Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-53-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-53-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particulate macronutrient exports from tropical African montane catchments point to the impoverishment of agricultural soils
Jaqueline Stenfert Kroese
CORRESPONDING AUTHOR
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
Centre for International Forestry Research (CIFOR), c/o World Agroforestry Centre (ICRAF), Nairobi, 00100 Kenya
John N. Quinton
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
Suzanne R. Jacobs
Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, 35390 Giessen, Germany
Lutz Breuer
Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University Giessen, 35392 Giessen, Germany
Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, 35390 Giessen, Germany
Mariana C. Rufino
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
Centre for International Forestry Research (CIFOR), c/o World Agroforestry Centre (ICRAF), Nairobi, 00100 Kenya
Related authors
No articles found.
Max Weißenborn, Lutz Breuer, and Tobias Houska
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-183, https://doi.org/10.5194/hess-2024-183, 2024
Preprint under review for HESS
Short summary
Short summary
Our study compares neural network models for predicting discharge in ungauged basins. We evaluated Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) using 28 years of weather data. CNN showed the best accuracy, while GRU were faster and nearly as accurate. Adding static features improved all models. The research enhances flood forecasting and water management in regions lacking direct measurements, offering efficient and accurate predictive tools.
Karl Auerswald, Juergen Geist, John N. Quinton, and Peter Fiener
EGUsphere, https://doi.org/10.5194/egusphere-2024-1702, https://doi.org/10.5194/egusphere-2024-1702, 2024
Short summary
Short summary
Floods, droughts, and heatwaves are increasing globally. This is often attributed to CO2-driven climate change. However, at the global scale, CO2-driven climate change neither reduces precipitation nor adequately explains droughts. Land-use change, particularly soil sealing, compaction, and drainage, are likely more significant for water losses by runoff leading to flooding and water scarcity and are therefore an important part the solution to mitigate floods, droughts, and heatwaves.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
Roisin O'Riordan, Jess Davies, Carly Stevens, and John N. Quinton
SOIL, 7, 661–675, https://doi.org/10.5194/soil-7-661-2021, https://doi.org/10.5194/soil-7-661-2021, 2021
Short summary
Short summary
As urban populations grow, soil sealing with impermeable surfaces will increase. At present there is limited knowledge on the effect of sealing on soil carbon and nutrients. We found that, in general, sealing reduced soil carbon and nutrients; however, where there were additions due to human activity, soil carbon and nutrients were increased. This suggests that there is a legacy soil carbon store in areas with an industrial past and highlights the influence of artefacts in urban soil.
Amani Mahindawansha, Christoph Külls, Philipp Kraft, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 3627–3642, https://doi.org/10.5194/hess-24-3627-2020, https://doi.org/10.5194/hess-24-3627-2020, 2020
Short summary
Short summary
Stable isotopes of soil water are an effective tool to reveal soil hydrological processes in irrigated agricultural fields. Flow mechanisms and isotopic patterns of soil water in the soil matrix differ, depending on the crop and irrigation practices. Isotope data supported the fact that unproductive water losses via evaporation can be reduced by introducing dry seasonal crops to the crop rotation system.
Michael C. Thrun, Alfred Ultsch, and Lutz Breuer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-87, https://doi.org/10.5194/gmd-2020-87, 2020
Revised manuscript not accepted
Short summary
Short summary
We propose an explainable AI (XAI) framework for times series describing water quality & environmental parameters. The relationship between parameters is investigated by swarm based cluster analysis designed to find similar days within & dissimilar days between clusters. Resulting clusters define three states of water bodies & are visualized by a topographic map of high-dimensional structures. Rules generated by the XAI system explain clusters & improve the understanding of aquatic environments.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020, https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Short summary
Policy to conserve thinning arable soils relies on a balance between the rates of soil erosion and soil formation. Our knowledge of the latter is meagre. Here, we present soil formation rates for an arable hillslope, the first of their kind globally, and a woodland hillslope, the first of their kind in Europe. Rates range between 26 and 96 mm kyr−1. On the arable site, erosion rates are 2 orders of magnitude greater, and in a worst-case scenario, bedrock exposure could occur in 212 years.
Suzanne R. Jacobs, Edison Timbe, Björn Weeser, Mariana C. Rufino, Klaus Butterbach-Bahl, and Lutz Breuer
Hydrol. Earth Syst. Sci., 22, 4981–5000, https://doi.org/10.5194/hess-22-4981-2018, https://doi.org/10.5194/hess-22-4981-2018, 2018
Short summary
Short summary
This study investigated how land use affects stream water sources and flow paths in an East African tropical montane area. Rainfall was identified as an important stream water source in the forest and smallholder agriculture sub-catchments, while springs were more important in the commercial tea plantation sub-catchment. However, 15 % or less of the stream water consisted of water with an age of less than 3 months, indicating that groundwater plays an important role in all land use types.
Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft
Hydrol. Earth Syst. Sci., 22, 4565–4581, https://doi.org/10.5194/hess-22-4565-2018, https://doi.org/10.5194/hess-22-4565-2018, 2018
Short summary
Short summary
By realizing that hydrological models are not one single hypothesis, but an assemblage of many hypotheses, new ways to scrutinize hydrological models are needed. Up until now, studies concentrate on comparing existing models or built models incrementally. This approach here tries to tackle the problem the other way around. We construct a complex model, containing all processes important for the catchment, and deconstruct it step by step to understand the influence of single processes.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Tobias Houska, David Kraus, Ralf Kiese, and Lutz Breuer
Biogeosciences, 14, 3487–3508, https://doi.org/10.5194/bg-14-3487-2017, https://doi.org/10.5194/bg-14-3487-2017, 2017
Short summary
Short summary
CO2 and N2O are two prominent GHGs contributing to global warming. We combined measurement and modelling to quantify GHG emissions from adjacent arable, forest and grassland sites in Germany. Measured emissions reveal seasonal patterns and management effects like fertilizer application, tillage, harvest and grazing. Modelling helps to estimate the magnitude and uncertainty of not measurable C and N fluxes and indicates missing input source, e.g. nitrate uptake from groundwater.
David Pelster, Mariana Rufino, Todd Rosenstock, Joash Mango, Gustavo Saiz, Eugenio Diaz-Pines, German Baldi, and Klaus Butterbach-Bahl
Biogeosciences, 14, 187–202, https://doi.org/10.5194/bg-14-187-2017, https://doi.org/10.5194/bg-14-187-2017, 2017
Short summary
Short summary
In order to quantify greenhouse gas fluxes from typical eastern African smallholder farms, we measured flux rates every week for 1 year at 59 farms in western Kenya. These upland soils tend to be small sinks for CH4 and small sources of N2O. The management intensity of the farm plots had no effect on emissions, likely because the variability was low. Plots with trees had higher CH4 uptake than other plots. This suggests that emissions from small, low-input farms in this region are quite low.
Rosa Maria Roman-Cuesta, Martin Herold, Mariana C. Rufino, Todd S. Rosenstock, Richard A. Houghton, Simone Rossi, Klaus Butterbach-Bahl, Stephen Ogle, Benjamin Poulter, Louis Verchot, Christopher Martius, and Sytze de Bruin
Biogeosciences, 13, 5799–5819, https://doi.org/10.5194/bg-13-5799-2016, https://doi.org/10.5194/bg-13-5799-2016, 2016
Short summary
Short summary
The land use sector (AFOLU) is a pivotal component of countries' mitigation commitments under the Paris Agreement. Global land use data are therefore important to complement and fill in countries' data gaps. But how different are the existing AFOLU datasets and why? Here we contrast six AFOLU datasets for the tropics at different levels of aggregation (spatial, gases, emission sources) and point out possible reasons for the observed differences and the next steps to improve land use emissions.
Natalie Orlowski, Philipp Kraft, Jakob Pferdmenges, and Lutz Breuer
Hydrol. Earth Syst. Sci., 20, 3873–3894, https://doi.org/10.5194/hess-20-3873-2016, https://doi.org/10.5194/hess-20-3873-2016, 2016
Short summary
Short summary
The 2-year measurements of δ2H and δ18O in rainfall, stream, soil, and groundwater revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions in the Schwingbach catchment. We established a hydrological model to estimate spatially distributed groundwater ages and flow directions. Our model revealed complex age dynamics and showed that runoff must have been stored in the catchment for much longer than event water.
Rosa Maria Roman-Cuesta, Mariana C. Rufino, Martin Herold, Klaus Butterbach-Bahl, Todd S. Rosenstock, Mario Herrero, Stephen Ogle, Changsheng Li, Benjamin Poulter, Louis Verchot, Christopher Martius, John Stuiver, and Sytze de Bruin
Biogeosciences, 13, 4253–4269, https://doi.org/10.5194/bg-13-4253-2016, https://doi.org/10.5194/bg-13-4253-2016, 2016
Short summary
Short summary
This research provides spatial data on gross emissions from the land use sector for the tropical region for the period 2000–2005. This sector contributes up to 24 % of the global emissions, but there is little understanding of where the hotspots of emissions are, how uncertain they are, and what the human activities behind these emissions are. Data provided here should assist countries to identify priority areas for mitigation action and contrast the effectiveness of their current measures.
Giovanny M. Mosquera, Catalina Segura, Kellie B. Vaché, David Windhorst, Lutz Breuer, and Patricio Crespo
Hydrol. Earth Syst. Sci., 20, 2987–3004, https://doi.org/10.5194/hess-20-2987-2016, https://doi.org/10.5194/hess-20-2987-2016, 2016
Short summary
Short summary
This study focuses on the investigation of baseflow mean transit times (MTTs) in a high-elevation tropical ecosystem (páramo) using stable water isotopes. Results showed short MTTs (< 9 months) and topographic controls on their spatial variability. We conclude that (1) the hydrology of the ecosystem is dominated by shallow subsurface flow and (2) the interplay between the high storage capacity of the páramo soils and the catchments' slopes provides the ecosystem with high regulation capacity.
Saskia D. Keesstra, Johan Bouma, Jakob Wallinga, Pablo Tittonell, Pete Smith, Artemi Cerdà, Luca Montanarella, John N. Quinton, Yakov Pachepsky, Wim H. van der Putten, Richard D. Bardgett, Simon Moolenaar, Gerben Mol, Boris Jansen, and Louise O. Fresco
SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, https://doi.org/10.5194/soil-2-111-2016, 2016
Short summary
Short summary
Soil science, as a land-related discipline, has links to several of the UN Sustainable Development Goals which are demonstrated through the functions of soils and related ecosystem services. We discuss how soil scientists can rise to the challenge both internally and externally in terms of our relations with colleagues in other disciplines, diverse groups of stakeholders and the policy arena. To meet these goals we recommend the set of steps to be taken by the soil science community as a whole.
A. H. Aubert, O. Schnepel, P. Kraft, T. Houska, I. Plesca, N. Orlowski, and L. Breuer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-11591-2015, https://doi.org/10.5194/hessd-12-11591-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Studienlandschaft Schwingbachtal is an out-door full-scale study site since 2008. It deals with hydrology in an interdisciplinary approach and enhances active learning by various means (field monitoring, education trails and geocache). In order to adapt to the change in students habits and to suit better as a communication tool for the locals, it is newly equipped with augmented reality which adds virtual objects on the real landscape, making learning pleasant.
A. Ola, I. C. Dodd, and J. N. Quinton
SOIL, 1, 603–612, https://doi.org/10.5194/soil-1-603-2015, https://doi.org/10.5194/soil-1-603-2015, 2015
Short summary
Short summary
Plant roots are crucial in soil erosion control. Moreover, some species respond to nutrient-rich patches by lateral root proliferation. At the soil surface dense mats of roots may block soil pores thereby limiting infiltration, enhancing runoff; whereas at depth local increases in shear strength may reinforce soils at the shear plane. This review considers the potential of manipulating plant roots to control erosion.
S. Carter, M. Herold, M. C. Rufino, K. Neumann, L. Kooistra, and L. Verchot
Biogeosciences, 12, 4809–4825, https://doi.org/10.5194/bg-12-4809-2015, https://doi.org/10.5194/bg-12-4809-2015, 2015
Short summary
Short summary
Emission from agriculture-driven deforestation can be mitigated by reducing the expansion of agriculture into forests through intensification and utilizing non-forested land for agriculture. Climate-smart agriculture can reduce emissions from existing agricultural land. Tropical countries which are priorities for action can be identified by assessing the mitigation potential of these interventions, by assessing capacity for implementation and the risks associated with these approaches.
S. Multsch, J.-F. Exbrayat, M. Kirby, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 8, 1233–1244, https://doi.org/10.5194/gmd-8-1233-2015, https://doi.org/10.5194/gmd-8-1233-2015, 2015
Short summary
Short summary
Irrigation agriculture is required to sustain yields that allow feeding the world population. A robust assessment of irrigation requirement (IRR) relies on a sound quantification of evapotranspiration (ET). We prepared a multi-model ensemble considering several ET methods and investigate uncertainties in simulating IRR. More generally, we provide an example of the value of investigating the uncertainty in models that may be used to inform policy-making and to elaborate best management practices.
E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 19, 1153–1168, https://doi.org/10.5194/hess-19-1153-2015, https://doi.org/10.5194/hess-19-1153-2015, 2015
Short summary
Short summary
Stream, soil and precipitation waters were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to infer transit time distribution functions and mean transit times for semi-steady-state conditions. Samples were aggregated to diverse sampling resolutions for checking the sensitivity of sampling frequency on lumped-model predictions. Results provide valuable information for the planning of future fieldwork in similar catchments.
E. C. Brevik, A. Cerdà, J. Mataix-Solera, L. Pereg, J. N. Quinton, J. Six, and K. Van Oost
SOIL, 1, 117–129, https://doi.org/10.5194/soil-1-117-2015, https://doi.org/10.5194/soil-1-117-2015, 2015
Short summary
Short summary
This paper provides a brief accounting of some of the many ways that the study of soils can be interdisciplinary, therefore giving examples of the types of papers we hope to see submitted to SOIL.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
E. Timbe, D. Windhorst, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 1503–1523, https://doi.org/10.5194/hess-18-1503-2014, https://doi.org/10.5194/hess-18-1503-2014, 2014
N. Orlowski, H.-G. Frede, N. Brüggemann, and L. Breuer
J. Sens. Sens. Syst., 2, 179–193, https://doi.org/10.5194/jsss-2-179-2013, https://doi.org/10.5194/jsss-2-179-2013, 2013
S. Multsch, Y. A. Al-Rumaikhani, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013, https://doi.org/10.5194/gmd-6-1043-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
J.-F. Exbrayat, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 117–125, https://doi.org/10.5194/gmd-6-117-2013, https://doi.org/10.5194/gmd-6-117-2013, 2013
Related subject area
Soils and water
Addressing soil data needs and data gaps in catchment-scale environmental modelling: the European perspective
Optimized fertilization using online soil nitrate data
Depth-extrapolation of field-scale soil moisture time series derived with cosmic-ray neutron sensing using the SMAR model
Intensive agricultural management-induced subsurface accumulation of water-extractable colloidal P in a Vertisol
Perspectives on the misconception of levitating soil aggregates
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
Sequestering carbon in the subsoil benefits crop transpiration at the onset of drought
Pesticide transport through the vadose zone under sugarcane in the Wet Tropics, Australia
Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
The higher relative concentration of K+ to Na+ in saline water improves soil hydraulic conductivity, salt-leaching efficiency and structural stability
Agricultural use of compost under different irrigation strategies in a hedgerow olive grove under Mediterranean conditions – a comparison with traditional systems
Potential of natural language processing for metadata extraction from environmental scientific publications
Soil and crop management practices and the water regulation functions of soils: a qualitative synthesis of meta-analyses relevant to European agriculture
Effects of innovative long-term soil and crop management on topsoil properties of a Mediterranean soil based on detailed water retention curves
Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type
Modelling the effect of catena position and hydrology on soil chemical weathering
Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage
Effective hydraulic properties of 3D virtual stony soils identified by inverse modeling
Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils
Impact of freeze–thaw cycles on soil structure and soil hydraulic properties
Added value of geophysics-based soil mapping in agro-ecosystem simulations
A review of the global soil property maps for Earth system models
Saturated and unsaturated salt transport in peat from a constructed fen
Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria
Water in the critical zone: soil, water and life from profile to planet
Deriving pedotransfer functions for soil quartz fraction in southern France from reverse modeling
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments
Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions
Sediment concentration rating curves for a monsoonal climate: upper Blue Nile
Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study
Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties
Potential effects of vinasse as a soil amendment to control runoff and soil loss
Quantification of the inevitable: the influence of soil macrofauna on soil water movement in rehabilitated open-cut mined lands
Coupled cellular automata for frozen soil processes
Brigitta Szabó, Piroska Kassai, Svajunas Plunge, Attila Nemes, Péter Braun, Michael Strauch, Felix Witing, János Mészáros, and Natalja Čerkasova
SOIL, 10, 587–617, https://doi.org/10.5194/soil-10-587-2024, https://doi.org/10.5194/soil-10-587-2024, 2024
Short summary
Short summary
This research introduces methods and tools for obtaining soil input data in European case studies for environmental models like SWAT+. With various available soil datasets and prediction methods, determining the most suitable is challenging. The study aims to (i) catalogue open-access datasets and prediction methods for Europe, (ii) demonstrate and quantify differences between prediction approaches, and (iii) offer a comprehensive workflow with open-source R codes for deriving missing soil data.
Yonatan Yekutiel, Yuval Rotem, Shlomi Arnon, and Ofer Dahan
SOIL, 10, 335–347, https://doi.org/10.5194/soil-10-335-2024, https://doi.org/10.5194/soil-10-335-2024, 2024
Short summary
Short summary
A new soil nitrate monitoring system that was installed in a cultivated field enabled us, for the first-time, to control nitrate concentration across the soil profile. Frequent adjustment of fertilizer and water application followed the actual dynamic variation in nitrate concentration across the soil profile. Hence, a significant reduction in fertilizer application was achieved while preserving optimal crop yield.
Daniel Rasche, Theresa Blume, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2024-170, https://doi.org/10.5194/egusphere-2024-170, 2024
Short summary
Short summary
Soil moisture measurements at the field scale are highly beneficial for numerous (soil) hydrological applications. Cosmic-ray neutron sensing (CRNS) allows for the non-invasive monitoring of field-scale soil moisture across several hectares but only for the first few tens of centimeters of the soil. In this study, we modify and test a simple modelling approach to extrapolate CRNS-derived surface soil moisture information down to 450 cm depth and compare calibrated and uncalibrated model results.
Shouhao Li, Shuiqing Chen, Shanshan Bai, Jinfang Tan, and Xiaoqian Jiang
SOIL, 10, 49–59, https://doi.org/10.5194/soil-10-49-2024, https://doi.org/10.5194/soil-10-49-2024, 2024
Short summary
Short summary
The distribution of water-extractable colloids with soil profiles of 0–120 cm was investigated in a Vertisol under high-intensity agricultural management. A large number of experimental data show that colloidal phosphorus plays an important role in apatite transport throughout the profile. Thus, it is crucial to consider the impact of colloidal P when predicting surface-to-subsurface P loss in Vertisols.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Birhanu Iticha, Luke M. Mosley, and Petra Marschner
SOIL, 10, 33–47, https://doi.org/10.5194/soil-10-33-2024, https://doi.org/10.5194/soil-10-33-2024, 2024
Short summary
Short summary
Little effort has been made to develop methods to calculate the application rates of lime combined with organic amendments (OAs) needed to neutralise soil acidity and achieve the desired pH for plant growth. The previous approach of estimating appropriate lime and OA combinations based on field trials is time-consuming and costly. Hence, we developed and successfully validated a new method to calculate the amount of lime or OAs in combined applications required to ameliorate acidity.
Maria Eliza Turek, Attila Nemes, and Annelie Holzkämper
SOIL, 9, 545–560, https://doi.org/10.5194/soil-9-545-2023, https://doi.org/10.5194/soil-9-545-2023, 2023
Short summary
Short summary
In this study, we systematically evaluated prospective crop transpiration benefits of sequestering soil organic carbon (SOC) under current and future climatic conditions based on the model SWAP. We found that adding at least 2% SOC down to at least 65 cm depth could increase transpiration annually by almost 40 mm, which can play a role in mitigating drought impacts in rain-fed cropping. Beyond this threshold, additional crop transpiration benefits of sequestering SOC are only marginal.
Rezaul Karim, Lucy Reading, Les Dawes, Ofer Dahan, and Glynis Orr
SOIL, 9, 381–398, https://doi.org/10.5194/soil-9-381-2023, https://doi.org/10.5194/soil-9-381-2023, 2023
Short summary
Short summary
The study was performed using continuous measurement of temporal variations in soil saturation and of the concentration of pesticides along the vadose zone profile and underlying alluvial aquifers at sugarcane fields in the Wet Tropics of Australia. A vadose zone monitoring system was set up to enable the characterization of pesticide (non-PS II herbicides) migration with respect to pesticide application, sugarcane growing period, and, finally, rainwater infiltration.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Sihui Yan, Tibin Zhang, Binbin Zhang, Tonggang Zhang, Yu Cheng, Chun Wang, Min Luo, Hao Feng, and Kadambot H. M. Siddique
SOIL, 9, 339–349, https://doi.org/10.5194/soil-9-339-2023, https://doi.org/10.5194/soil-9-339-2023, 2023
Short summary
Short summary
The paper provides some new information about the effects of different relative concentrations of K+ to Na+ at constant electrical conductivity (EC) on soil hydraulic conductivity, salt-leaching efficiency and pore size distribution. In addition to Ca2+ and Mg2+, K+ plays an important role in soil structure stability. These findings can provide a scientific basis and technical support for the sustainable use of saline water and control of soil quality deterioration.
Laura L. de Sosa, María José Martín-Palomo, Pedro Castro-Valdecantos, and Engracia Madejón
SOIL, 9, 325–338, https://doi.org/10.5194/soil-9-325-2023, https://doi.org/10.5194/soil-9-325-2023, 2023
Short summary
Short summary
Olive groves are subject to enormous pressure to meet the social demands of production. In this work, we assess how an additional source of organic carbon and an irrigation control can somehow palliate the effect of olive grove intensification by comparing olive groves under different management and tree densities. We observed that a reduced irrigation regimen in combination with compost from the oil industry's own waste was able to enhance soil fertility under a water conservation strategy.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Alaitz Aldaz-Lusarreta, Rafael Giménez, Miguel A. Campo-Bescós, Luis M. Arregui, and Iñigo Virto
SOIL, 8, 655–671, https://doi.org/10.5194/soil-8-655-2022, https://doi.org/10.5194/soil-8-655-2022, 2022
Short summary
Short summary
This study shows how an innovative soil and crop management including no-tillage, cover crops and organic amendments is able to improve the topsoil physical quality compared to conventional management for rainfed cereal cropping in a semi-arid Mediterranean area in Navarre (Spain).
Rosolino Ingraffia, Gaetano Amato, Vincenzo Bagarello, Francesco G. Carollo, Dario Giambalvo, Massimo Iovino, Anika Lehmann, Matthias C. Rillig, and Alfonso S. Frenda
SOIL, 8, 421–435, https://doi.org/10.5194/soil-8-421-2022, https://doi.org/10.5194/soil-8-421-2022, 2022
Short summary
Short summary
The presence of microplastics in soil environments has received increased attention, but little research exists on the effects on different soil types and soil water erosion. We performed two experiments on the effects of polyester microplastic fiber on soil properties, soil aggregation, and soil erosion in three agricultural soils. Results showed that polyester microplastic fibers affect the formation of new aggregates and soil erosion and that such effects are strongly dependent on soil type.
Vanesa García-Gamero, Tom Vanwalleghem, Adolfo Peña, Andrea Román-Sánchez, and Peter A. Finke
SOIL, 8, 319–335, https://doi.org/10.5194/soil-8-319-2022, https://doi.org/10.5194/soil-8-319-2022, 2022
Short summary
Short summary
Short-scale soil variability has received much less attention than at the regional scale. The chemical depletion fraction (CDF), a proxy for chemical weathering, was measured and simulated with SoilGen along two opposite slopes in southern Spain. The results show that differences in CDF could not be explained by topography alone but by hydrological parameters. The model sensitivity test shows the maximum CDF value for intermediate precipitation has similar findings to other soil properties.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Danielle L. Gelardi, Irfan H. Ainuddin, Devin A. Rippner, Janis E. Patiño, Majdi Abou Najm, and Sanjai J. Parikh
SOIL, 7, 811–825, https://doi.org/10.5194/soil-7-811-2021, https://doi.org/10.5194/soil-7-811-2021, 2021
Short summary
Short summary
Biochar is purported to alter soil water dynamics and reduce nutrient loss when added to soils, though the mechanisms are often unexplored. We studied the ability of seven biochars to alter the soil chemical and physical environment. The flow of ammonium through biochar-amended soil was determined to be controlled through chemical affinity, and nitrate, to a lesser extent, through physical entrapment. These data will assist land managers in choosing biochars for specific agricultural outcomes.
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Yongjiu Dai, Wei Shangguan, Nan Wei, Qinchuan Xin, Hua Yuan, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, Dagang Wang, and Fapeng Yan
SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, https://doi.org/10.5194/soil-5-137-2019, 2019
Short summary
Short summary
Soil data are widely used in various Earth science fields. We reviewed soil property maps for Earth system models, which can also offer insights to soil data developers and users. Old soil datasets are often based on limited observations and have various uncertainties. Updated and comprehensive soil data are made available to the public and can benefit related research. Good-quality soil data are identified and suggestions on how to improve and use them are provided.
Reuven B. Simhayov, Tobias K. D. Weber, and Jonathan S. Price
SOIL, 4, 63–81, https://doi.org/10.5194/soil-4-63-2018, https://doi.org/10.5194/soil-4-63-2018, 2018
Short summary
Short summary
Lab experiments were performed to understand solute transport in peat from an experimental fen. Transport was analyzed under saturated and unsaturated conditions using NaCl (salt). We tested the applicability of a physical-based model which finds a wide consensus vs. alternative models. Evidence indicated that Cl transport can be explained using a simple transport model. Hence, use of the physical transport mechanism in peat should be evidence based and not automatically assumed.
Sami Touil, Aurore Degre, and Mohamed Nacer Chabaca
SOIL, 2, 647–657, https://doi.org/10.5194/soil-2-647-2016, https://doi.org/10.5194/soil-2-647-2016, 2016
M. J. Kirkby
SOIL, 2, 631–645, https://doi.org/10.5194/soil-2-631-2016, https://doi.org/10.5194/soil-2-631-2016, 2016
Short summary
Short summary
The review paper surveys the state of the art with respect to water in the critical zone, taking a broad view that concentrates on the global range of natural soils, identifying some areas of currently active research.
Jean-Christophe Calvet, Noureddine Fritz, Christine Berne, Bruno Piguet, William Maurel, and Catherine Meurey
SOIL, 2, 615–629, https://doi.org/10.5194/soil-2-615-2016, https://doi.org/10.5194/soil-2-615-2016, 2016
Short summary
Short summary
Soil thermal conductivity in wet conditions can be retrieved together with the soil quartz content using a reverse modelling technique based on sub-hourly soil temperature observations at three depths below the soil surface.
A pedotransfer function is proposed for quartz, for the considered region in France.
Gravels have a major impact on soil thermal conductivity, and omitting the soil organic matter information tends to enhance this impact.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Eléonore Beckers, Mathieu Pichault, Wanwisa Pansak, Aurore Degré, and Sarah Garré
SOIL, 2, 421–431, https://doi.org/10.5194/soil-2-421-2016, https://doi.org/10.5194/soil-2-421-2016, 2016
Short summary
Short summary
Determining the behaviour of stony soils with respect to infiltration and storage of water is of major importance, since stony soils are widespread across the globe. The most common procedure to overcome this difficulty is to describe the hydraulic characteristics of a stony soils in terms of the fine fraction of soil corrected for the volume of stones present. Our study suggests that considering this hypothesis might be ill-founded, especially for saturated soils.
Mirjam J. D. Hack-ten Broeke, Joop G. Kroes, Ruud P. Bartholomeus, Jos C. van Dam, Allard J. W. de Wit, Iwan Supit, Dennis J. J. Walvoort, P. Jan T. van Bakel, and Rob Ruijtenberg
SOIL, 2, 391–402, https://doi.org/10.5194/soil-2-391-2016, https://doi.org/10.5194/soil-2-391-2016, 2016
Short summary
Short summary
For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, which can quantify the differences between years and also the effects of extreme weather events.
Mamaru A. Moges, Fasikaw A. Zemale, Muluken L. Alemu, Getaneh K. Ayele, Dessalegn C. Dagnew, Seifu A. Tilahun, and Tammo S. Steenhuis
SOIL, 2, 337–349, https://doi.org/10.5194/soil-2-337-2016, https://doi.org/10.5194/soil-2-337-2016, 2016
Short summary
Short summary
In tropical monsoonal Africa, sediment concentration data in rivers are lacking. Using occasional historically observed sediment loads, we developed a simple method for prediction sediment concentrations. Unlike previous methods, our techniques take into account that sediment concentrations decrease with the progression of the monsoon rains. With more testing, the developed method could improve sediment predictions in monsoonal climates.
Didier Michot, Zahra Thomas, and Issifou Adam
SOIL, 2, 241–255, https://doi.org/10.5194/soil-2-241-2016, https://doi.org/10.5194/soil-2-241-2016, 2016
Short summary
Short summary
This study focuses on temporal and spatial soil moisture changes along a toposequence crossed by a hedgerow, using ERT and occasional measurements. We found that the relationship between ER and soil moisture had two behaviors depending on soil heterogeneities. ER values were consistent with occasional measurements outside the root zone. The shift in this relationship was controlled by root system density and a particular topographical context in the proximity of the hedgerow.
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016, https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Short summary
This paper addresses the evolution of engineered soils (i.e., Technosols). The formation of such soils begins with proportional mixing of urban waste. Technosols are particularly well suited for investigating the role of organisms in soil function development. This is because they provide a controlled environment where the soil development can be monitored over time.
Organisms and their interaction with parent materials positively affect the structure of Technosols.
Z. Hazbavi and S. H. R. Sadeghi
SOIL, 2, 71–78, https://doi.org/10.5194/soil-2-71-2016, https://doi.org/10.5194/soil-2-71-2016, 2016
Short summary
Short summary
This study evaluates the influences of vinasse waste of sugarcane industries on runoff and soil loss at small plot scale. Laboratory results indicated that the vinasse at different levels could not significantly (P > 0.05) decrease the runoff amounts and soil loss rates in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m−2 level of vinasse application.
S. Arnold and E. R. Williams
SOIL, 2, 41–48, https://doi.org/10.5194/soil-2-41-2016, https://doi.org/10.5194/soil-2-41-2016, 2016
Short summary
Short summary
Soil water models are used to design cover systems for containing hazardous waste following mining. Often, soil invertebrates are omitted from these calculations, despite playing a major role in soil development (nutrient cycling) and water pathways (seepage, infiltration). As such, soil invertebrates can influence the success of waste cover systems. We propose that experiments in glasshouses, laboratories and field trials on mined lands be undertaken to provide knowledge for these models.
R. M. Nagare, P. Bhattacharya, J. Khanna, and R. A. Schincariol
SOIL, 1, 103–116, https://doi.org/10.5194/soil-1-103-2015, https://doi.org/10.5194/soil-1-103-2015, 2015
Cited articles
Allen, S. E., Grimshaw, H. M., Parkinson, J. A., and Quarmby, C.: Chemical analysis of ecological materials, Blackwell Scientific Publications, Oxford, UK, 1974.
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and Sparks, D. L.: Soil and human security in the 21st century, Soil Sci., 348, 647–654, https://doi.org/10.1126/science.1261071, 2015.
Arias-Navarro, C., Díaz-Pinés, E., Zuazo, P., Rufino, M. C., Verchot, L. V., and Butterbach-Bahl, K.: Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya, Biogeochemistry, 134, 95–114, https://doi.org/10.1007/s10533-017-0348-3, 2017.
Bender, M. A., dos Santos, D. R., Tiecher, T., Minella, J. P. G., de Barros, C. A. P., and Ramon, R.: Phosphorus dynamics during storm events in a subtropical rural catchment in southern Brazil, Agric. Ecosyst. Environ., 261, 93–102, https://doi.org/10.1016/j.agee.2018.04.004, 2018.
Binge, F. W.: Geology map of the Kericho area, Ministy of Natural Resources, Geol. Surv. Kenya, 86, online, available at: https://www.samsamwater.com/maps/kenya/geology.php (last access: 21 August 2020), 1949.
Binge, F. W.: Geology of the Kericho area, Geological Survey of Kenya, Nairobi, Kenya, 1962.
Bird, M. I., Robinson, R. A. J., Win Oo, N., Maung Aye, M., Lu, X. X., Higgitt, D. L., Swe, A., Tun, T., Lhaing Win, S., Sandar Aye, K., Mi Mi Win, K., and Hoey, T. B.: A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar, Quat. Int., 186, 113–122, https://doi.org/10.1016/j.quaint.2007.08.003, 2008.
Bowes, M. J., Armstrong, L. K., Harman, S. A., Wickham, H. D., Nicholls, D. J. E., Scarlett, P. M., Roberts, C., Jarvie, H. P., Old, G. H., Gozzard, E., Bachiller-Jareno, N., and Read, D. S.: Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009–2013): the Thames Initiative research platform, Earth Syst. Sci. Data, 10, 1637–1653, https://doi.org/10.5194/essd-10-1637-2018, 2018.
Brandt, P., Hamunyela, E., Herold, M., de Bruin, S., Verbesselt, J., and Rufino, M. C.: Sustainable intensification of dairy production can reduce forest disturbance in Kenyan montane forests, Agr. Ecosyst. Environ., 265, 307–319, https://doi.org/10.1016/j.agee.2018.06.011, 2018.
Carter, S., Herold, M., Avitabile, V., De Bruin, S., De Sy, V., Kooistra, L., and Rufino, M. C.: Agriculture-driven deforestation in the tropics from 1990–2015: Emissions, trends and uncertainties, Environ. Res. Lett., 13, 014002, https://doi.org/10.1088/1748-9326/aa9ea4, 2018.
Castellanos-Navarrete, A., Tittonell, P., Rufino, M. C., and Giller, K. E.: Feeding, crop residue and manure management for integrated soil fertility management – A case study from Kenya, Agric. Syst., 134, 24–35, https://doi.org/10.1016/j.agsy.2014.03.001, 2015.
Chiti, T., Díaz-Pinés, E., Butterbach-Bahl, K., Marzaioli, F., and Valentini, R.: Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya, Plant Soil, 422, 527–539, https://doi.org/10.1007/s11104-017-3489-1, 2018.
Conelly, W. T. and Chaiken, M. S.: Intensive farming, agro-diversity, and food security under conditions of extreme population pressure in western Kenya, Hum. Ecol., 28, 19–51, https://doi.org/10.1023/A:1007075621007, 2000.
Coynel, A., Seyler, P., Etcheber, H., Meybeck, M., and Orange, D.: Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River, Global Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002335, 2005.
Dawson, J. J. C. and Smith, P.: Carbon losses from soil and its consequences for land-use management, Sci. Total Environ., 382, 165–190, https://doi.org/10.1016/j.scitotenv.2007.03.023, 2007.
Don, A., Schumacher, J., and Freibauer, A.: Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis, Glob. Change Biol., 17, 1658–1670, https://doi.org/10.1111/j.1365-2486.2010.02336.x, 2011.
Drewry, J. J., Newham, L. T. H., and Croke, B. F. W.: Suspended sediment, nitrogen and phosphorus concentrations and exports during storm-events to the Tuross estuary, Australia, J. Environ. Manage., 90, 879–887, https://doi.org/10.1016/j.jenvman.2008.02.004, 2009.
Dunne, T.: Sediment yield and land use in tropical catchments, J. Hydrol., 42, 281–300, https://doi.org/10.1016/0022-1694(79)90052-0, 1979.
Esri: DigitalGlobe, GeoEye, EarthstarGeographics, cNESAirbus DS, USDA, USGS, AeroGRID, IGN and the GIS User Community, World Imagery, online, available at: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9, last access: 22 September 2020.
Evans, D., Quinton, J., Davies, J., Zhao, J., and Govers, G.: Soil lifespans and how they can be extended by land use and management change, Environ. Res. Lett., 15, 0940b2, https://doi.org/10.1088/1748-9326/aba2fd, 2020.
Freibauer, A., Rounsevell, M. D. A., Smith, P., and Verhagen, J.: Carbon sequestration in the agricultural soils of Europe, Geoderma, 122, 1–23, https://doi.org/10.1016/j.geoderma.2004.01.021, 2004.
Gellis, A. C., Hupp, C. R., Pavich, M. J., Landwehr, J. M., Banks, W. S. L., Hubbard, B. E., Langland, M. J., Ritchie, J. C., and Reuter, J. M.: Sources, transport, and storage of sediment at selected sites in the Chesapeake Bay Watershed, U. S. Geol. Surv. Sci. Investig. Rep., 2008–5186, 95, online, available at: https://www.researchgate.net/publication/283712181_Sources_Transport_and_Storage_of_Sediment_at_Selected_Sites_in_the_Chesapeake_Bay_Watershed (last access: 18 February 2020), 2009.
Girmay, G., Singh, B. R., Nyssen, J., and Borrosen, T.: Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia, J. Hydrol., 376, 70–80, https://doi.org/10.1016/j.jhydrol.2009.07.066, 2009.
Harrington, S. T. and Harrington, J. R.: Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue, Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, 2014.
Horowitz, A. J.: Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes, Sci. Total Environ., 400, 315–343, https://doi.org/10.1016/J.SCITOTENV.2008.04.022, 2008.
Hunink, J. and Droogers, P.: Physiographical baseline survey for the Upper Tana catchment: erosion and sediment yield assessment: Report, Wageningen, the Netherlands, available at: https://www.futurewater.nl/publication/physiographical-baseline-survey-for-the-upper-tana-catchment-erosion-and-sediment-yield-assessment/ (last access: 8 September 2020), 2011.
ISRIC: Soil and terrain database for Kenya (KENSOTER), version 2.0, at scale 1 : 1 million, Wageningen, the Netherlands, Kenya Agric. Res. Inst., available at: https://data.isric.org/geonetwork/srv/api/records/73e27136-9efe-49e4-af35-fd98b841d467 (last access: 22 September 2020), 2004.
Jacobs, S. R., Weeser, B., Guzha, A. C., Rufino, M. C., Butterbach-Bahl, K., Windhorst, D., and Breuer, L.: Using high-resolution data to assess land use impact on nitrate dynamics in East African tropical montane catchments, Water Resour. Res., 54, 1812–1830, https://doi.org/10.1002/2017WR021592, 2018.
Jarvie, H. P., Sharpley, A. N., Flaten, D., and Kleinman, P. J. A.: Phosphorus mirabilis: illuminating the past and future of phosphorus stewardship, J. Environ. Qual., 48, 1127–1132, https://doi.org/10.2134/jeq2019.07.0266, 2019.
Jennings, D. J.: Geology map of the Molo area, Ministry of Natural Resources, Geol. Surv. Kenya, online, available at: https://www.samsamwater.com/maps/kenya/geology.php (last access: 22 September 2020), 1962.
Johnson, E. R., Inamdar, S., Kan, J., and Vargas, R.: Particulate organic matter composition in stream runoff following large storms: role of POM sources, particle size, and event characteristics, J. Geophys. Res.-Biogeo., 123, 660–675, https://doi.org/10.1002/2017JG004249, 2018.
Kreiling, R. M., Thoms, M. C., Bartsch, L. A., Richardson, W. B., and Christensen, V. G.: Complex response of sediment phosphorus to land use and management within a river network, J. Geophys. Res.-Biogeo., 124, 1764–1780, https://doi.org/10.1029/2019JG005171, 2019.
Lederer, J., Karungi, J., and Ogwang, F.: The potential of wastes to improve nutrient levels in agricultural soils: a material flow analysis case study from Busia District, Uganda, Agric. Ecosyst. Environ., 207, 26–39, https://doi.org/10.1016/j.agee.2015.03.024, 2015.
Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median, J. Exp. Soc. Psychol., 49, 764–766, https://doi.org/10.1016/J.JESP.2013.03.013, 2013.
López-Tarazón, J. A., López, P., Lobera, G., and Batalla, R. J.: Suspended sediment, carbon and nitrogen transport in a regulated Pyrenean river, Sci. Total Environ., 540, 133–143, https://doi.org/10.1016/j.scitotenv.2015.06.132, 2016.
Lung'ayia, H., Sitoki, L., and Kenyanya, M.: The nutrient enrichment of Lake Victoria (Kenyan waters), Hydrobiolgia, 458, 75–82, https://doi.org/10.1023/A:1013128027773, 2001.
Mainstone, C. P. and Parr, W.: Phosphorus in rivers – ecology and management, Sci. Total Environ., 282–283, 25–47, https://doi.org/10.1016/S0048-9697(01)00937-8, 2002.
Maranguit, D., Guillaume, T., and Kuzyakov, Y.: Land-use change affects phosphorus fractions in highly weathered tropical soils, Catena, 149, 385–393, https://doi.org/10.1016/j.catena.2016.10.010, 2017.
Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., Hartmann, J., and Barth, J. A. C.: A review of CO2 and associated carbon dynamics in headwater streams: a global perspective, Rev. Geophys., 55, 560–585, https://doi.org/10.1002/2016RG000547, 2017a.
Marx, A., van Geldern, R., and Barth, J.: Small streams make big contribution to carbon cycle, Eos (Washington, DC), 98, https://doi.org/10.1029/2018EO078009, 2017b.
McDaniel, M. D., David, M. B., and Royer, T. V.: Relationships between benthic sediments and water column phosphorus in Illinois streams, J. Environ. Qual., 38, 607–617, https://doi.org/10.2134/jeq2008.0094, 2009.
McDowell, R. W.: Relationship between sediment chemistry, equilibrium phosphorus concentrations, and phosphorus concentrations at baseflow in rivers of the New Zealand national river water quality network, J. Environ. Qual., 44, 921–929, https://doi.org/10.2134/jeq2014.08.0362, 2015.
Mogaka, H., Gichere, S., Davis, R., and Hirji, R.: Climate variability and water resources degradation in Kenya: improving water resources development and management, World Bank, Washington, DC, 2006.
Moran, C., Prosser, I., DeRose, R., Lu, H., Croke, B., Hughes, A., Olley, J., and Cannon, G.: Sediments and nutrients in the rivers of
the Murray-Darling Basin: targeting the future. Murray-Darling Commission Knowledge Series 14/05, Murray-Darling Basin Commission, Canberra, ISBN: 1 921038 46 2, edited by: Kim Wells, Forestry and Ecology, 2005.
Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E., and Mcgilvray, H.: Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature, Glob. Change Biol., 8, 105–123, https://doi.org/10.1046/j.1354-1013.2001.00459.x, 2002.
Mutuo, P. K., Smithson, P. C., Buresh, R. J., and Okalebo, R. J.: Comparison of phosphate rock and triple superphosphate on a phosphorus-deficient Kenyan soil, Commun. Soil Sci. Plant Anal., 30, 1091–1103, https://doi.org/10.1080/00103629909370270, 1999.
Neal, C., Neal, M., Leeks, G. J. L., Old, G., Hill, L., and Wickham, H.: Suspended sediment and particulate phosphorus in surface waters of the upper Thames Basin, UK, J. Hydrol., 330, 142–154, https://doi.org/10.1016/j.jhydrol.2006.04.016, 2006.
Nyberg, G., Bargués Tobella, A., Kinyangi, J., and Ilstedt, U.: Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya, Hydrol. Earth Syst. Sci., 16, 2085–2094, https://doi.org/10.5194/hess-16-2085-2012, 2012.
Okalebo, J. R., Othieno, C. O., Maritim, H. K., Iruria, D. M., Kipsat, M. J., Kisinyo, P. O., Kimenye, L., Woomer, P. L., Mukhwana, E. J., Batiano, A., Adipala, E., Njoroge, R. K., Thuita, M., Nekesa, A. O., and Ruto, E. C.: Management of soil fertility in western Kenya: experience working with smallholder farmers, African Crop Sci. Conf. Proc., Kampala, Uganda, December 2005, 7, 1465–1473, available at: https://www.researchgate.net/publication/281081038_Management_of_soil_fertility_in_western_Kenya_Experience_working_with_smallholder_farmers (last access: 10 September 2020), 2005.
Owuor, S. O., Butterbach-Bahl, K., Guzha, A. C., Jacobs, S., Merbold, L., Rufino, M. C., Pelster, D. E., Díaz-Pinés, E., and Breuer, L.: Conversion of natural forest results in a significant degradation of soil hydraulic properties in the highlands of Kenya, Soil Till. Res., 176, 36–44, https://doi.org/10.1016/J.STILL.2017.10.003, 2018.
Palmer-Felgate, E. J., Jarvie, H. P., Withers, P. J. A., Mortimer, R. J. G., and Krom, M. D.: Stream-bed phosphorus in paired catchments with different agricultural land use intensity, Agric. Ecosyst. Environ., 134, 53–66, https://doi.org/10.1016/j.agee.2009.05.014, 2009.
Pasley, H. R., Cairns, J. E., Camberato, J. J., and Vyn, T. J.: Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe, Nutr. Cycl. Agroecosystems, 115, 373–389, https://doi.org/10.1007/s10705-019-10016-1, 2019.
Pavanelli, D. and Selli, L.: Effective size characteristics of suspended sediment and nutrient concentrations during flood events in the Reno River Tributaries (Northern Italy), Procedia Environ. Sci., 19, 723–732, https://doi.org/10.1016/j.proenv.2013.06.081, 2013.
Penny, R.: Desertification and deforestation in Africa, in Land use, land cover and soil sciences, pp. 201–219, UNESCO-Encyclopedia of Life Support Systems (EOLSS), online, available at: http://www.eolss.net/ebooklib/cart.aspx (last access: 23 January 2020), 2009.
Phillips, J. M., Russell, M. A., and Walling, D. E.: Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments, Hydrol. Process., 14, 2589–2602, https://doi.org/10.1002/1099-1085(20001015)14:14<2589::AID-HYP94>3.0.CO;2-D, 2000.
Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., Hirsch, P. R., and Goulding, K. W. T.: Soil management in relation to sustainable agriculture and ecosystem services, Food Policy, 36, S72–S87, https://doi.org/10.1016/j.foodpol.2010.11.025, 2011.
Quinton, J. N., Catt, J. A., and Hess, T. M.: The selective removal of phosphorus from soil, J. Environ. Qual., 30, 538, https://doi.org/10.2134/jeq2001.302538x, 2001.
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 10 September 2020), 2017.
Ramos, T. B., Gonçalves, M. C., Branco, M. A., Brito, D., Rodrigues, S., Sánchez-Pérez, J. M., Sauvage, S., Prazeres, Â., Martins, J. C., Fernandes, M. L., and Pires, F. P.: Sediment and nutrient dynamics during storm events in the Enxoé temporary river, southern Portugal, Catena, 127, 177–190, https://doi.org/10.1016/j.catena.2015.01.001, 2015.
Rodríguez-Blanco, M. L., Taboada-Castro, M. M., Taboada-Castro, M. T., and Oropeza-Mota, J. L.: Relationships between phosphorus and suspended sediment concentrations in a stream draining a rural area in NW Spain, Commun. Soil Sci. Plant Anal., 46, 339–345, https://doi.org/10.1080/00103624.2014.989105, 2015.
Russell, M. A., Walling, D. E., and Hodgkinson, R. A.: Suspended sediment sources in two small lowland agricultural catchments in the UK, J. Hydrol., 252, 1–24, https://doi.org/10.1016/S0022-1694(01)00388-2, 2001.
Saiz, G., Wandera, F. M., Pelster, D. E., Ngetich, W., Okalebo, J. R., Rufino, M. C., and Butterbach-Bahl, K.: Long-term assessment of soil and water conservation measures (Fanya-juu terraces) on soil organic matter in South Eastern Kenya, Geoderma, 274, 1–9, https://doi.org/10.1016/j.geoderma.2016.03.022, 2016.
Sandström, S., Futter, M. N., Kyllmar, K., Bishop, K., O'Connell, D. W., and Djodjic, F.: Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics, Sci. Total Environ., 711, 134616, https://doi.org/10.1016/j.scitotenv.2019.134616, 2020.
Scanlon, T. M., Kiely, G., and Xie, Q.: A nested catchment approach for defining the hydrological controls on non-point phosphorus transport, J. Hydrol., 291, 218–231, https://doi.org/10.1016/j.jhydrol.2003.12.036, 2004.
Smaling, E. M. A., Stoorvogel, J. J., and Windmeijer, P. N.: Calculating soil nutrient balances in Africa at different scales – II. District scale, Fertil. Res., 35, 237–250, https://doi.org/10.1007/BF00750642, 1993.
Smith, D. R., Jarvie, H. P., and Bowes, M. J.: Carbon, nitrogen, and posphorus stoichiometry and eutrophication in River Thames tributaries, UK, Agric. Environ. Lett., 2, 1–4, https://doi.org/10.2134/ael2017.06.0020, 2017.
Smith, V. H. and Schindler, D. W.: Eutrophication science: where do we go from here?, Trends Ecol. Evol., 24, 201–207, https://doi.org/10.1016/j.tree.2008.11.009, 2009.
Sombroek, W. G., Braun, H. M. H., and van der Pouw, B. J.: Exploratory soil map and agro-climatic zone map of Kenya, 1980, scale 1:1 000 000, E1 ed., Ministry of Agriculture – National Agricultural Laboratories, Kenya., 1982.
Stenfert Kroese, J.: Macronutrient (TC, TN and TP) concentrations and time series of rainfall, discharge and suspended sediment concentrations of 2018 and 2019, Lancaster University, https://doi.org/10.17635/lancaster/researchdata/387, 2020.
Stenfert Kroese, J., Batista, P. V. G., Jacobs, S. R., Breuer, L., Quinton, J. N., and Rufino, M. C.: Agricultural land is the main source of stream sediments after conversion of an African montane forest, Sci. Rep., 10, 1–15, https://doi.org/10.1038/s41598-020-71924-9, 2020a.
Stenfert Kroese, J., Jacobs, S., Tych, W., Breuer, L., Quinton, J. N., and Rufino, M. C.: Tropical montane forest conversion is a critical driver for sediment supply in East African catchments, Water Resour. Res., 56, 1–20, https://doi.org/10.1029/2020WR027495, 2020b.
Tamene, L., Park, S. J., Dikau, R., and Vlek, P. L. G.: Reservoir siltation in the semi-arid highlands of northern Ethiopia sediment yield-catchment area relationship and a semi-quantitative approach for predecting sediment yield, Earth Surf. Process. Landforms, 31, 1364–1383, https://doi.org/10.1002/esp.1338, 2006.
Tamooh, F., Van den Meersche, K., Meysman, F., Marwick, T. R., Borges, A. V., Merckx, R., Dehairs, F., Schmidt, S., Nyunja, J., and Bouillon, S.: Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya, Biogeosciences, 9, 2905–2920, https://doi.org/10.5194/bg-9-2905-2012, 2012.
Tamooh, F., Meysman, F. J. R., Borges, A. V., Marwick, T. R., Van Den Meersche, K., Dehairs, F., Merckx, R., and Bouillon, S.: Sediment and carbon fluxes along a longitudinal gradient in the lower Tana River (Kenya), J. Geophys. Res.-Biogeo., 119, 1340–1353, https://doi.org/10.1002/2013JG002358, 2014.
Tiffen, M., Mortimore, M., and Gichuki, F.: More people, less erosion: environmental recovery in Kenya, African Centre for Technology Studies (ACTS) Press, Nairobi, Kenya, 1994.
Tully, K., Sullivan, C., Weil, R., and Sanchez, P.: The state of soil degradation in sub-Saharan Africa: baselines, trajectories, and solutions, Sustainability, 7, 6523–6552, https://doi.org/10.3390/su7066523, 2015.
UNEP: Mau Complex and Marmanet forests, Environmental and economic contributions, current state and trends. Briefing notes compiled by the team that participated in the reconnaissance flight on 7 May 2008, in consultation with relevant government departments, Nairobi, Kenya, available at: http://hdl.handle.net/20.500.11822/28379 (last access: 15 October 2020), 2008.
USGS: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, US Geological Survey, Reston, Virginia, USA, 2000.
Vanmaercke, M., Poesen, J., Broeckx, J., and Nyssen, J.: Sediment yield in Africa, Earth-Science Rev., 136, 350–368, https://doi.org/10.1016/j.earscirev.2014.06.004, 2014.
Walling, D. E., Webb, B. W., and Russell, M. A.: Sediment-associated nutrient transport in UK rivers, in: Freshwater Contamination, vol. 243, 69–81, IAHS Publ, Rabat, Morocco, 1997.
Walling, D. E., Russell, M. A., and Webb, B. W.: Controls on the nutrient content of suspended sediment transported by British rivers, Sci. Total Environ., 266, 113–123, https://doi.org/10.1016/S0048-9697(00)00746-4, 2001.
Wang, X. Q., Liu, Z. C., Miao, J. L., and Zuo, N.: Relationship between nutrient pollutants and suspended sediments in upper reaches of Yangtze River, Water Sci. Eng., 8, 121–126, https://doi.org/10.1016/j.wse.2015.04.003, 2015.
Wanyama, I., Pelster, D. E., Arias-Navarro, C., Butterbach-Bahl, K., Verchot, L. V., and Rufino, M. C.: Management intensity controls soil N2O fluxes in an Afromontane ecosystem, Sci. Total Environ., 624, 769–780, https://doi.org/10.1016/j.scitotenv.2017.12.081, 2018.
Weil, R. R. and Brady, N. C.: The nature and properties of soils, 15th edn., edited by: Fox, D., Pearson, Columbus, 2016.
Withers, P. J. A., Edwards, A. C., and Foy, R. H.: Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil, Soil Use Manag., 17, 139–149, https://doi.org/10.1111/j.1475-2743.2001.tb00020.x, 2001.
Zhou, M., Brandt, P., Pelster, D., Rufino, M. C., Robinson, T., and Butterbach-Bahl, K.: Regional nitrogen budget of the Lake Victoria Basin, East Africa: Syntheses, uncertainties and perspectives, Environ. Res. Lett., 9, 105009, https://doi.org/10.1088/1748-9326/9/10/105009, 2014.
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment...