Original research article 26 Nov 2020
Original research article | 26 Nov 2020
Long-term field experiments in Germany: classification and spatial representation
Meike Grosse et al.
Related authors
No articles found.
Moritz Laub, Michael Scott Demyan, Yvonne Funkuin Nkwain, Sergey Blagodatsky, Thomas Kätterer, Hans-Peter Piepho, and Georg Cadisch
Biogeosciences, 17, 1393–1413, https://doi.org/10.5194/bg-17-1393-2020, https://doi.org/10.5194/bg-17-1393-2020, 2020
Short summary
Short summary
Loss of soil carbon to the atmosphere represents a global challenge. We tested an innovative way to reduce the high uncertainty related to turnover of carbon stored in soils. With the use of infrared spectra of soils from model bare fallow systems, we were able to better assess the current state of soil carbon and predict its behavior in overdecadal time spans. In agreement with recent studies, carbon turnover seems faster than earlier assumed, with potential for high loss under mismanagement.
Hans-Jörg Vogel, Stephan Bartke, Katrin Daedlow, Katharina Helming, Ingrid Kögel-Knabner, Birgit Lang, Eva Rabot, David Russell, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 4, 83–92, https://doi.org/10.5194/soil-4-83-2018, https://doi.org/10.5194/soil-4-83-2018, 2018
Short summary
Short summary
This paper deals with the importance of soil for our terrestrial environment and the need to predict the impact of soil management on the multitude of functions that soil provides. We suggest to consider soil as a self-organized complex system and provide a concept of how this could be achieved. This includes how soil research, currently fragmented into a number of more or less disjunct disciplines, may be integrated to substantially contribute to a science-based evaluation of soil functions.
Johanna I. F. Slaets, Hans-Peter Piepho, Petra Schmitter, Thomas Hilger, and Georg Cadisch
Hydrol. Earth Syst. Sci., 21, 571–588, https://doi.org/10.5194/hess-21-571-2017, https://doi.org/10.5194/hess-21-571-2017, 2017
Short summary
Short summary
Determining measures of uncertainty on loads is not trivial, as a load is a product of concentration and discharge per time point, summed up over time. A bootstrap approach enables the calculation of confidence intervals on constituent loads. Ignoring the uncertainty on the discharge will typically underestimate the width of 95 % confidence intervals by around 10 %. Furthermore, confidence intervals are asymmetric, with the largest uncertainty on the upper limit.
Related subject area
Soil as a resource
Adsorption to soils and biochemical characterization of commercial phytases
Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management
Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom
Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators
Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil
Uncertainty indication in soil function maps – transparent and easy-to-use information to support sustainable use of soil resources
A systemic approach for modeling soil functions
Soil conservation in the 21st century: why we need smart agricultural intensification
World's soils are under threat
Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
María Marta Caffaro, Karina Beatriz Balestrasse, and Gerardo Rubio
SOIL, 6, 153–162, https://doi.org/10.5194/soil-6-153-2020, https://doi.org/10.5194/soil-6-153-2020, 2020
Short summary
Short summary
Four commercial phytases were evaluated as candidates to be used as biological fertilizer to release inorganic phosphorus (P) from phytates and other soil P organic forms. All phytases were able to release inorganic P throughout the pH and temperature ranges for optimum crop production and had a low affinity for the solid phase, with some differences between them. These results indicate that the use of phytases to complement P fertilization may be a feasible tool to enhance soil P availability.
Jeppe Aagaard Kristensen, Thomas Balstrøm, Robert J. A. Jones, Arwyn Jones, Luca Montanarella, Panos Panagos, and Henrik Breuning-Madsen
SOIL, 5, 289–301, https://doi.org/10.5194/soil-5-289-2019, https://doi.org/10.5194/soil-5-289-2019, 2019
Short summary
Short summary
In a world of increasing pressure on our environment, large-scale knowledge about our soil resources is in high demand. We show how five decades of collaboration between EU member states resulted in a full-coverage soil profile analytical database for Europe (SPADE), with soil data provided by soil experts from each country. We show how the dataset can be applied to estimate soil organic carbon in Europe and suggest further improvement to this critical support tool in continental-scale policies.
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019, https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Short summary
Policy to conserve thinning arable soils relies on a balance between the rates of soil erosion and soil formation. Our knowledge of the latter is meagre. Here, we present soil formation rates for an arable hillslope, the first of their kind globally, and a woodland hillslope, the first of their kind in Europe. Rates range between 26 and 96 mm kyr−1. On the arable site, erosion rates are 2 orders of magnitude greater, and in a worst-case scenario, bedrock exposure could occur in 212 years.
Werner Gerwin, Frank Repmann, Spyridon Galatsidas, Despoina Vlachaki, Nikos Gounaris, Wibke Baumgarten, Christiane Volkmann, Dimitrios Keramitzis, Fotis Kiourtsis, and Dirk Freese
SOIL, 4, 267–290, https://doi.org/10.5194/soil-4-267-2018, https://doi.org/10.5194/soil-4-267-2018, 2018
Short summary
Short summary
The need for biomass for energetic or material use is increasing parallel to the need to extend the production of food for a growing world population. This results in conflicts between both land use strategies. Use of marginal lands could solve this conflict, however, the understanding of marginal lands and the knowledge of their potentials are still not fully developed. We present an approach to assess land marginality based on soil quality and an estimation of land potentials all over Europe.
Edna Santos de Souza, Antonio Rodrigues Fernandes, Anderson Martins De Souza Braz, Fábio Júnior de Oliveira, Luís Reynaldo Ferracciú Alleoni, and Milton César Costa Campos
SOIL, 4, 195–212, https://doi.org/10.5194/soil-4-195-2018, https://doi.org/10.5194/soil-4-195-2018, 2018
Short summary
Short summary
The study refers to a survey of the attributes of the main soil classes of the state of Pará, an eastern Amazon region in Brazil. These soils have good potential for agricultural use under natural conditions. In this study we observed that the soils are predominantly kaolinitic, but have relatively low aluminum and organic matter contents, with huge textural variability. The results enable a better understanding of eastern Amazonian soils, whose area reaches more than 1.2 million km2.
Lucie Greiner, Madlene Nussbaum, Andreas Papritz, Stephan Zimmermann, Andreas Gubler, Adrienne Grêt-Regamey, and Armin Keller
SOIL, 4, 123–139, https://doi.org/10.5194/soil-4-123-2018, https://doi.org/10.5194/soil-4-123-2018, 2018
Short summary
Short summary
To maintain the soil resource, spatial information on soil multi-functionality is key. Soil function (SF) maps rate soils potentials to fulfill a certain function, e.g., nutrient regulation. We show how uncertainties in predictions of soil properties generated by digital soil mapping propagate into soil function maps, present possibilities to display this uncertainty information and show that otherwise comparable SF assessment methods differ in their behaviour in view of uncertainty propagation.
Hans-Jörg Vogel, Stephan Bartke, Katrin Daedlow, Katharina Helming, Ingrid Kögel-Knabner, Birgit Lang, Eva Rabot, David Russell, Bastian Stößel, Ulrich Weller, Martin Wiesmeier, and Ute Wollschläger
SOIL, 4, 83–92, https://doi.org/10.5194/soil-4-83-2018, https://doi.org/10.5194/soil-4-83-2018, 2018
Short summary
Short summary
This paper deals with the importance of soil for our terrestrial environment and the need to predict the impact of soil management on the multitude of functions that soil provides. We suggest to consider soil as a self-organized complex system and provide a concept of how this could be achieved. This includes how soil research, currently fragmented into a number of more or less disjunct disciplines, may be integrated to substantially contribute to a science-based evaluation of soil functions.
Gerard Govers, Roel Merckx, Bas van Wesemael, and Kristof Van Oost
SOIL, 3, 45–59, https://doi.org/10.5194/soil-3-45-2017, https://doi.org/10.5194/soil-3-45-2017, 2017
Short summary
Short summary
We discuss pathways towards better soil protection in the 21st century. The efficacy of soil conservation technology is not a fundamental barrier for a more sustainable soil management. However, soil conservation is generally not directly beneficial to the farmer. We believe that the solution of this conundrum is a rapid, smart intensification of agriculture in the Global South. This will reduce the financial burden and will, at the same time, allow more effective conservation.
Luca Montanarella, Daniel Jon Pennock, Neil McKenzie, Mohamed Badraoui, Victor Chude, Isaurinda Baptista, Tekalign Mamo, Martin Yemefack, Mikha Singh Aulakh, Kazuyuki Yagi, Suk Young Hong, Pisoot Vijarnsorn, Gan-Lin Zhang, Dominique Arrouays, Helaina Black, Pavel Krasilnikov, Jaroslava Sobocká, Julio Alegre, Carlos Roberto Henriquez, Maria de Lourdes Mendonça-Santos, Miguel Taboada, David Espinosa-Victoria, Abdullah AlShankiti, Sayed Kazem AlaviPanah, Elsiddig Ahmed El Mustafa Elsheikh, Jon Hempel, Marta Camps Arbestain, Freddy Nachtergaele, and Ronald Vargas
SOIL, 2, 79–82, https://doi.org/10.5194/soil-2-79-2016, https://doi.org/10.5194/soil-2-79-2016, 2016
Short summary
Short summary
The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources Report. The gravest threats were identified for all the regions of the world. This assessment forms a basis for future soil monitoring. The quality of soil information available for policy formulation must be improved.
M. Köchy, R. Hiederer, and A. Freibauer
SOIL, 1, 351–365, https://doi.org/10.5194/soil-1-351-2015, https://doi.org/10.5194/soil-1-351-2015, 2015
Short summary
Short summary
Soils contain 1062Pg organic C (SOC) in 0-1m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325Pg SOC in 0-1m and ca. 3000Pg, including deeper layers.
Cited articles
Ad-hoc-AG Boden: Manual of soil mapping, 5th Edn. (KA5), edited by: Eckelmann, W.,
Sponagel, H., Grottenthaler, W., Hartmann, K.-J., Hartwich, R., Janetzko, P., Joisten, H.,
Kühn, D., Sabel, K.-J., Traidl, R., Schweizerbart'sche Verlagsbuchhandlung, Hannover, 2005.
Ad-hoc-AG Boden: Methodendokumentation Bodenkunde. Auswertungsmethoden zur Beurteilung
der Empfindlichkeit und Belastbarkeit von Böden. Auszug: Kapitel 6.3 Ackerbauliches
Ertragspotential eines Standorts, 2010.
Amberger, A. and Gutser, R.: Effect of long-term potassium fertilization on crops and
potassium dynamics of a brown earth (Weihenstephan), Ann. Agron., 27, 643–657, 1976.
Askari, M. S., Cui, J., and Holden, N. M.: The visual evaluation of soil structure under
arable management, Soil Till. Res., 134, 1–10, https://doi.org/10.1016/j.still.2013.06.004, 2013.
Bai, Z. C., T., Ruiperez Gonzalez, M., Batjes, N. H., Mäder, P., Bünemann,
E. K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C. S. S., Reintam, E., Fan, H.,
Mihelič, R., Glavan, M., and Tóth, Z.: Effects of agricultural management practices on
soil quality: A review of long-term experiments for Europe and China, Agr. Ecosyst. Environ., 265,
1–7, https://doi.org/10.1016/j.agee.2018.05.028, 2018.
Berti, A., Marta, A. D., Mazzoncini, M., and Tei, F.: An overview on long-term
agro-ecosystem experiments: Present situation and future potential, Eur. J. Agron., 77, 236–241,
https://doi.org/10.1016/j.eja.2016.01.004, 2016.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Nutzungsdifferenzierte
Bodenübersichtskarte von Deutschland 1 : 1.000.000 – Auszug Ackerboden, available at:
https://www.bgr.bund.de/DE/Themen/Boden/Produkte/Karten/Downloads/BUEK1000N_Acker.pdf (last
access: 20 November 2020), 2007.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Ackerbauliches
Ertragspotential der Böden in Deutschland. Bewertet nach dem Müncheberger Soil Quality
Rating – Final Rating (1 : 1.000.000) auf Basis der BÜK1000N, available at:
https://www.bgr.bund.de/DE/Themen/Boden/Bilder/Bod_SoilQualityRating1000_g.html (last
access: 23 November 2020), 2014.
BonaRes: Soil as a Sustainable Resource for the Bioeconomy – BonaRes, available at: https://www.bonares.de/, last access: 10 September 2020.
Ciaccia, C., Ceccarelli, D., Antichi, D., and Canali, S.: Long-term experiments on
agroecology and organic farming: the Italian long-term experiment network, in: Long-Term Farming
Systems Research. Ensuring Food Security in Changing Scenarios, edited by: Bullar, G. and Riar, A.,
Academic Press, London, 183–196, 2020.
CLC (Corine Land Cover): Version 20, available at:
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018/ (last access: 24 September 2020), 2018.
Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T., and Mynsberge,
A. R.: Changes in climatic water balance drive downhill shifts in plant species' optimum
elevations, Science, 331, 324–327, https://doi.org/10.1126/science.1199040, 2011.
Daedlow, K., Lemke, N., and Helming, K.: Arable Land Tenancy and Soil Quality in
Germany: Contesting Theory with Empirics, Sustainability-Basel, 10, 2880,
https://doi.org/10.3390/su10082880, 2018.
Debreczeni, K. and Körschens, M.: Long-term field experiments of the world, Arch.
Acker Pfl. Boden, 49, 465–483, https://doi.org/10.1080/03650340310001594754, 2003.
DWD (Deutscher Wetterdienst): Index of climate environment CDC grids Germany multi
annual water balance, available at:
https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/water_balance/,
last access: 10 September 2020.
Ellerbrock, R. H. and Gerke, H. H.: Analyzing Management-Induced Dynamics of Soluble
Organic Matter Composition in Soils from Long-Term Field Experiments, Vadose Zone J., 15, 1–10,
https://doi.org/10.2136/vzj2015.05.0074, 2016.
Ellerbrock, R. H., Kersebaum, K. C., and Kaiser, M.: Isolation and characterization of
soil organic matter fractions different in solubility as a possibility to evaluate and to improve
C-pools in C-turnover models, Arch. Acker Pfl. Boden, 51, 209–219,
https://doi.org/10.1080/03650340400026644, 2005.
ESDAC (European Soil Data Centre): European Commission, Joint Research Centre:
https://esdac.jrc.ec.europa.eu, last access: 29 July 2020.
ESRI: ArcMap 10.6.1, available at: https://desktop.arcgis.com/de/arcmap (last access 20 November 2020), 2018.
Franko, U., Kolbe, H., Thiel, E., and Liess, E.: Multi-site validation of a soil
organic matter model for arable fields based on generally available input data, Geoderma, 166,
119–134, https://doi.org/10.1016/j.geoderma.2011.07.019, 2011.
GLTEN: Global Long-Term Agricultural Experiment Network, available at: https://www.glten.org/experiments, last access: 9 September 2020.
Grosse, M. and Hierold, W.: Long-term Field Experiments in Germany [Data set],
BonaRes, https://doi.org/10.20387/BonaRes-3tr6-mg8r, 2019.
Grosse, M., Heinrich, U., and Hierold, W.: Fact Sheet for the Description of Long-Term
Field Experiments/Steckbrief zur Beschreibung von Dauerfeldversuchen,
https://doi.org/10.20387/BonaRes-R56G-FGRW, 2019.
Hamidov, A., Helming, K., Bellocchi, G., Bojar, W., Dalgaard, T., Ghaley, B. B.,
Hoffmann, C., Holman, I., Holzkämper, A., and Krzeminska, D.: Impacts of climate change
adaptation options on soil functions: A review of European case-studies, Land Degrad. Dev., 29,
2378–2389, https://doi.org/10.1002/ldr.3006, 2018.
Hanauer, T., Pohlenz, C., Kalandadze, B., Urushadze, T., and Felix-Henningsen, P.: Soil
distribution and soil properties in the subalpine region of Kazbegi; Greater Caucasus; Georgia:
Soil quality rating of agricultural soils, Ann. Agric. Sci., 15, 1–10,
https://doi.org/10.1016/j.aasci.2016.12.001, 2017.
Kaiser, M., Piegholdt, C., Andruschkewitsch, R., Linsler, D., Koch, H. J., and Ludwig,
B.: Impact of tillage intensity on carbon and nitrogen pools in surface and sub-surface soils of
three long-term field experiments, Eur. J. Soil Sci., 65, 499–509, https://doi.org/10.1111/ejss.12146,
2014.
Körschens, M.: Dauerfeldversuche: Übersicht, Entwicklung und Ergebnisse von
Feldversuchen mit mehr als 20 Jahren Versuchsdauer, Akademie der Landwirtschaftswissenschaften,
Berlin, 1990.
Körschens, M.: Der Statische Düngungsversuch Bad Lauchstädt nach 90 Jahren:
Einfluss der Düngung auf Boden, Pflanze und Umwelt: mit einem Verzeichnis von 240
Dauerfeldversuchen der Welt, B.G. Teubner Verlagsgesellschaft, Leipzig, 1994.
Körschens, M.: Die wichtigsten Dauerfeldversuche der Welt – Übersicht,
Bedeutung, Ergebnisse, Arch. Acker Pfl. Boden, 42, 157–168, https://doi.org/10.1080/03650349709385724,
1997.
Körschens, M. (Ed.): IOSDV: Internationale organische
Stickstoffdauerdüngungsversuche. Bericht der Internationalen Arbeitsgemeinschaft
Bodenfruchtbarkeit in der Internationalen Bodenkundlichen Union (IUSS), UFZ-Bericht, 15/2000, Bad
Lauchstädt, 2000.
Körschens, M.: The importance of long-term field experiments for soil science and
environmental research – a review, Plant Soil Environ., 52, 1–8, 2006.
Körschens, M., Albert, E., Baumecker, M., Ellmer, F., Grunert, M., Hoffmann, S.,
Kismanyoky, T., Kubat, J., Kunzova, E., Marx, M., Rogasik, J., Rinklebe, J., Rühlmann, J.,
Schilli, C., Schröter, H., Schroetter, S., Schweizer, K., Toth, Z., Zimmer, J., and Zorn, W.:
Humus und Klimaänderung – Ergebnisse aus 15 langjährigen Dauerfeldversuchen, Arch. Acker
Pfl. Boden, 60, 1485–1517, https://doi.org/10.1080/03650340.2014.892204, 2014.
Macholdt, J., Piepho, H.-P., and Honermeier, B.: Mineral NPK and manure fertilisation
affecting the yield stability of winter wheat: Results from a long-term field experiment, Eur. J.
Agron., 102, 14–22, https://doi.org/10.1016/j.eja.2018.10.007, 2019a.
Macholdt, J., Piepho, H.-P., and Honermeier, B.: Does fertilization impact production
risk and yield stability across an entire crop rotation? Insights from a long-term experiment,
Field Crops Res., 238, 82–92, https://doi.org/10.1016/j.fcr.2019.04.014, 2019b.
Merbach, W. and Deubel, A.: Long-term field experiments – museum relics or scientific
challenge?, Plant Soil Environ., 54, 219–226, https://doi.org/10.17221/395-PSE, 2008.
Mueller, L., Schindler, U., Mirschel, W., Graham Shepherd, T., Ball, B. C., Helming,
K., Rogasik, J., Eulenstein, F., and Wiggering, H.: Assessing the productivity function of
soils. A review, Agron. Sustain. Dev., 30, 601–614, https://doi.org/10.1051/agro/2009057, 2010.
Onofri, A., Seddaiu, G., and Piepho, H.-P.: Long-term experiments with cropping
systems: case studies on data analysis, Eur. J. Agron., 77, 223–235,
https://doi.org/10.1016/j.eja.2016.02.005, 2016.
Payne, R. W.: The design and analysis of long-term rotation experiments, Agron. J.,
107, 772–785, 2015.
Pereira, L. S., Allen, R. G., Smith, M., and Raes, D.: Crop evapotranspiration
estimation with FAO56: Past and future, Agr. Water Manage., 147, 4–20,
https://doi.org/10.1016/j.agwat.2014.07.031, 2015.
Piepho, H.-P. and Vo-Thanh, N.: Die Gleitmethode nach Mitscherlich und was sie mit
Geostatistik zu tun hat, J. Kulturpflanzen, 72, 527–540, https://doi.org/10.5073/JfK.2020.10-11.03, 2020.
Reckling, M., Döring, T. F., Bergkvist, G., Stoddard, F. L., Watson, C. A.,
Seddig, S., Chmielewski, F. M., and Bachinger, J.: Grain legume yields are as stable as other
spring crops in long-term experiments across northern Europe, Agron. Sustain. Dev., 38, 63,
https://doi.org/10.1007/s13593-018-0541-3, 2018.
Richter, C. and Kroschewski, B.: Analysis of a long-term experiment with
repeated-measurement models, J. Agron. Crop. Sci., 192, 55–71, 2006.
Sandén, T., Spiegel, H., Stüger, H. P., Schlatter, N., Haslmayr, H. P.,
Zavattaro, L., Grignani, C., Bechini, L., D'Hose, T., Molendijk, L., Pecio, A., Jarosz,
Z., Guzmán, G., Vanderlinden, K., Giráldez, J. V., Mallast, J., ten Berge, H., and
Aitkenhead, M.: European long-term field experiments: knowledge gained about alternative
management practices, Soil Use Manage., 34, 167–176, https://doi.org/10.1111/sum.12421, 2018.
Sattar, A., Khan, S. A., and Banerjee, S.: Climatic water balance for assessment of
growing season in the eastern Indian state of Bihar, Mausam, 70, 569–580, 2019.
Singh, M. and Jones, M. J.: Modeling yield sustainability for different rotations
inlong-term barley trials, J. Agric. Biol. Environ. Stat., 7, 525–535, 2002.
Smolentseva, E., Smolentsev, B., Pachkin, K., and Mueller, L.: Assessing the Soil
Quality and Crop Yield Potentials of Some Soils of Eurasia, in: Novel Measurement and Assessment
Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of
Central Asia, edited by: Mueller, L., Saparov, A., Lischeid, G., Environmental Science and
Engineering, Springer, Cham, 2014.
Techen, A.-K., Helming, K., Brüggemann, N., Veldkamp, E., Reinhold-Hurek, B.,
Lorenz, M., Bartke, S., Heinrich, U., Amelung, W., and Augustin, K.: Soil research challenges in
response to emerging agricultural soil management practices, Adv. Agron., 161, 179–240,
https://doi.org/10.1016/bs.agron.2020.01.002, 2020.
TERENO: Terrestrial Environmental Observatories, available at: https://www.tereno.net/joomla/index.php, last access: 9 September 2020.
Umweltbundesamt: UBA Metadatenkatalog. CORINE Land Cover Deutschland [Data set], available at: https://gis.uba.de/catalog/OpenSearch.do?type=/Query/OpenSearch.do&search=CORINE (last access: 24 September 2020), 2019.
Vogel, H.-J., Eberhardt, E., Franko, U., Lang, B., Ließ, M., Weller, U., Wiesmeier,
M., and Wollschläger, U.: Quantitative Evaluation of Soil Functions: Potential and State,
Front. Environ. Sci., 7, 164, https://doi.org/10.3389/fenvs.2019.00164, 2019.
Short summary
Agricultural long-term field experiments (LTFEs) are an important basis for soil and agricultural sciences. A compilation of metadata and research data from LTFEs in Germany shall enhance networking and simplify the access to this most valuable research infrastructure. The common analyses of similar LTFEs on different sites can broaden the results. Therefore, LTFEs were classified and their distribution in Germany was compared to three site classifications.
Agricultural long-term field experiments (LTFEs) are an important basis for soil and...