary
Soil is a renewable resource for purposes ranging from agriculture to mineralization. Soil microbiome plays vital roles in facilitating process like providing nutrients to plants, or their mobilization for plant uptake, consequently improving plant growth and productivity. Therefore, understanding of these microbial communities and their role in soil is crucial for exploring the possibility of using microbial community inoculants for improving desert soil fertility and agricultural potential.
Selvaraj Aravindh, Chinnappan Chinnadurai, and Dananjeyan Balachandar
SOIL, 6, 483–497, https://doi.org/10.5194/soil-6-483-2020, https://doi.org/10.5194/soil-6-483-2020, 2020
Short summary
Short summary
Soil quality is important for functioning of the agricultural ecosystem to sustain productivity. It is combination of several physical, chemical, and biological attributes. In the present work, we developed a soil biological quality index, a sub-set of the soil quality index (SBQI) using six important biological variables. These variables were computed from long-term manurial experimental soils and transformed into a unitless 10-scaled SBQI. This will provide constraints of soil processes.
Frederick Büks, Nicolette Loes van Schaik, and Martin Kaupenjohann
SOIL, 6, 245–267, https://doi.org/10.5194/soil-6-245-2020, https://doi.org/10.5194/soil-6-245-2020, 2020
Short summary
Short summary
Via anthropogenic input, microplastics (MPs) today represent a part of the soil organic matter. We analyzed studies on passive translocation, active ingestion, bioaccumulation and adverse effects of MPs on multicellular soil faunal life. These studies on a wide range of soil organisms found a recurring pattern of adverse effects on motility, growth, metabolism, reproduction, mortality and gut microbiome. However, the shape and type of the experimental MP often did not match natural conditions.
Marshall D. McDaniel and A. Stuart Grandy
SOIL, 2, 583–599, https://doi.org/10.5194/soil-2-583-2016, https://doi.org/10.5194/soil-2-583-2016, 2016
Short summary
Short summary
Modern agriculture is dominated by monoculture crop production, having negative effects on soil biology. We used a 12-year crop rotation experiment to examine the effects of increasing crop diversity on soil microorganisms and their activity. Crop rotations increased microbial biomass by up to 112 %, and increased potential ability to supply nitrogen as much as 58 %, compared to monoculture corn. Collectively, our findings show that soil health is increased when crop diversity is increased.
Karen A. Thompson, Bill Deen, and Kari E. Dunfield
SOIL, 2, 523–535, https://doi.org/10.5194/soil-2-523-2016, https://doi.org/10.5194/soil-2-523-2016, 2016
Short summary
Short summary
Dedicated bioenergy crops are required for future energy production; however the effects of land use change from traditional crops to biofuel crops on soil microbial communities, which drive greenhouse gas production, are largely unknown. We used quantitative PCR to enumerate these microbial communities to assess the sustainability of different bioenergy crops, including miscanthus and corn. We found that miscanthus may be a suitable crop for bioenergy production in variable Ontario conditions.
Georgina Key, Mike G. Whitfield, Julia Cooper, Franciska T. De Vries, Martin Collison, Thanasis Dedousis, Richard Heathcote, Brendan Roth, Shamal Mohammed, Andrew Molyneux, Wim H. Van der Putten, Lynn V. Dicks, William J. Sutherland, and Richard D. Bardgett
SOIL, 2, 511–521, https://doi.org/10.5194/soil-2-511-2016, https://doi.org/10.5194/soil-2-511-2016, 2016
Short summary
Short summary
Enhancing soil health is key to providing ecosystem services and food security. There are often trade-offs to using a particular practice, or it is not fully understood. This work aimed to identify practices beneficial to soil health and gaps in our knowledge. We reviewed existing research on agricultural practices and an expert panel assessed their effectiveness. The three most beneficial practices used a mix of organic or inorganic material, cover crops, or crop rotations.
Mohammed Ahmed, Melanie Sapp, Thomas Prior, Gerrit Karssen, and Matthew Alan Back
SOIL, 2, 257–270, https://doi.org/10.5194/soil-2-257-2016, https://doi.org/10.5194/soil-2-257-2016, 2016
Short summary
Short summary
This review covers the history and advances made in the area of nematode taxonomy. It highlights the success and limitations of the classical approach to nematode taxonomy and provides reader with a bit of background to the applications of protein and DNA-based methods for identification nematodes. The review also outlines the pros and cons of the use of DNA barcoding in nematology and explains how DNA metabarcoding has been applied in nematology through next-generation sequencing.
E. Ashley Shaw, Karolien Denef, Cecilia Milano de Tomasel, M. Francesca Cotrufo, and Diana H. Wall
SOIL, 2, 199–210, https://doi.org/10.5194/soil-2-199-2016, https://doi.org/10.5194/soil-2-199-2016, 2016
Short summary
Short summary
We investigated fire's effects on root decomposition and carbon (C) flow to the soil food web. We used 13C-labeled dead roots buried in microcosms constructed from two burn treatment soils (annual and infrequent burn). Our results showed greater root decomposition and C flow to the soil food web for the annual burn compared to infrequent burn treatment. Thus, roots are a more important C source for decomposers in annually burned areas where surface plant litter is frequently removed by fire.
E. Gagnarli, D. Goggioli, F. Tarchi, S. Guidi, R. Nannelli, N. Vignozzi, G. Valboa, M. R. Lottero, L. Corino, and S. Simoni
SOIL, 1, 527–536, https://doi.org/10.5194/soil-1-527-2015, https://doi.org/10.5194/soil-1-527-2015, 2015
M.-A. de Graaff, J. Adkins, P. Kardol, and H. L. Throop
SOIL, 1, 257–271, https://doi.org/10.5194/soil-1-257-2015, https://doi.org/10.5194/soil-1-257-2015, 2015
Cited articles
Alberdi, A. and Gilbert, M. T. P.: A guide to the application of Hill numbers to DNA-based diversity analyses, Mol. Ecol. Resour., 19, 804–817, https://doi.org/10.1111/1755-0998.13014, 2019.
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., and Bork, P.: Structure and function of the global topsoil microbiome, Nature, 560, 233–237, https://doi.org/10.1038/s41586-018-0386-6, 2018.
Baldrian, P., Větrovský, T., Lepinay, C., and Kohout, P.: High-throughput sequencing view on the magnitude of global fungal diversity, Fungal Divers., 114, 539–547, https://doi.org/10.1007/s13225-021-00472-y, 2022.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Banos, S., Lentendu, G., Kopf, A., Wubet, T., Glöckner, F. O., and Reich, M.: A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms, BMC Microbiol., 18, 190, https://doi.org/10.1186/s12866-018-1331-4, 2018.
Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on Earth, P. Natl. Acad. Sci., 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115, 2018.
Bastida, F., Eldridge, D. J., García, C., Kenny Png, G., Bardgett, R. D., and Delgado-Baquerizo, M.: Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes, ISME J., 15, 2081–2091, https://doi.org/10.1038/s41396-021-00906-0, 2021.
Bent, S. J. and Forney, L. J.: The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity, ISME J., 2, 689–695, https://doi.org/10.1038/ismej.2008.44, 2008.
Berbee, M. L., Strullu-Derrien, C., Delaux, P. M., Strother, P. K., Kenrick, P., Selosse, M. A., and Taylor, J. W.: Genomic and fossil windows into the secret lives of the most ancient fungi, Nat. Rev. Microbiol., 18, 717–730, https://doi.org/10.1038/s41579-020-0426-8, 2020.
Bickel, S., Chen, X., Papritz, A., and Or, D.: A hierarchy of environmental covariates control the global biogeography of soil bacterial richness, Sci. Rep., 9, 12129, https://doi.org/10.1038/s41598-019-48571-w, 2019.
Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., Hijmans, R., Rouault, E., and Bivand, M. R.: Package “rgdal”, Bindings for the Geospatial Data Abstraction Library, https://cran.r-project.org/web/packages/rgdal/index.html (last access: 15 October 2017), 2015.
Blackwell, M.: The fungi: 1, 2, 3 …5.1 million species?, Am. J. Bot., 98, 426–38, https://doi.org/10.3732/ajb.1000298, 2011.
Bonneville, S., Delpomdor, F., Preat, A., Chevalier, C., Araki, T., Kazemian, M., Steele, A., Schreiber, A., Wirth, R., and Benning, L. G.: Molecular identification of fungi microfossils in a Neoproterozoic shale rock, Sci. Adv., 6, eaax7599, https://doi.org/10.1126/sciadv.aax7599, 2020.
Calabon, M. S., Hyde, K. D., Jones, E. B. G., Luo, Z. L., Dong, W., Hurdeal, V. G., Gentekaki, E., Rossi, W., Leonardi, M., Thiyagaraja, V., Lestari, A. S., Shen, H. W., Bao, D. F., Boonyuen, N., and Zeng, M.: Freshwater fungal numbers, Fungal Divers., 114, 3–235, https://doi.org/10.1007/s13225-022-00503-2, 2022.
Canini, F., Zucconi, L., Pacelli, C., Selbmann, L., Onofri, S., and Geml, J.: Vegetation, pH and Water Content as Main Factors for Shaping Fungal Richness, Community Composition and Functional Guilds Distribution in Soils of Western Greenland, Front. Microbiol., 10, 2348, https://doi.org/10.3389/fmicb.2019.02348, 2019.
Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., and Ellison, A. M.: Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies, Ecol. Monogr., 84, 45–67, https://doi.org/10.1890/13-0133.1, 2014.
Chemidlin Prévost-Bouré, N., Christen, R., Dequiedt, S., Mougel, C., Lelièvre, M., Jolivet, C., Shahbazkia, H. R., Guillou, L., Arrouays, D., and Ranjard, L.: Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR, PLoS ONE, 6, e24166, https://doi.org/10.1371/journal.pone.0024166, 2011.
Christel, A., Maron, P.-A., and Ranjard, L.: Impact of farming systems on soil ecological quality: a meta-analysis, Environ. Chem. Lett., 19, 4603–4625, https://doi.org/10.1007/s10311-021-01302-y, 2021.
Chu, H., Gao, G.-F., Ma, Y., Fan, K., and Delgado-Baquerizo, M.: Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives, mSystems, 5, e00803-19, https://doi.org/10.1128/mSystems.00803-19, 2020.
Connell, J. H.: Diversity in Tropical Rain Forests and Coral Reefs, Science, 199, 1302–1310, https://doi.org/10.1126/science.199.4335.1302, 1978.
Cordero, O. X. and Datta, M. S.: Microbial interactions and community assembly at microscales, Curr. Opin. Microbiol., 31, 227–234, https://doi.org/10.1016/j.mib.2016.03.015, 2016.
De Boer, W., Folman, L. B., Summerbell, R. C., and Boddy, L.: Living in a fungal world: Impact of fungi on soil bacterial niche development, FEMS Microbiol. Rev., 29, 795–811, https://doi.org/10.1016/j.femsre.2004.11.005, 2005.
Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., and Fierer, N.: A global atlas of the dominant bacteria found in soil, Science, 359, 320–325, https://doi.org/10.1126/science.aap9516, 2018.
Dequiedt, S., Saby, N. P. A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., Arrouays, D., Bispo, A., Lemanceau, P., and Ranjard, L.: Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management, Glob. Ecol. Biogeogr., 20, 641–652, https://doi.org/10.1111/j.1466-8238.2010.00628.x, 2011.
de Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M. V., Christensen, S., de Ruiter, P. C., D'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W. H. G., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P., Uteseny, K., van der Putten, W. H., Wolters, V., and Bardgett, R. D.: Soil food web properties explain ecosystem services across European land use systems, P. Natl. Acad. Sci. USA, 110, 14296–14301, https://doi.org/10.1073/pnas.1305198110, 2013.
Ding, C., Chen, J., Zhu, F., Chai, L., Lin, Z., Zhang, K., and Shi, Y.: Biological Toxicity of Heavy Metal(loid)s in Natural Environments: From Microbes to Humans, Front. Environ. Sci., 10, 920957, https://doi.org/10.3389/fenvs.2022.920957, 2022.
Dini-Andreote, F., Kowalchuk, G. A., Prosser, J. I., and Raaijmakers, J. M.: Towards meaningful scales in ecosystem microbiome research, Environ. Microbiol., 23, 1–4, https://doi.org/10.1111/1462-2920.15276, 2021.
Djemiel, C., Dequiedt, S., Karimi, B., Cottin, A., Girier, T., El Djoudi, Y., Wincker, P., Lelièvre, M., Mondy, S., Chemidlin Prévost-Bouré, N., Maron, P. A., Ranjard, L., and Terrat, S.: BIOCOM-PIPE: a new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons, BMC Bioinformatics, 21, 492, https://doi.org/10.1186/s12859-020-03829-3, 2020.
Djemiel, C., Maron, P. A., Terrat, S., Dequiedt, S., Cottin, A., and Ranjard, L.: Inferring microbiota functions from taxonomic genes: a review, GigaScience, 11, giab090, https://doi.org/10.1093/gigascience/giab090, 2022.
Egidi, E., Delgado-Baquerizo, M., Plett, J. M., Wang, J., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., and Singh, B. K.: A few Ascomycota taxa dominate soil fungal communities worldwide, Nat. Commun., 10, 2369, https://doi.org/10.1038/s41467-019-10373-z, 2019.
Fausto, A., Rodrigues, M. L., and Coelho, C.: The still underestimated problem of fungal diseases worldwide, Front. Microbiol., 10, 214, https://doi.org/10.3389/fmicb.2019.00214, 2019.
Fernandez-Ugalde, O., Scarpa, S., Orgiazzi, A., Panagos, P., Van Liedekerke, M., Marechal, A., and Jones, A.: LUCAS 2018 Soil Module, ISBN 978-92-76-54832-4, 2022.
Fierer, N. and Jackson, R. B.: The diversity and biogeography of soil bacterial communities, P. Natl. Acad. Sci. USA, 103, 626–631, https://doi.org/10.1073/pnas.0507535103, 2006.
Finn, D. R., Lee, S., Lanzén, A., Bertrand, M., Nicol, G. W., and Hazard, C.: Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial, FEMS Microbiol. Ecol., 97, fiab136, https://doi.org/10.1093/femsec/fiab136, 2021.
Frac, M., Hannula, S. E., Belka, M., and Jȩdryczka, M.: Fungal biodiversity and their role in soil health, Front. Microbiol., 9, 1–9, https://doi.org/10.3389/fmicb.2018.00707, 2018.
Geisen, S., Wall, D. H., and van der Putten, W. H.: Challenges and Opportunities for Soil Biodiversity in the Anthropocene, Curr. Biol., 29, R1036–R1044, https://doi.org/10.1016/j.cub.2019.08.007, 2019.
Genre, A., Lanfranco, L., Perotto, S., and Bonfante, P.: Unique and common traits in mycorrhizal symbioses, Nat. Rev. Microbiol., 18, 649–660, https://doi.org/10.1038/s41579-020-0402-3, 2020.
George, P. B. L., Lallias, D., Creer, S., Seaton, F. M., Kenny, J. G., Eccles, R. M., Griffiths, R. I., Lebron, I., Emmett, B. A., Robinson, D. A., and Jones, D. L.: Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems, Nat. Commun., 10, 1107, https://doi.org/10.1038/s41467-019-09031-1, 2019a.
George, P. B. L., Creer, S., Griffiths, R. I., Emmett, B. A., Robinson, D. A., and Jones, D. L.: Primer and Database Choice Affect Fungal Functional but Not Biological Diversity Findings in a National Soil Survey, Front. Environ. Sci., 7, 173, https://doi.org/10.3389/fenvs.2019.00173, 2019b.
Giller, K. E., Witter, E., and Mcgrath, S. P.: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review, Soil Biol. Biochem., 30, 1389–1414, https://doi.org/10.1016/S0038-0717(97)00270-8, 1998.
Glassman, S. I., Wang, I. J., and Bruns, T. D.: Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales, Mol. Ecol., 26, 6960–6973, https://doi.org/10.1111/mec.14414, 2017.
Granger, V., Bez, N., Fromentin, J., Meynard, C., Jadaud, A., and Mérigot, B.: Mapping diversity indices: not a trivial issue, Methods Ecol. Evol., 6, 688–696, https://doi.org/10.1111/2041-210X.12357, 2015.
Griffiths, B. S. and Philippot, L.: Insights into the resistance and resilience of the soil microbial community, FEMS Microbiol. Rev., 37, 112–129, https://doi.org/10.1111/j.1574-6976.2012.00343.x, 2013.
Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M., and Whiteley, A. S.: The bacterial biogeography of British soils, Environ. Microbiol., 13, 1642–1654, https://doi.org/10.1111/j.1462-2920.2011.02480.x, 2011.
Le Guillou, C., Chemidlin Prévost-Bouré, N., Karimi, B., Akkal-Corfini, N., Dequiedt, S., Nowak, V., Terrat, S., Menasseri-Aubry, S., Viaud, V., Maron, P., and Ranjard, L.: Tillage intensity and pasture in rotation effectively shape soil microbial communities at a landscape scale, MicrobiologyOpen, 8, e00676, https://doi.org/10.1002/mbo3.676, 2019.
Hage, H. and Rosso, M. N.: Evolution of fungal carbohydrate-active enzyme portfolios and adaptation to plant cell-wall polymers, J. Fungi, 7, 1–16, https://doi.org/10.3390/jof7030185, 2021.
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., Bender-deMoll, S., Morris, M., and Morris, M. M.: Package “statnet”, https://github.com/statnet/statnet (last access: 2 April 2024), 2019.
Hannula, S. E. and Träger, S.: Soil fungal guilds as important drivers of the plant richness–productivity relationship, New Phytol., 226, 947–949, https://doi.org/10.1111/nph.16523, 2020.
Hawksworth, D. L. and Lücking, R.: Fungal Diversity Revisited: 2.2 to 3.8 Million Species, Microbiol. Spectr., 5, 10–128, https://doi.org/10.1128/microbiolspec.funk-0052-2016, 2017.
Hazard, C. and Johnson, D.: Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function?, New Phytol., 220, 1122–1128, https://doi.org/10.1111/nph.15010, 2018.
Hiiesalu, I., Bahram, M., and Tedersoo, L.: Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats, Mol. Ecol., 26, 4846–4858, https://doi.org/10.1111/mec.14246, 2017.
Hsieh, T. C., Ma, K. H., and Chao, A.: iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers), Methods Ecol. Evol., 7, 1451–1456, https://doi.org/10.1111/2041-210X.12613, 2016.
Hyde, K. D.: The numbers of fungi, Fungal Divers., 114, p. 1, https://doi.org/10.1007/s13225-022-00507-y, 2022.
Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., and Wang, E.: Package “forecast”, https://github.com/robjhyndman/forecast (last access: 10 January 2022), 2020.
Jia, X., Dini-Andreote, F., and Falcão Salles, J.: Community Assembly Processes of the Microbial Rare Biosphere, Trends Microbiol., 26, 738–747, https://doi.org/10.1016/j.tim.2018.02.011, 2018.
Jiao, S. and Lu, Y.: Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields, Glob. Change Biol., 26, 4506–4520, https://doi.org/10.1111/gcb.15130, 2020.
Jiao, S., Zhang, B., Zhang, G., Chen, W., and Wei, G.: Stochastic community assembly decreases soil fungal richness in arid ecosystems, Mol. Ecol., 30, 4338–4348, https://doi.org/10.1111/mec.16047, 2021.
Jolivet, C., Arrouays, D., Boulonne, L., Ratié, C., and Saby, N.: Le réseau de mesures de la qualité des sols de France (RMQS), Etat D'avancement Prem. Résultats Etude Gest. Sols, 13, 149–164, 2006.
Jolivet, C., Almeida Falcon, J.-L., Berché, P., Boulonne, L., Fontaine, M., Gouny, L., Lehmann, S., Maitre, B., Ratié, C., Schellenberger, E., and Soler-Dominguez, N.: French Soil Quality Monitoring Network Manual RMQS2: second metropolitan campaign 2016–2027, ISBN: 2-7380-1451-8, https://doi.org/10.17180/KC64-NY88, 2022.
Jousset, A., Bienhold, C., Chatzinotas, A., Gallien, L., Gobet, A., Kurm, V., Küsel, K., Rillig, M. C., Rivett, D. W., Salles, J. F., van der Heijden, M. G. A., Youssef, N. H., Zhang, X., Wei, Z., and Hol, W. H. G.: Where less may be more: how the rare biosphere pulls ecosystems strings, ISME J., 11, 853–862, https://doi.org/10.1038/ismej.2016.174, 2017.
Karimi, B., Maron, P. A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., and Ranjard, L.: Microbial diversity and ecological networks as indicators of environmental quality, Environ. Chem. Lett., 15, 265–281, https://doi.org/10.1007/s10311-017-0614-6, 2017.
Karimi, B., Terrat, S., Dequiedt, S., Saby, N. P. A., Horrigue, W., Lelièvre, M., Nowak, V., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Maron, P.-A., Bouré, N. C. P., and Ranjard, L.: Biogeography of soil bacteria and archaea across France, Sci. Adv., 4, eaat1808, https://doi.org/10.1126/sciadv.aat1808, 2018.
Karimi, B., Dequiedt, S., Terrat, S., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Chemidlin Prévost-Bouré, N., and Ranjard, L.: Biogeography of Soil Bacterial Networks along a Gradient of Cropping Intensity, Sci. Rep., 9, 3812, https://doi.org/10.1038/s41598-019-40422-y, 2019.
Karimi, B., Villerd, J., Dequiedt, S., Terrat, S., Chemidlin-Prévost Bouré, N., Djemiel, C., Lelièvre, M., Tripied, J., Nowak, V., Saby, N. P. A., Bispo, A., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., and Ranjard, L.: Biogeography of soil microbial habitats across France, Glob. Ecol. Biogeogr., 29, 1399–1411, https://doi.org/10.1111/geb.13118, 2020.
Karimi, B., Masson, V., Guilland, C., Leroy, E., Pellegrinelli, S., Giboulot, E., Maron, P.-A., and Ranjard, L.: Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards, Environ. Chem. Lett., 19, 2013–2030, https://doi.org/10.1007/s10311-020-01155-x, 2021.
Khan, M. A., Khan, S., Khan, A., and Alam, M.: Soil contamination with cadmium, consequences and remediation using organic amendments, Sci. Total Environ., 601/602, 1591–1605, https://doi.org/10.1016/j.scitotenv.2017.06.030, 2017.
Komsta, L. and Komsta, M. L.: Package “outliers”, Med. Univ. Lub. Lub., https://cran.r-project.org/web/packages/outliers/index.html (last access: 26 March 2022), 2011.
Lark, R. M.: Modelling complex soil properties as contaminated regionalized variables, Geoderma, 106, 173–190, https://doi.org/10.1016/S0016-7061(01)00123-9, 2002.
Leckie, S. E., Prescott, C. E., Grayston, S. J., Neufeld, J. D., and Mohn, W. W.: Characterization of Humus Microbial Communities in Adjacent Forest Types That Differ in Nitrogen Availability, Microb. Ecol., 48, 29–40, https://doi.org/10.1007/s00248-003-1020-0, 2004.
Legendre, P.: Numerical ecology, Elsevier, 487–493, https://doi.org/10.1016/B978-0-12-409548-9.10595-0, 2018.
Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., and Rillig, M. C.: Fungal Traits Important for Soil Aggregation, Front. Microbiol., 10, 2904, https://doi.org/10.3389/fmicb.2019.02904, 2020.
Lentendu, G., Wubet, T., Chatzinotas, A., Wilhelm, C., Buscot, F., and Schlegel, M.: Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: A multiple barcoding approach, Mol. Ecol., 23, 3341–3355, https://doi.org/10.1111/mec.12819, 2014.
Li, Y., Steenwyk, J. L., Chang, Y., Wang, Y., James, T. Y., Stajich, J. E., Spatafora, J. W., Groenewald, M., Dunn, C. W., Hittinger, C. T., Shen, X. X., and Rokas, A.: A genome-scale phylogeny of the kingdom Fungi, Curr. Biol., 31, 1653–1665, https://doi.org/10.1016/j.cub.2021.01.074, 2021.
Lienhard, P., Tivet, F., Chabanne, A., Dequiedt, S., Lelièvre, M., Sayphoummie, S., Leudphanane, B., Prévost-Bouré, N. C., Séguy, L., Maron, P.-A., and Ranjard, L.: No-till and cover crops shift soil microbial abundance and diversity in Laos tropical grasslands, Agron. Sustain. Dev., 33, 375–384, https://doi.org/10.1007/s13593-012-0099-4, 2013.
Loron, C. C., François, C., Rainbird, R. H., Turner, E. C., Borensztajn, S., and Javaux, E. J.: Early fungi from the Proterozoic era in Arctic Canada, Nature, 570, 232–235, https://doi.org/10.1038/s41586-019-1217-0, 2019.
Lumley, T. and Lumley, M. T.: Package “leaps”, Regres. Subset Sel. Thomas Lumley Based Fortran Code Alan Mill. Available Online HttpCRAN R-Proj. Orgpackage Leaps, https://cran.r-project.org/web/packages/leaps/index.html (last access: 16 January 2020), 2013.
Ma, B., Dai, Z., Wang, H., Dsouza, M., Liu, X., He, Y., Wu, J., Rodrigues, J. L. M., Gilbert, J. A., Brookes, P. C., and Xu, J.: Distinct Biogeographic Patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China, mSystems, 2, 10–128, https://doi.org/10.1128/mSystems.00174-16, 2017.
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Quero, J. L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M. A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J. R., Huber-Sannwald, E., Jankju, M., Mau, R. L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D., Woods, N. N., Yuan, X., Zaady, E., and Singh, B. K.: Increasing aridity reduces soil microbial diversity and abundance in global drylands, P. Natl. Acad. Sci. USA, 112, 15684–15689, https://doi.org/10.1073/pnas.1516684112, 2015.
Martin, G., Durand, J.-L., Duru, M., Gastal, F., Julier, B., Litrico, I., Louarn, G., Médiène, S., Moreau, D., Valentin-Morison, M., Novak, S., Parnaudeau, V., Paschalidou, F., Vertès, F., Voisin, A.-S., Cellier, P., and Jeuffroy, M.-H.: Role of ley pastures in tomorrow's cropping systems. A review, Agron. Sustain. Dev., 40, 25 pp., https://doi.org/10.1007/s13593-020-00620-9, 2020.
MetaOMIC-RMQS: Determinism of biogeographical patterns and network interactions of soil fungal diversity across France, Genoscope [data set], https://www.ebi.ac.uk/ena/browser/view/PRJEB57875, last access: 26 March 2024.
Minasny, B., McBratney, A. B., and Hartemink, A. E.: Global pedodiversity, taxonomic distance, and the World Reference Base, Geoderma, 155, 132–139, https://doi.org/10.1016/j.geoderma.2009.04.024, 2010.
Miyauchi, S., Kiss, E., Kuo, A., Drula, E., Kohler, A., Sánchez-García, M., Morin, E., Andreopoulos, B., Barry, K. W., Bonito, G., Buée, M., Carver, A., Chen, C., Cichocki, N., Clum, A., Culley, D., Crous, P. W., Fauchery, L., Girlanda, M., Hayes, R. D., Kéri, Z., LaButti, K., Lipzen, A., Lombard, V., Magnuson, J., Maillard, F., Murat, C., Nolan, M., Ohm, R. A., Pangilinan, J., Pereira, M. de F., Perotto, S., Peter, M., Pfister, S., Riley, R., Sitrit, Y., Stielow, J. B., Szöllősi, G., Žifčáková, L., Štursová, M., Spatafora, J. W., Tedersoo, L., Vaario, L.-M., Yamada, A., Yan, M., Wang, P., Xu, J., Bruns, T., Baldrian, P., Vilgalys, R., Dunand, C., Henrissat, B., Grigoriev, I. V., Hibbett, D., Nagy, L. G., and Martin, F. M.: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits, Nat. Commun., 11, 5125, https://doi.org/10.1038/s41467-020-18795-w, 2020.
Mo, Y., Zhang, W., Yang, J., Lin, Y., Yu, Z., and Lin, S.: Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes, ISME J., 12, 2198–2210, https://doi.org/10.1038/s41396-018-0153-6, 2018.
Möller, M. and Stukenbrock, E. H.: Evolution and genome architecture in fungal plant pathogens, Nat. Rev. Microbiol., 15, 756–771, https://doi.org/10.1038/nrmicro.2017.76, 2017.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., and Worm, B.: How many species are there on earth and in the ocean?, PLoS Biol., 9, e1001127, https://doi.org/10.1371/journal.pbio.1001127, 2011.
Naimi, B.: USDM: Uncertainty analysis for species distribution models, R package version 1.1–15, R Doc. Httpwww Rdocu-Mentation Orgpackagesusdm, https://github.com/babaknaimi/usdm (last access: 25 June 2017), 2015.
Naranjo-Ortiz, M. A. and Gabaldón, T.: Fungal evolution: major ecological adaptations and evolutionary transitions, Biol. Rev., 94, 1443–1476, https://doi.org/10.1111/brv.12510, 2019.
Nawrocki, E. P. and Eddy, S. R.: Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, 29, 2933–2935, https://doi.org/10.1093/bioinformatics/btt509, 2013.
Nilsson, R. H., Tedersoo, L., Abarenkov, K., Ryberg, M., Kristiansson, E., Hartmann, M., Schoch, C. L., Nylander, J. A. A., Bergsten, J., Porter, T. M., Jumpponen, A., Vaishampayan, P., Ovaskainen, O., Hallenberg, N., Bengtsson-Palme, J., Eriksson, K. M., Larsson, K.-H., Larsson, E., and Kõljalg, U.: Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences, MycoKeys, 4, 37–63, https://doi.org/10.3897/mycokeys.4.3606, 2012.
Nilsson, R. H., Wurzbacher, C., Bahram, M., R. M. Coimbra, V., Larsson, E., Tedersoo, L., Eriksson, J., Duarte, C., Svantesson, S., Sánchez-García, M., Ryberg, M. K., Kristiansson, E., and Abarenkov, K.: Top 50 most wanted fungi, MycoKeys, 12, 29–40, https://doi.org/10.3897/mycokeys.12.7553, 2016.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., and O'Hara, R. B.: Package “vegan”, Community ecology package, version, 2, 1–295, https://github.com/vegandevs/vegan (last access: 11 October 2022), 2013.
Pärtel, M., Öpik, M., Moora, M., Tedersoo, L., Szava-Kovats, R., Rosendahl, S., Rillig, M. C., Lekberg, Y., Kreft, H., Helgason, T., Eriksson, O., Davison, J., Bello, F., Caruso, T., and Zobel, M.: Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi, New Phytol., 216, 227–238, https://doi.org/10.1111/nph.14695, 2017.
Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L., Gautier, A., Lesur, I., Vallance, J., and Vacher, C.: Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline, Fungal Ecol., 41, 23–33, https://doi.org/10.1016/j.funeco.2019.03.005, 2019.
Peng, Y., Li, S. J., Yan, J., Tang, Y., Cheng, J. P., Gao, A. J., Yao, X., Ruan, J. J., and Xu, B. L.: Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents, Front. Microbiol., 12, 670135, https://doi.org/10.3389/fmicb.2021.670135, 2021.
Phukhamsakda, C., Nilsson, R. H., Bhunjun, C. S., de Farias, A. R. G., Sun, Y.-R., Wijesinghe, S. N., Raza, M., Bao, D.-F., Lu, L., Tibpromma, S., Dong, W., Tennakoon, D. S., Tian, X.-G., Xiong, Y.-R., Karunarathna, S. C., Cai, L., Luo, Z.-L., Wang, Y., Manawasinghe, I. S., Camporesi, E., Kirk, P. M., Promputtha, I., Kuo, C.-H., Su, H.-Y., Doilom, M., Li, Y., Fu, Y.-P., and Hyde, K. D.: The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding, Fungal Divers., 114, 327–386, https://doi.org/10.1007/s13225-022-00502-3, 2022.
Quiquerez, A., Garcia, J.-P., Dequiedt, S., Djemiel, C., Terrat, S., Mathieu, O., Sassi, A., and Ranjard, L.: Legacy of land-cover changes on soil microbiology in Burgundy vineyards (Pernand-Vergelesses, France), OENO One, 56, 223–237, https://doi.org/10.20870/oeno-one.2022.56.2.5432, 2022.
Ranjard, L., Dequiedt, S., Chemidlin Prévost-Bouré, N., Thioulouse, J., Saby, N. P. A., Lelievre, M., Maron, P. A., Morin, F. E. R., Bispo, A., Jolivet, C., Arrouays, D., and Lemanceau, P.: Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity, Nat. Commun., 4, 1434, https://doi.org/10.1038/ncomms2431, 2013.
Rivett, D. W. and Bell, T.: Abundance determines the functional role of bacterial phylotypes in complex communities, Nat. Microbiol., 3, 767–772, https://doi.org/10.1038/s41564-018-0180-0, 2018.
Roswell, M., Dushoff, J., and Winfree, R.: A conceptual guide to measuring species diversity, Oikos, 130, 321–338, https://doi.org/10.1111/oik.07202, 2021.
Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., and Fierer, N.: Soil bacterial and fungal communities across a pH gradient in an arable soil., ISME J., 4, 1340–51, https://doi.org/10.1038/ismej.2010.58, 2010.
Sadet-Bourgeteau, S., Houot, S., Karimi, B., Mathieu, O., Mercier, V., Montenach, D., Morvan, T., Sappin-Didier, V., Watteau, F., Nowak, V., Dequiedt, S., and Maron, P. A.: Microbial communities from different soil types respond differently to organic waste input, Appl. Soil Ecol., 143, 70–79, https://doi.org/10.1016/j.apsoil.2019.05.026, 2019.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T.: Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Res., 13, 2498–2504, https://doi.org/10.1101/gr.1239303, 2003.
Shi, L., Dossa, G. G. O., Paudel, E., Zang, H., Xu, J., and Harrison, R. D.: Changes in fungal communities across a forest disturbance gradient, Appl. Environ. Microbiol., 85, e00080-19, https://doi.org/10.1128/AEM.00080-19, 2019.
Sommermann, L., Geistlinger, J., Wibberg, D., Deubel, A., Zwanzig, J., Babin, D., Schlüter, A., and Schellenberg, I.: Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing, PLOS ONE, 13, e0195345, https://doi.org/10.1371/journal.pone.0195345, 2018.
Spake, R., Ezard, T. H. G., Martin, P. A., Newton, A. C., and Doncaster, C. P.: A meta-analysis of functional group responses to forest recovery outside of the tropics, Conserv. Biol., 29, 1695–1703, https://doi.org/10.1111/cobi.12548, 2015.
Stefan, L., Hartmann, M., Engbersen, N., Six, J., and Schöb, C.: Positive Effects of Crop Diversity on Productivity Driven by Changes in Soil Microbial Composition, Front. Microbiol., 12, 660749, https://doi.org/10.3389/fmicb.2021.660749, 2021.
Sun, H., Shao, C., Jin, Q., Li, M., Zhang, Z., Liang, H., Lei, H., Qian, J., and Zhang, Y.: Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil, BMC Microbiol., 22, 77, https://doi.org/10.1186/s12866-022-02488-z, 2022.
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., and Tebbe, C. C.: Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe, FEMS Microbiol. Ecol., 93, fix146, https://doi.org/10.1093/femsec/fix146, 2017.
Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C., and Ruess, R. W.: A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning, Ecol. Monogr., 84, 3–20, https://doi.org/10.1890/12-1693.1, 2014.
Tecon, R. and Or, D.: Biophysical processes supporting the diversity of microbial life in soil, FEMS Microbiol. Rev., 41, 599–623, https://doi.org/10.1093/femsre/fux039, 2017.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, L., Lodge, D. J., Lee, S. S., Larsson, K.-H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T. W., Harend, H., Guo, L., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S., and Abarenkov, K.: Global diversity and geography of soil fungi, Science, 346, 1256688, https://doi.org/10.1126/science.1256688, 2014.
Tedersoo, L., Bahram, M., Cajthaml, T., Põlme, S., Hiiesalu, I., Anslan, S., Harend, H., Buegger, F., Pritsch, K., Koricheva, J., and Abarenkov, K.: Tree diversity and species identity effects on soil fungi, protists and animals are context dependent, ISME J., 10, 346–362, https://doi.org/10.1038/ismej.2015.116, 2016.
Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rähn, E., Adamson, K., Drenkhan, T., Tullus, H., Jürimaa, K., Sibul, I., Otsing, E., Põlme, S., Metslaid, M., Loit, K., Agan, A., Puusepp, R., Varik, I., Kõljalg, U., and Abarenkov, K.: Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe, Front. Microbiol., 11, 1953, https://doi.org/10.3389/fmicb.2020.01953, 2020.
Tedersoo, L., Mikryukov, V., Anslan, S., Bahram, M., Khalid, A. N., Corrales, A., Agan, A., Vasco-Palacios, A.-M., Saitta, A., Antonelli, A., Rinaldi, A. C., Verbeken, A., Sulistyo, B. P., Tamgnoue, B., Furneaux, B., Ritter, C. D., Nyamukondiwa, C., Sharp, C., Marín, C., Dai, D. Q., Gohar, D., Sharmah, D., Biersma, E. M., Cameron, E. K., De Crop, E., Otsing, E., Davydov, E. A., Albornoz, F. E., Brearley, F. Q., Buegger, F., Gates, G., Zahn, G., Bonito, G., Hiiesalu, I., Hiiesalu, I., Zettur, I., Barrio, I. C., Pärn, J., Heilmann-Clausen, J., Ankuda, J., Kupagme, J. Y., Sarapuu, J., Maciá-Vicente, J. G., Fovo, J. D., Geml, J., Alatalo, J. M., Alvarez-Manjarrez, J., Monkai, J., Põldmaa, K., Runnel, K., Adamson, K., Bråthen, K. A., Pritsch, K., Tchan, K. I., Armolaitis, K., Hyde, K. D., Newsham, K. K., Panksep, K., Adebola, L. A., Lamit, L. J., Saba, M., Da Silva Cáceres, M. E., Tuomi, M., Gryzenhout, M., Bauters, M., Bálint, M., Wijayawardene, N., Hagh-Doust, N., Yorou, N. S., Kurina, O., Mortimer, P. E., Meidl, P., Nilsson, R. H., Puusepp, R., Casique-Valdés, R., Drenkhan, R., Garibay-Orijel, R., Godoy, R., Alfarraj, S., Rahimlou, S., Põlme, S., Dudov, S. V., Mundra, S., Ahmed, T., Netherway, T., Henkel, T. W., Roslin, T., Fedosov, V. E., Onipchenko, V. G., Yasanthika, W. A. E., Lim, Y. W., Piepenbring, M., Klavina, D., Kõljalg, U., and Abarenkov, K.: The Global Soil Mycobiome consortium dataset for boosting fungal diversity research, Fungal Divers., 111, 573–588, https://doi.org/10.1007/s13225-021-00493-7, 2021.
Terrat, S., Christen, R., Dequiedt, S., Lelièvre, M., Nowak, V., Regnier, T., Bachar, D., Plassart, P., Wincker, P., Jolivet, C., Bispo, A., Lemanceau, P., Maron, P.-A., Mougel, C., and Ranjard, L.: Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure., Microb. Biotechnol., 5, 135–41, https://doi.org/10.1111/j.1751-7915.2011.00307.x, 2012.
Terrat, S., Plassart, P., Bourgeois, E., Ferreira, S., Dequiedt, S., Adele-Dit-De-Renseville, N., Lemanceau, P., Bispo, A., Chabbi, A., Maron, P. A., and Ranjard, L.: Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition, Microb. Biotechnol., 8, 131–142, https://doi.org/10.1111/1751-7915.12162, 2015.
Terrat, S., Horrigue, W., Dequietd, S., Saby, N. P. A., Lelièvre, M., Nowak, V., Tripied, J., Régnier, T., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Karimi, B., Bispo, A., Maron, P. A., Prévost-Bouré, N. C., and Ranjard, L.: Mapping and predictive variations of soil bacterial richness across France, PLoS ONE, 12, 5–8, https://doi.org/10.1371/journal.pone.0186766, 2017.
Terrat, S., Djemiel, C., Journay, C., Karimi, B., Dequiedt, S., Horrigue, W., Maron, P., Chemidlin Prévost-Bouré, N., and Ranjard, L.: ReClustOR: a re-clustering tool using an open-reference method that improves operational taxonomic unit definition, Methods Ecol. Evol., 11, 168–180, https://doi.org/10.1111/2041-210X.13316, 2019.
Thomson, B. C., Tisserant, E., Plassart, P., Uroz, S., Griffiths, R. I., Hannula, S. E., Buée, M., Mougel, C., Ranjard, L., Van Veen, J. A., Martin, F., Bailey, M. J., and Lemanceau, P.: Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites, Soil Biol. Biochem., 88, 403–413, https://doi.org/10.1016/j.soilbio.2015.06.012, 2015.
Treseder, K. K. and Lennon, J. T.: Fungal Traits That Drive Ecosystem Dynamics on Land, Microbiol. Mol. Biol. Rev., 79, 243–262, https://doi.org/10.1128/MMBR.00001-15, 2015.
Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., de Ruiter, P. C., van der Putten, W. H., Birkhofer, K., Hemerik, L., de Vries, F. T., Bardgett, R. D., Brady, M. V., Bjornlund, L., Jørgensen, H. B., Christensen, S., Hertefeldt, T. D., Hotes, S., Gera Hol, W. H., Frouz, J., Liiri, M., Mortimer, S. R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., and Hedlund, K.: Intensive agriculture reduces soil biodiversity across Europe, Glob. Change Biol., 21, 973–985, https://doi.org/10.1111/gcb.12752, 2015.
Vazquez, C., Goede, R. G. M., Korthals, G. W., Rutgers, M., Schouten, A. J., and Creamer, R.: The effects of increasing land use intensity on soil nematodes: A turn towards specialism, Funct. Ecol., 33, 2003–2016, https://doi.org/10.1111/1365-2435.13417, 2019.
Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B. D., Brabcová, V., Choi, J., Meszárošová, L., Human, Z. R., Lepinay, C., Lladó, S., López-Mondéjar, R., Martinović, T., Mašínová, T., Morais, D., Navrátilová, D., Odriozola, I., Štursová, M., Švec, K., Tláskal, V., Urbanová, M., Wan, J., Žifčáková, L., Howe, A., Ladau, J., Peay, K. G., Storch, D., Wild, J., and Baldrian, P.: A meta-analysis of global fungal distribution reveals climate-driven patterns, Nat. Commun., 10, 5142, https://doi.org/10.1038/s41467-019-13164-8, 2019.
Wang, D., Rui, Y., Ding, K., Cui, X., Hao, Y., Tang, L., Pang, Z., Zhang, B., Zhou, S., Wang, K., and Wang, Y.: Precipitation drives the biogeographic distribution of soil fungal community in Inner Mongolian temperate grasslands, J. Soil. Sediment., 18, 222–228, https://doi.org/10.1007/s11368-017-1727-z, 2018.
Wang, J.-T., Shen, J.-P., Zhang, L.-M., Singh, B. K., Delgado-Baquerizo, M., Hu, H.-W., Han, L.-L., Wei, W.-X., Fang, Y.-T., and He, J.-Z.: Generalist Taxa Shape Fungal Community Structure in Cropping Ecosystems, Front. Microbiol., 12, 678290, https://doi.org/10.3389/fmicb.2021.678290, 2021.
Ward, E. B., Duguid, M. C., Kuebbing, S. E., Lendemer, J. C., and Bradford, M. A.: The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests, New Phytol., 235, 1701–1718, https://doi.org/10.1111/nph.18307, 2022.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., Van Der Putten, W. H., and Wall, D. H.: Ecological linkages between aboveground and belowground biota, Science, 304, 1629–1633, https://doi.org/10.1126/science.1094875, 2004.
Wilkinson, D. M.: The Disturbing History of Intermediate Disturbance, Oikos, 84, 145–147, https://doi.org/10.2307/3546874, 1999.
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C., and Mueller, C. W.: Particulate organic matter as a functional soil component for persistent soil organic carbon, Nat. Commun., 12, 4115, https://doi.org/10.1038/s41467-021-24192-8, 2021.
Wu, B., Hussain, M., Zhang, W., Stadler, M., Liu, X., and Xiang, M.: Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi, Mycology, 10, 127–140, https://doi.org/10.1080/21501203.2019.1614106, 2019.
Xu, M., Li, X., Cai, X., Li, X., Christie, P., and Zhang, J.: Land use alters arbuscular mycorrhizal fungal communities and their potential role in carbon sequestration on the Tibetan Plateau, Sci. Rep., 7, 3067, https://doi.org/10.1038/s41598-017-03248-0, 2017.
Xu, Q., Vandenkoornhuyse, P., Li, L., Guo, J., Zhu, C., Guo, S., Ling, N., and Shen, Q.: Microbial generalists and specialists differently contribute to the community diversity in farmland soils, J. Adv. Res., 40, 17–27, https://doi.org/10.1016/j.jare.2021.12.003, 2022a.
Xu, Q., Ling, N., Quaiser, A., Guo, J., Ruan, J., Guo, S., Shen, Q., and Vandenkoornhuyse, P.: Rare Bacteria Assembly in Soils Is Mainly Driven by Deterministic Processes, Microb. Ecol., 83, 137–150, https://doi.org/10.1007/s00248-021-01741-8, 2022b.
Xue, P., Minasny, B., and McBratney, A. B.: Land-use affects soil microbial co-occurrence networks and their putative functions, Appl. Soil Ecol., 169, 104184, https://doi.org/10.1016/j.apsoil.2021.104184, 2022.
Yang, T., Tedersoo, L., Soltis, P. S., Soltis, D. E., Gilbert, J. A., Sun, M., Shi, Y., Wang, H., Li, Y., Zhang, J., Chen, Z., Lin, H., Zhao, Y., Fu, C., and Chu, H.: Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China, ISME J., 13, 686–697, https://doi.org/10.1038/s41396-018-0303-x, 2019.
Zhang, T., Liu, Y., Sui, X., Frey, B., and Song, F.: Effects of Land Conversion on Soil Microbial Community Structure and Diversity in Songnen Plain, Northeast China, Sustain. Switz., 14, 10767, https://doi.org/10.3390/su141710767, 2022.
Zhao, Z., Ma, Y., Feng, T., Kong, X., Wang, Z., Zheng, W., and Zhai, B.: Assembly processes of abundant and rare microbial communities in orchard soil under a cover crop at different periods, Geoderma, 406, 115543, https://doi.org/10.1016/j.geoderma.2021.115543, 2022.
Executive editor
This is one of the first surveys of soil fungal diversity across land uses at the national scale.
Short summary
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large number of habitats on Earth. Based on a unique dataset (18S rDNA meta-barcoding), we described the spatial distribution of fungal diversity at the scale of France and the environmental drivers by tackling biogeographical patterns. We also explored the fungal network interactions across land uses and climate types.
The fungal kingdom has been diversifying for more than 800 million years by colonizing a large...