Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-231-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-10-231-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Best performances of visible–near-infrared models in soils with little carbonate – a field study in Switzerland
Simon Oberholzer
Institute of Geography, University Bern, 3012 Bern, Switzerland
Laura Summerauer
CORRESPONDING AUTHOR
Department of Environmental System Science, ETH Zürich, 8092 Zürich, Switzerland
Markus Steffens
Institute of Geography, University Bern, 3012 Bern, Switzerland
Department of Soil Science, Research Institute of Organic Agriculture, 5070 Frick, Switzerland
Chinwe Ifejika Speranza
Institute of Geography, University Bern, 3012 Bern, Switzerland
Related authors
No articles found.
Laura Summerauer, Fernando Bamba, Bendicto Akoraebirungi, Ahurra Wobusobozi, Marijn Bauters, Travis William Drake, Negar Haghipour, Clovis Kabaseke, Daniel Muhindo Iragi, Landry Cizungu Ntaboba, Leonardo Ramirez-Lopez, Johan Six, Daniel Wasner, and Sebastian Doetterl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4625, https://doi.org/10.5194/egusphere-2025-4625, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Deforestation for croplands on tropical hillslopes causes severe soil degradation and loss of fertile topsoil. We found that this leads to a steep decline in soil fertility, including organic carbon, nitrogen, and phosphorus. This makes the land unproductive, often leading farmers to abandon it. Replanting with Eucalyptus trees doesn't restore fertility. This degradation leads to cropland lifespans of only 100–170 years and poses a serious threat to future food production.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Laura Summerauer, Philipp Baumann, Leonardo Ramirez-Lopez, Matti Barthel, Marijn Bauters, Benjamin Bukombe, Mario Reichenbach, Pascal Boeckx, Elizabeth Kearsley, Kristof Van Oost, Bernard Vanlauwe, Dieudonné Chiragaga, Aimé Bisimwa Heri-Kazi, Pieter Moonen, Andrew Sila, Keith Shepherd, Basile Bazirake Mujinya, Eric Van Ranst, Geert Baert, Sebastian Doetterl, and Johan Six
SOIL, 7, 693–715, https://doi.org/10.5194/soil-7-693-2021, https://doi.org/10.5194/soil-7-693-2021, 2021
Short summary
Short summary
We present a soil mid-infrared library with over 1800 samples from central Africa in order to facilitate soil analyses of this highly understudied yet critical area. Together with an existing continental library, we demonstrate a regional analysis and geographical extrapolation to predict total carbon and nitrogen. Our results show accurate predictions and highlight the value that the data contribute to existing libraries. Our library is openly available for public use and for expansion.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Simon Baumgartner, Matti Barthel, Travis William Drake, Marijn Bauters, Isaac Ahanamungu Makelele, John Kalume Mugula, Laura Summerauer, Nora Gallarotti, Landry Cizungu Ntaboba, Kristof Van Oost, Pascal Boeckx, Sebastian Doetterl, Roland Anton Werner, and Johan Six
Biogeosciences, 17, 6207–6218, https://doi.org/10.5194/bg-17-6207-2020, https://doi.org/10.5194/bg-17-6207-2020, 2020
Short summary
Short summary
Soil respiration is an important carbon flux and key process determining the net ecosystem production of terrestrial ecosystems. The Congo Basin lacks studies quantifying carbon fluxes. We measured soil CO2 fluxes from different forest types in the Congo Basin and were able to show that, even though soil CO2 fluxes are similarly high in lowland and montane forests, the drivers were different: soil moisture in montane forests and C availability in the lowland forests.
Cited articles
Allory, V., Cambou, A., Moulin, P., Schwartz, C., Cannavo, P., Vidal-Beaudet, L., and Barthes, B. G.: Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions, Sci. Total Environ., 686, 764–773, https://doi.org/10.1016/j.scitotenv.2019.05.192, 2019.
Alomar, S., Mireei, S. A., Hemmat, A., Masoumi, A. A., and Khademi, H.: Comparison of Vis/SWNIR and NIR spectrometers combined with different multivariate techniques for estimating soil fertility parameters of calcareous topsoil in an arid climate, Biosys. Eng., 201, 50–66, https://doi.org/10.1016/j.biosystemseng.2020.11.007, 2021.
Amare, T., Hergarten, C., Hurni, H., Wolfgramm, B., Yitaferu, B., and Selassie, Y. G.: Prediction of Soil Organic Carbon for Ethiopian Highlands Using Soil Spectroscopy, ISRN Soil Sci., 2013, 720589, https://doi.org/10.1155/2013/720589, 2013.
Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D.: From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation – A Review, Sustainability-Basel, 12, 443, https://doi.org/10.3390/su12020443, 2020.
Barra, I., Haefele, S. M., Sakrabani, R., and Kebede, F.: Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances – A review, Trac.-Trend. Anal. Chem., 135, 116166, https://doi.org/10.1016/j.trac.2020.116166, 2021.
Baumann, P.: philipp-baumann/simplerspec: Beta release simplerspec 0.1.0 for zenodo, Zenodo [code], https://doi.org/10.5281/zenodo.3303637, 2019.
Baumann, P., Lee, J., Frossard, E., Schönholzer, L. P., Diby, L., Hgaza, V. K., Kiba, D. I., Sila, A., Sheperd, K., and Six, J.: Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa, Soil, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021, 2021.
Breure, T. S., Prout, J. M., Haefele, S. M., Milne, A. E., Hannam, J. A., Moreno-Rojas, S., and Corstanje, R.: Comparing the effect of different sample conditions and spectral libraries on the prediction accuracy of soil properties from near- and mid-infrared spectra at the field-scale, Soil Till. Res., 215, 105196, https://doi.org/10.1016/j.still.2021.105196, 2022.
Brown, D. J.: Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed, Geoderma, 140, 444–453, https://doi.org/10.1016/j.geoderma.2007.04.021, 2007.
Camargo, L. A., do Amaral, L. R., dos Reis, A. A., Brasco, T. L., and Magalhaes, P. S. G.: Improving soil organic carbon mapping with a field-specific calibration approach through diffuse reflectance spectroscopy and machine learning algorithms, Soil Use Manage., 38, 292–303, https://doi.org/10.1111/sum.12775, 2022.
Cambule, A. H., Rossiter, D. G., Stoorvogel, J. J., and Smaling, E. M. A.: Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique, Geoderma, 183, 41–48, https://doi.org/10.1016/j.geoderma.2012.03.011, 2012.
Chang, C. W. and Laird, D. A.: Near-infrared reflectance spectroscopic analysis of soil C and N, Soil Sci., 167, 110–116, https://doi.org/10.1097/00010694-200202000-00003, 2002.
Chang, C. W., Laird, D. A., Mausbach, M. J., and Hurburgh, C. R.: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties, Soil Sci. Soc. Am. J., 65, 480–490, https://doi.org/10.2136/sssaj2001.652480x, 2001.
Chong, I. G. and Jun, C. H.: Performance of some variable selection methods when multicollinearity is present, Chemom. Intell. Lab. Syst., 78, 103–112, https://doi.org/10.1016/j.chemolab.2004.12.011, 2005.
da Silva-Sangoi, D. V., Horst, T. Z., Moura-Bueno, J. M., Dalmolin, R. S. D., Sebem, E., Gebler, L., and Santos, M. D.: Soil organic matter and clay predictions by laboratory spectroscopy: Data spatial correlation, Geoderma Reg., 28, e00486, https://doi.org/10.1016/j.geodrs.2022.e00486, 2022.
Durner, W. and Iden, S. C.: The improved integral suspension pressure method (ISP plus) for precise particle size analysis of soil and sedimentary materials, Soil Till. Res., 213, 105086, https://doi.org/10.1016/j.still.2021.105086, 2021.
Ellinger, M., Merbach, I., Werban, U., and Liess, M.: Error propagation in spectrometric functions of soil organic carbon, Soil, 5, 275–288, https://doi.org/10.5194/soil-5-275-2019, 2019.
Goidts, E., Van Wesemael, B., and Crucifix, M.: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales, Eur. J. Soil Sci., 60, 723–739, https://doi.org/10.1111/j.1365-2389.2009.01157.x, 2009.
Greenberg, I., Seidel, M., Vohland, M., Koch, H. J., and Ludwig, B.: Performance of in situ vs. laboratory mid-infrared soil spectroscopy using local and regional calibration strategies, Geoderma, 409, 115614, https://doi.org/10.1016/j.geoderma.2021.115614, 2022.
Grunwald, S., Yu, C. R., and Xiong, X.: Transferability and Scalability of Soil Total Carbon Prediction Models in Florida, USA, Pedosphere, 28, 856–872, https://doi.org/10.1016/s1002-0160(18)60048-7, 2018.
Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical learning: data mining, inference, and prediction, Second edition, corrected at 12th printing 2017, Springer series in statistics, Springer, New York, NY, https://doi.org/10.1007/978-0-387-84858-7, 2017.
Heinze, S., Vohland, M., Joergensen, R. G., and Ludwig, B.: Usefulness of near-infrared spectroscopy for the prediction of chemical and biological soil properties in different long-term experiments, J. Plant Nutr. Soil Sci., 176, 520–528, https://doi.org/10.1002/jpln.201200483, 2013.
Hutengs, C., Seidel, M., Oertel, F., Ludwig, B., and Vohland, M.: In situ and laboratory soil spectroscopy with portable visible-to-near-infrared and mid-infrared instruments for the assessment of organic carbon in soils, Geoderma, 355, 113900, https://doi.org/10.1016/j.geoderma.2019.113900, 2019.
Kennard, R. W. and Stone, L. A.: Computer aided design of experiments, Technometrics, 11, 137–148, https://doi.org/10.2307/1266770, 1969.
Knox, N. M., Grunwald, S., McDowell, M. L., Bruland, G. L., Myers, D. B., and Harris, W. G.: Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy, Geoderma, 239, 229–239, https://doi.org/10.1016/j.geoderma.2014.10.019, 2015.
Kuang, B. and Mouazen, A. M.: Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms, Eur. J. Soil Sci., 62, 629–636, https://doi.org/10.1111/j.1365-2389.2011.01358.x, 2011.
Kuang, B. and Mouazen, A. M.: Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale, Eur. J. Soil Sci., 63, 421–429, https://doi.org/10.1111/j.1365-2389.2012.01456.x, 2012.
Kuhn, M.: caret: Classification and Regression Training, R package [code], https://doi.org/10.18637/jss.v028.i05, 2020.
Kuhn, M. and Johnson, K.: Applied predictive modeling, Springer, New York, https://doi.org/10.1007/978-1-4614-6849-3, 2013.
Kusumo, B. H., Sukartono, S., Bustan, B., and Purwanto, Y. A.: Total nitrogen in rice paddy field independently predicted from soil carbon using Near Infrared Reflectance Spectroscopy (NIRS), 4th Annual Applied Science and Engineering Conference (AASEC), Univ Pendidikan Indonesia, Sch Postgraduate Studies, Tech. Vocat. Educ. St., Bali, INDONESIA, IOP Publishing, https://doi.org/10.1088/1742-6596/1402/2/022096, 2019.
Li, H. Y., Jia, S. Y., and Le, Z. C.: Prediction of Soil Organic Carbon in a New Target Area by Near-Infrared Spectroscopy: Comparison of the Effects of Spiking in Different Scale Soil Spectral Libraries, Sensors, 20, 4357, https://doi.org/10.3390/s20164357, 2020.
Liu, S., Shen, H., Chen, S., Zhao, X., Biswas, A., Xiaolin, J., Shi, Z., and Fang, J.: Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment, Geoderma, 348, 37–44, https://doi.org/10.1016/j.geoderma.2019.04.003, 2019.
Lobsey, C. R., Viscarra Rossel, R. A., Roudier, P., and Hedley, C. B.: rs-local data-mines information from spectral libraries to improve local calibrations, Eur. J. Soil Sci., 68, 840–852, https://doi.org/10.1111/ejss.12490, 2017.
Lucas, S. T. and Weil, R. R.: Can a Labile Carbon Test be Used to Predict Crop Responses to Improve Soil Organic Matter Management?, Agron. J., 104, 1160–1170, https://doi.org/10.2134/agronj2011.0415, 2012.
Martin, P. D., Malley, D. F., Manning, G., and Fuller, L.: Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy, Can. J. Soil Sci., 82, 413–422, https://doi.org/10.4141/s01-054, 2002.
McCarty, G., Reeves, J., Reeves, V., Follett, R., and Kimble, J.: Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement, Soil Sci. Soc. Am. J., 66, 640–646, https://doi.org/10.2136/sssaj2002.6400a, 2002.
Mishra, P., Roger, J. M., Marini, F., Biancolillo, A., and Rutledge, D. N.: Pre-processing ensembles with response oriented sequential alternation calibration (PROSAC): A step towards ending the pre-processing search and optimization quest for near-infrared spectral modelling, Chemom. Intell. Lab. Syst., 222, 104497, https://doi.org/10.1016/j.chemolab.2022.104497, 2022.
Molinaro, A. M., Simon, R., and Pfeiffer, R. M.: Prediction error estimation: a comparison of resampling methods, Bioinformatics, 21, 3301–3307, https://doi.org/10.1093/bioinformatics/bti499, 2005.
Munnaf, M. A. and Mouazen, A. M.: Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning, Catena, 211, 106015, https://doi.org/10.1016/j.catena.2022.106015, 2022.
Ng, W., Minasny, B., Jones, E., and McBratney, A.: To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library, Geoderma, 406, 115501, https://doi.org/10.1016/j.geoderma.2021.115501, 2022.
Oberholzer, S. and Summerauer, L.: Dataset and R-codes for Publication: “Best performances of visible-near infrared models in soils with little carbonate – a field study in Switzerland” (Submission version) (v.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10691694, 2024.
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [code], https://www.R-project.org (last access: 25 February 2024), 2020.
Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Dematte, J. A. M., and Scholten, T.: The spectrum-based learner: A new local approach for modeling soil vis-NIR spectra of complex datasets, Geoderma, 195, 268–279, https://doi.org/10.1016/j.geoderma.2012.12.014, 2013.
Reeves, J. B.: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?, Geoderma, 158, 3–14, https://doi.org/10.1016/j.geoderma.2009.04.005, 2010.
Riefolo, C., Castrignano, A., Colombo, C., Conforti, M., Ruggieri, S., Vitti, C., and Buttafuoco, G.: Investigation of soil surface organic and inorganic carbon contents in a low-intensity farming system using laboratory visible and near-infrared spectroscopy, Arch. Agron. Soil Sci., 66, 1436–1448, https://doi.org/10.1080/03650340.2019.1674446, 2020.
Rodriguez-Febereiro, M., Dafonte, J., Fandino, M., Cancela, J. J., and Rodriguez-Perez, J. R.: Evaluation of Spectroscopy and Methodological Pre-Treatments to Estimate Soil Nutrients in the Vineyard, Remote Sens., 14, 1326, https://doi.org/10.3390/rs14061326, 2022.
Seidel, M., Hutengs, C., Ludwig, B., Thiele-Bruhn, S., and Vohland, M.: Strategies for the efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral libraries and spiking vs. local calibrations, Geoderma, 354, 113856, https://doi.org/10.1016/j.geoderma.2019.07.014, 2019.
Shen, Z. F., Ramirez-Lopez, L., Behrens, T., Cui, L., Zhang, M. X., Walden, L., Wetterlind, J., Shi, Z., Sudduth, K. A., Song, Y. Z., Catambay, K., and Rossel, R. A. V.: Deep transfer learning of global spectra for local soil carbon monitoring, ISPRS J. Photogramm. Remote Sens., 188, 190–200, https://doi.org/10.1016/j.isprsjprs.2022.04.009, 2022.
Singh, K., Aitkenhead, M., Fidelis, C., Yinil, D., Sanderson, T., Snoeck, D., and Field, D. J.: Optimization of spectral pre-processing for estimating soil condition on small farms, Soil Use Manage., 38, 150–163, https://doi.org/10.1111/sum.12684, 2022.
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., and McLaughlin, M. J.: The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties, Appl. Spectrosc. Rev., 49, 139–186, https://doi.org/10.1080/05704928.2013.811081, 2014.
Stenberg, B., Rossel, R. A. V., Mouazen, A. M., and Wetterlind, J.: Visible and near infrared spectroscopy in soil science, edited by: Sparks, D. L., Adv. Agron., 107, 163–215, https://doi.org/10.1016/s0065-2113(10)07005-7, 2010.
Stevens, A. S. and Ramirez-Lopez, L.: An introduction to the prospectr package, R package [code], https://cran.r-project.org/web/packages/prospectr/vignettes/prospectr.html (last access: 25 February 2024), 2020.
Taubner, H., Roth, B., and Tippkotter, R.: Determination of soil texture: Comparison of the sedimentation method and the laser-diffraction analysis, J. Plant Nutr. Soil Sci., 172, 161–171, https://doi.org/10.1002/jpln.200800085, 2009.
Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., and Samson-Liebig, S. E.: Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use, Am. J. Alternative Agr., 18, 3–17, https://www.jstor.org/stable/pdf/44503242.pdf (last access: 25 February 2024), 2003.
Wetterlind, J. and Stenberg, B.: Near-infrared spectroscopy for within-field soil characterization: small local calibrations compared with national libraries spiked with local samples, Eur. J. Soil Sci., 61, 823–843, https://doi.org/10.1111/j.1365-2389.2010.01283.x, 2010.
Wold, S., Martens, H., and Wold, H.: The multivariate calibration problem in chemistry solved by the PLS method, Matrix Pencils, Berlin, Heidelberg, Springer, 286–293, https://doi.org/10.1007/BFb0062108, 1983.
Wold, S., Johansson, E., and Cocchi, M: PLS-partial least squares projections to latent structures, in: 3D QSAR in drug design, edited by: Kubinyi, H., Folkers, G., and Martin, Y., Escom, Leiden, 523–550, https://doi.org/10.1007/0-306-46858-1, 1993.
Zhang, L., Yang, X. M., Drury, C., Chantigny, M., Gregorich, E., Miller, J., Bittman, S., Reynolds, W. D., and Yang, J. Y.: Infrared spectroscopy estimation methods for water-dissolved carbon and amino sugars in diverse Canadian agricultural soils, Can. J. Soil Sci., 98, 484–499, https://doi.org/10.1139/cjss-2018-0027, 2018.
Zhao, D. X., Arshad, M., Wang, J., and Triantafilis, J.: Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking, Comput. Electron. Agric., 182, 105990, https://doi.org/10.1016/j.compag.2021.105990, 2021.
Short summary
This study investigated the performance of visual and near-infrared spectroscopy in six fields in Switzerland. Spectral models showed a good performance for soil properties related to organic matter at the field scale. However, spectral models performed best in fields with low mean carbonate content because high carbonate content masks spectral features for organic carbon. These findings help facilitate the establishment and implementation of new local soil spectroscopy projects.
This study investigated the performance of visual and near-infrared spectroscopy in six fields...