Articles | Volume 10, issue 1
https://doi.org/10.5194/soil-10-231-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.Best performances of visible–near-infrared models in soils with little carbonate – a field study in Switzerland
Related authors
Related subject area
Soil sensing
Cited articles
Allory, V., Cambou, A., Moulin, P., Schwartz, C., Cannavo, P., Vidal-Beaudet, L., and Barthes, B. G.: Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions, Sci. Total Environ., 686, 764–773, https://doi.org/10.1016/j.scitotenv.2019.05.192, 2019.
Alomar, S., Mireei, S. A., Hemmat, A., Masoumi, A. A., and Khademi, H.: Comparison of Vis/SWNIR and NIR spectrometers combined with different multivariate techniques for estimating soil fertility parameters of calcareous topsoil in an arid climate, Biosys. Eng., 201, 50–66, https://doi.org/10.1016/j.biosystemseng.2020.11.007, 2021.
Amare, T., Hergarten, C., Hurni, H., Wolfgramm, B., Yitaferu, B., and Selassie, Y. G.: Prediction of Soil Organic Carbon for Ethiopian Highlands Using Soil Spectroscopy, ISRN Soil Sci., 2013, 720589, https://doi.org/10.1155/2013/720589, 2013.
Angelopoulou, T., Balafoutis, A., Zalidis, G., and Bochtis, D.: From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation – A Review, Sustainability-Basel, 12, 443, https://doi.org/10.3390/su12020443, 2020.
Barra, I., Haefele, S. M., Sakrabani, R., and Kebede, F.: Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances – A review, Trac.-Trend. Anal. Chem., 135, 116166, https://doi.org/10.1016/j.trac.2020.116166, 2021.