Articles | Volume 7, issue 1
https://doi.org/10.5194/soil-7-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-7-15-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial variability in heavy metal concentration in urban pavement joints – a case study
Collin J. Weber
CORRESPONDING AUTHOR
Department of Geography, Philipps University Marburg, 35037 Marburg,
Germany
Alexander Santowski
Department of Geography, Philipps University Marburg, 35037 Marburg,
Germany
Peter Chifflard
Department of Geography, Philipps University Marburg, 35037 Marburg,
Germany
Related authors
Collin J. Weber, Christian Opp, Julia A. Prume, Martin Koch, and Peter Chifflard
SOIL Discuss., https://doi.org/10.5194/soil-2022-1, https://doi.org/10.5194/soil-2022-1, 2022
Revised manuscript not accepted
Short summary
Short summary
Plastics, as new contaminations in soils, occur within also in near-river floodplain soils. Until know it remains unclear, how microplastics are spatially distributed within floodplain soils, how they are reaching those soils and if they interact with other pollutants. Within this study, we found both plastics and heavy metal enrichments within the studied floodplain soils. Both contaminants have a different spatial distribution, indicating different sources and periods of soil contamination.
Collin J. Weber, Volker M. H. Dickhardt, and Stefan Harnischmacher
E&G Quaternary Sci. J., 70, 165–169, https://doi.org/10.5194/egqsj-70-165-2021, https://doi.org/10.5194/egqsj-70-165-2021, 2021
Short summary
Short summary
Evidence of Laacher See tephra in floodplains is mostly restricted to quarry profiles. Within the survey, the spatial distribution of tephra in the entire floodplain is investigated. It became clear that the tephra covers a large part of the floodplain area at different depths and that the deposits allow the river system to be reconstructed at the time of deposition.
Theresa Blume, Peter Chifflard, Stefan Achleitner, Andreas Hartmann, Stefan Hergarten, Luisa Hopp, Bernhard Kohl, Florian Leese, Ilja van Meerveld, Christian Reinhardt-Imjela, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2025-4424, https://doi.org/10.5194/egusphere-2025-4424, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Subsurface stormflow (SSF) is one of the least studied and therefore least understood runoff generation processes because detecting and quantifying SSF is extremely challenging. We present an ongoing concerted experimental effort to systematically investigate SSF across four catchments using a variety of methods covering different spatial scales. Centerpiece of this effort is the construction of 12 large trenches to capture and monitor SSF.
Collin J. Weber, Christian Opp, Julia A. Prume, Martin Koch, and Peter Chifflard
SOIL Discuss., https://doi.org/10.5194/soil-2022-1, https://doi.org/10.5194/soil-2022-1, 2022
Revised manuscript not accepted
Short summary
Short summary
Plastics, as new contaminations in soils, occur within also in near-river floodplain soils. Until know it remains unclear, how microplastics are spatially distributed within floodplain soils, how they are reaching those soils and if they interact with other pollutants. Within this study, we found both plastics and heavy metal enrichments within the studied floodplain soils. Both contaminants have a different spatial distribution, indicating different sources and periods of soil contamination.
Collin J. Weber, Volker M. H. Dickhardt, and Stefan Harnischmacher
E&G Quaternary Sci. J., 70, 165–169, https://doi.org/10.5194/egqsj-70-165-2021, https://doi.org/10.5194/egqsj-70-165-2021, 2021
Short summary
Short summary
Evidence of Laacher See tephra in floodplains is mostly restricted to quarry profiles. Within the survey, the spatial distribution of tephra in the entire floodplain is investigated. It became clear that the tephra covers a large part of the floodplain area at different depths and that the deposits allow the river system to be reconstructed at the time of deposition.
Cited articles
Ad-hoc AG Boden: Bodenkundliche Kartieranleitung, Schweizerbart,
Stuttgart, Germany, 2005.
Alloway, B. J.: Heavy Metals in Soils, Springer, Dordrecht, The Netherlands, 2013.
Arnfield, A.J.: Two decades of urban climate research: A review of
turbulence, exchanges of energy and water, and the urban heat island,
Int. J. Climatol., 23, 1–26, https://doi.org/10.1002/joc.859, 2003.
Atanackovic, N., Dragisic, V., Stojkovic, J., Papic, P., and Zivanovic, V.:
Hydrochemical characteristics of mine waters from abandoned mining sites in
Serbia and their impact on surface water quality, Environ. Sci.
Pollut. R., 20, 7615–7626, https://doi.org/10.1007/s11356-013-1959-4, 2013.
Bąbelewska, A.: The impact of industrial emissions on heavy metal and
sulphur contamination level within the area of the projected Jurassic
National Park, Prądnik Studies and Reports of the Prof Władysław
Szafer Museum, 20, 135–145, 2010.
Bain, D. C., Ritchie, P. F. S., Clark, D. R., and Duthie, D. M. L.:
Geochemistry and mineralogy of weathered basalt from Morvern, Scotland,
Mineral. Mag., 43, 865–872, 1980.
Bean, E. Z., Hunt, W.-F., and Bidelspach, D. A.: Field survey of permeable
pavement surface infiltration rates, J. Irrig. Drain.
E., 133, 249–255, https://doi.org/10.1061/(ASCE)0733-9437(2007)133:3(249),
2007.
Björk, F. and Eriksson, C. A.: Measurement of alkalinity in concrete by
a simple procedure, to investigate transport of alkaline material from the
concrete slab to a self-levelling screed, Constr. Build.
Mater., 16, 535–542, 2002.
Blume, H.-P., Horn, R., and Thiele-Bruhn, S.: Handbuch des
Bodenschutzes: Bodenökologie und -belastung; vorbeugende und abwehrende
Schutzmaßnahmen, Wiley-VCH, Weinheim, Germany, 2011.
Blume, H.-P., Brümmer, G. W., Fleige, H., Horn, R., Kandeler, E.,
Kögel-Knabner, I., Kretzschmar, R., Stahr, K., and Wilke, B.-M.:
Scheffer/Schachtschabel Soil Science, Springer, Berlin and
Heidelberg, Germany, 2016.
Bryan Ellis, J. and Revitt, D. M.: Incidence of heavy metals in street
surface sediments: Solubility and grain size studies, Water Air Soil
Pollution, 17, 87–100, 1982.
Bundesregierung: Bundes-Bodenschutz- und Altlastenverordnung: BBodSchV, Bundesregierung, Berlin,
1998.
Bund-/Länderarbeitsgemeinschaft Bodenschutz: Hintergrundwerte für
anorganische und organische Stoffe in Böden, Bund-/Länderarbeitsgemeinschaft Bodenschutz, Magdeburg, Germany,
2003.
Bürgerversammlung Marbach: Entwicklung der Verkehre in Marburg (Traffic
development in Marburg), unpublished presentation, Stadt Marburg, Marburg, Germany, 2019.
Burghardt, W.: Zur Gliederung von Stadtböden und ihrer Substrate,
Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 76, 997–1000,
1995.
Burghardt, W., Morel, J. L., and Zhang, G.-L.: Development of the soil
research about urban, industrial, traffic, mining and military areas
(SUITMA), Soil Sci. Plant Nutr., 61, 3–21, 2015.
Cai, C., Xiong, B., Zhang, Y., Li, X., and Nunes, L. M.: Critical Comparison
of Soil Pollution Indices for Assessing Contamination with Toxic Metals,
Water Air Soil Pollution, 226, 352, https://doi.org/10.1007/s11270-015-2620-2, 2015.
Chopra, M., Kakuturu, S., Ballok, C., Spence, J., and Wanielista, M.: Effect
of rejuvenation methods on the infiltration rates of pervious concrete
pavements, J. Hydrol. Eng., 15, 426–433, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000117, 2010.
Christoforidis, A. and Stamatis, N.: Heavy metal contamination in street
dust and roadside soil along the major national road in Kavala's region,
Greece, Geoderma, 151, 257–263, https://doi.org/10.1016/j.geoderma.2009.04.016,
2009.
Craul, P. J.: Urban soils: Applications and practices, Wiley, New York, USA, 1999.
Defo, C., Yerima, B. P. K., and Bemmo, N.: Investigating soils retention
ratios and modelling geochemical factors affecting heavy metals retention in
soils in a tropical urban watershed, Environ. Dev.
Sustain., 19, 1649–1671, https://doi.org/10.1007/s10668-016-9819-2, 2017.
Deutsches Institut für Normung e.V.: Handbuch der
Bodenuntersuchung. Terminologie, Verfahrensvorschriften und
Datenblätter; physikalische, chemische, biologische
Untersuchungsverfahren; gesetzliche Regelwerke, Wiley-VCH, Berlin, Germany, 2000.
Dierkes, C., Holte, A., and Geiger, W. F.: Heavy metal retention within a
porous pavement structure, in: Proceedings of the Eighth International Conference on
Urban Storm Drainage, 30 August–3 September 1999, Sydney, 1955–1962, 1999.
Dierkes, C., Kuhlmann, L., Kandasamy, J., and Angelis, G.: Pollution
retention capability and maintenance of permeable pavements, in: Urban
drainage 2002: Global solutions for urban drainage, edited by: Strecker, E. W. and
Huber, W. C., American Society of Civil Engineers, Reston, VA, USA,
1–13, 2004.
Dierkes, C., Lohmann, M., Becker, M., and Raasch, U.: Pollution retention of
different permeable pavements with reservoir structure at high hydraulic
loads, in: Proceedings of the 10th International Conference on Urban
Drainage, Copenhagen, Denmark, 21 August–26 August 2005, 2005.
Dragovic, S., Mihailovic, N., and
Gajic, U.: Heavy metals in soils: Distribution, relationship
with soil characteristics
and radionuclides and multivariate assessment of contamination sources,
Chemosphere, 72, 491–495, https://doi.org/10.1016/j.chemosphere.2008.02.063, 2008.
Drake, J. and Bradford, A.: Assessing the potential for restoration of
surface permeability for permeable pavements through maintenance, Water
Sci. Technol., 68, 1950–1958, https://doi.org/10.2166/wst.2013.450, 2013.
Drake, J., Bradford, A., and van Seters, T.: Stormwater quality of
spring-summer-fall effluent from three partial-infiltration permeable
pavement systems and conventional asphalt pavement, J. Environ.
Manage., 139, 69–79, https://doi.org/10.1016/j.jenvman.2013.11.056, 2014.
Duong, T. T. T. and Lee, B.-K.: Determining contamination level of heavy
metals in road dust from busy traffic areas with different characteristics,
J. Environ. Manage., 92, 554–562,
https://doi.org/10.1016/j.jenvman.2010.09.010, 2011.
Fach, S. and Geiger, W. F.: Effective pollutant retention capacity of
permeable pavements for infiltrated road runoffs determined by laboratory
tests, Water Sci. Technol., 51, 37–45, 2005.
FAO: Guidelines for soil description, Food and Agriculture
Organization of the United Nations, Rome, Italy, 2006.
Friedrich, K. and Lügger, K.: Hintergrundwerte von Spurenstoffen in
hessischen Böden, Hessian Agency of Nature Conservation, Environment and
Geology (HLNUG), Wiesbaden, Germany, 2011.
Gałuszka, A., Migaszewski, Z. M., and Zalasiewicz, J.: Assessing the
Anthropocene with geochemical methods, Geological Society, London, Special
Publications, 395, 221–238, 2014.
Gilbert, J. K. and Clausen, J. C.: Stormwater runoff quality and quantity
from asphalt, paver, and crushed stone driveways in Connecticut, Water
Res., 40, 826–832, https://doi.org/10.1016/j.watres.2005.12.006, 2006.
Grimmond, C. S. B. and Oke, T. E.: Aerodynamic properties of urban areas
derived from analyses of surface form, J. Appl. Meteorol., 38,
1262–1292, 1998.
Gunawardena, J., Ziyath, A. M., Egodawatta, P., Ayoko, G. A., and
Goonetilleke, A.: Sources and transport pathways of common heavy metals to
urban road surfaces, Ecol. Eng., 77, 98–102,
https://doi.org/10.1016/j.ecoleng.2015.01.023, 2015.
Hagler, G. S. W., Tang, W., Freeman, M. J., Heist, D. K., Perry, S. G., and
Vette, A. F.: Model evaluation of roadside barrier impact on near-road air
pollution, Atmos. Environ., 45, 2522–2530,
https://doi.org/10.1016/j.atmosenv.2011.02.030, 2011.
Hakanson, L.: An ecological risk index for aquatic pollution control. a
sedimentological approach, Water Res., 14, 975–1001,
https://doi.org/10.1016/0043-1354(80)90143-8, 1980.
Herms, U. and Brümmer, G.: Einflussgrößen der Schwermetalllöslichkeit und -bindung in Böden, J. Plant Sci. Soil Sci., 147, 400–424, 1984.
Herngren, L., Goonetilleke, A., and Ayoko, G. A.: Analysis of heavy metals
in road-deposited sediments, Analytica Chemica Acta, 571, 270–278,
https://doi.org/10.1016/j.aca.2006.04.064, 2006.
Hessen Mobil: Verkehrszählung 2015 (Traffic census 2015), available at:
https://mobil.hessen.de/%C3%BCber-uns/downloads-formulare/stra%C3%9Fenverkehrsz%C3%A4hlung-2015, last access: 5 July 2020.
Hessian administration for land management and geoinformation: Airborne
laser scanning dataset, Hessian Administration for Land Management and
Geoinformation, Wiesbaden, Germany, 2019.
Hessisches Statistisches Landesamt: Hessische Gemeindestatistik 2019
(Hessian municipal statistics 2019), Hessisches Statistisches Landesamt
(Hessian State Statistical Office), Wiesbaden, Germany, 2019.
IPCC: Global Warming of 1.5∘C. An IPCC Special Report on the
impacts of global warming of 1.5∘C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by:
Masson-Delmotte,
V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A.,
Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., IPCC, Genf, 2018.
IUSS Working Group: World reference base for soil resources 2014, update
2015: International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports, FAO, Rome, 203 pp., 2015.
Jung, S. and Masberg, P.: Major- and trace element systematics and isotope
geochemistry of cenozoic mafic volcanic rocks from the Vogelsberg (Central
Germany): Constraints on the origin of continental alkaline and tholeiitic
basalts and their mantle sources, J. Volcanol. Geoth.
Res., 86, 151–177, 1998.
Kabata-Pendias, A.: Trace elements of soils and plants,
CRC press, Boca Raton, FL, USA, 2011.
Kowalska, J. B., Mazurek, R., Gąsiorek, M., and Zaleski, T.: Pollution
indices as useful tools for the comprehensive evaluation of the degree of
soil contamination – A review, Environ. Geochem. Hlth, 40,
2395–2420, https://doi.org/10.1007/s10653-018-0106-z, 2018.
Lee, S. Z., Chang, L., Yang, H. H., Chen, C. M., and Liu, M. C.: Adsorption
characteristics of lead onto soils, J. Hazard. Mater., 63,
37–49. https://doi.org/10.1016/S0304-3894(98)00203-9, 1998.
Lehmann, A. and Stahr, K.: Nature and significance of anthropogenic urban
soils, J. Soils Sediment., 7, 247–260,
https://doi.org/10.1065/jss2007.06.235, 2007.
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., and Huang, L.: A review of
soil heavy metal pollution from mines in China: Pollution and health risk
assessment, Sci. Total Environ., 468/469, 843–853, https://doi.org/10.1016/j.scitotenv.2013.08.090, 2014.
Logiewa, A., Miazgowicz, A., Krennhuber, K., and Lanzerstorfer, C.:
Variation in the concentration of metals in road dust size fractions between
2m and 2mm: Results from three metallurgical centres in Poland,
Arch. Environ. Con. Tox., 78, 46–59,
https://doi.org/10.1007/s00244-019-00686-x, 2020.
Lu, S. G. and Bai, S. Q.: Contamination and potential mobility assessment of
heavy metals in urban soils of Hangzhou, China: relationship with different
land uses, Environ. Earth-Sci., 60, 1481–1490,
https://doi.org/10.1007/s12665-009-0283-2, 2010.
Luo, X.-S., Yu, S., Zhu, Y.-G., and Li, X.-D.: Trace metal contamination in
urban soils of China, Sci. Total Environ., 421/422, 17–30, https://doi.org/10.1016/j.scitotenv.2011.04.020, 2012.
Mahanta, M. J. and Bhattacharyya, K. G.: Total concentrations, fractionation
and mobility of heavy metals in soils of urban area of Guwahati, India,
Environ. Monit. Assess., 173, 221–240,
https://doi.org/10.1007/s10661-010-1383-x, 2011.
Manta, D. S., Angelone, M., Bellanca, A., Neri, R., and Sprovieri, M.: Heavy
metals in urban soils: a case study from the city of Palermo (Sicily),
Italy, Sci. Total Environ., 300, 229–243,
https://doi.org/10.1016/S0048-9697(02)00273-5, 2002.
McLaren, R. G., Williams, J. G., and Swift, R. S.: The adsorption of copper by
soil samples from Scotland at low equilibrium solution concentrations,
Geoderma, 31, 97–106, https://doi.org/10.1016/0016-7061(83)90001-0, 1983.
Miller, J. R.: The role of fluvial geomorphic processes in the dispersal of
heavy metals from mine sites, J. Geochem. Explor., 58,
101–118, 1997.
Munzi, S., Correia, O., Silva, P., Lopes, N., Freitas, C., Branquinho, C., and
Pinho, P.: Lichens as ecological indicators in urban areas: beyond the
effects of pollutants, J. Appl. Ecol., 51, 1750–1757,
https://doi.org/10.1111/1365-2664.12304, 2014.
R Core Team: R: A language and environment for
statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/, last access: 3 February 2019.
Räsänen, V. and Penttala, V.: The pH measurement of concrete and
smoothing mortar using a concrete powder suspension, Cement Concrete
Res., 34, 813–820, https://doi.org/10.1016/j.cemconres.2003.09.017, 2004.
Rudnick, R. L. and Gao, S.: Composition of the continental crust, treatise
on geochemistry, Treatise on Geochemistry, 3, 1–64, 2003.
Sakson, G., Brzezinska, A., and Zawilski, M.: Emission of heavy metals from
an urban catchment into receiving water and possibility of its limitation on
the example of Lodz city, Environ. Monit. Assess., 190, 281,
https://doi.org/10.1007/s10661-018-6648-9, 2018.
Sansalone, J. J., Koran, J. M., Smithson, J. A., and Buchberger, S. G.:
Physical characteristics of urban roadway solids transported during rain
events, J. Environ. Eng., 124, 427–440,
https://doi.org/10.1061/(ASCE)0733-9372(1998)124:5(427), 1998.
Schad, P.: Technosols in the World Reference Base for Soil Resources –
history and definitions, Soil Sci. Plant Nutr., 64, 138–144,
https://doi.org/10.1080/00380768.2018.1432973, 2018.
Seaward, M. R. D.: Lower plants and the urban landscape, Urban Ecol., 4,
217–225, 1979.
Sorme, L. and Lagerkvist, R.: Sources of heavy metals in urban wastewater in
Stockholm, Sci. Total Environ., 298, 131–145,
https://doi.org/10.1016/S0048-9697(02)00197-3, 2002.
Strode, S., Jaeglé, L., and Selin, N. E.: Impact of mercury emissions
from historic gold and silver mining: Global modeling, Atmos.
Environ., 43, 2012–2017, https://doi.org/10.1016/j.atmosenv.2009.01.006, 2009.
Tetoldi, D., Chebbo, G., Pierlot, D., Kovacs, Y., and Gromaire, M.-C.: Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review, Sci. Total Environ., 569, 904–926, 2016.
Tedoldi, D., Chebbo, G., Pierlot, D., Branchu, P., Kovacs, Y., and Gromaire,
M.-C.: Spatial distribution of heavy metals in the surface soil of
source-control stormwater infiltration devices – Inter-site comparison,
Sci. Total Environ., 579, 881–892,
https://doi.org/10.1016/j.scitotenv.2016.10.226, 2017.
Thomas, R.: A beginner's guide to ICP-MS – Part VII: Mass separation devices
– Double-focusing magnetic-sector technology, Spectroscopy, 16, 22–27,
2001.
United Nations, Department of Economic and Social Affairs: Population
Division (2019), World Urbanization Prospects, The 2018 Revision
(ST/ESA/SER.A/420), United Nations, New York, USA, 2019.
Vardoulakis, S., Fisher, B. E. A., Pericleous, K., and Gonzalez-Flesca, N.:
Modelling air quality in street canyons: a review, Atmos. Environ.,
37, 155–182, https://doi.org/10.1016/S1352-2310(02)00857-9, 2003.
Voica, C., Dehelean, A., Iordache, A., and Geana, I.: Method validation for
determination of metals in soils by ICP-MS, Rom. Rep. Phys., 64,
221–231, 2012.
Wang, X., Wang, X., Sun, X., Berlyn, G. P., and Rehim, A.: Effect of pavement and
water deficit on biomass allocation and whole-tree transpiration in two
contrasting urban tree species, Urban Ecosyst., 23, 893–904,
https://doi.org/10.1007/s11252-020-00953-z, 2020.
Weber, C. J., Santowski, A., and Chifflard, P.: Spatial
variability of heavy metal concentration in urban pavement joints – A case
study, Mendeley Data v1, https://doi.org/10.17632/b3d66r56k8.1, 2020.
Wei, T. and Simko, V.: R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84), available at: https://github.com/taiyun/corrplot (last access: 3 February 2019), 2017.
Weihrauch, C.: Phosphor-Dynamiken in Böden, Springer Spektrum, Wiesbaden, 369 pp., https://doi.org/10.1007/978-3-658-22348-9, 2018.
Wessolek, G., Kluge, B., Nehlis, T., and Kocher, B.: Aspekte zum
Wasserhaushalt und Stofftransport urbaner Flächen, Korrespondenz
Wasserwirtschaft, 4, 1–12, 2009.
Yan, X., Gao, D., Zhang, F., Zeng, C., Xiang, W., and Zhang, M.:
Relationships between heavy metal concentrations in roadside topsoil and
distance to road edge based on field observations in the Qinghai-Tibet
Plateau, China, Int. J. Env. Res. Pub.
He., 10, 762–775, https://doi.org/10.3390/ijerph10030762, 2013.
Zhang, K., Yong, F., McCarthy, D. T., and Deletic, A.: Predicting long term
removal of heavy metals from porous pavements for stormwater treatment,
Water Res., 142, 236–245, https://doi.org/10.1016/j.watres.2018.05.038, 2018.
Zhang, R., Zhang, Y., Liu, L., Wang, Y., Song, Z., Wang, Z., Liu, C., Li,
Y., Meng, W., Zhou, Y., Sun, D., and Qi, F.: Occurrence and risk assessment
of heavy metals in an urban river supplied by reclaimed wastewater, Water
Environ. Res., 92, 1888–1898, https://doi.org/10.1002/wer.1341, 2020.
Zimmermann-Janschitz, S.: Statistik in der Geographie: Eine Exkursion durch
die deskriptive Statistik, Springer Spektrum, Berlin, Germany, 2014.
Short summary
Pavement joints, defined as the joint between paving stones and filled with different materials, in the inner city area of Marburg (Hesse, Germany) show moderate to high pollution with different heavy metals. Enrichment of heavy metals in pavement joints is related to surface run-off accumulation. As the pollution of pavement joints poses direct risks to the environment and humans in urban areas, the inconspicuous joints should be considered in urban water management strategies.
Pavement joints, defined as the joint between paving stones and filled with different materials,...