Articles | Volume 6, issue 1
SOIL, 6, 35–52, 2020
https://doi.org/10.5194/soil-6-35-2020
SOIL, 6, 35–52, 2020
https://doi.org/10.5194/soil-6-35-2020

Review article 06 Feb 2020

Review article | 06 Feb 2020

Machine learning and soil sciences: a review aided by machine learning tools

José Padarian et al.

Viewed

Total article views: 4,987 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
3,662 1,263 62 4,987 55 66
  • HTML: 3,662
  • PDF: 1,263
  • XML: 62
  • Total: 4,987
  • BibTeX: 55
  • EndNote: 66
Views and downloads (calculated since 03 Sep 2019)
Cumulative views and downloads (calculated since 03 Sep 2019)

Viewed (geographical distribution)

Total article views: 3,587 (including HTML, PDF, and XML) Thereof 3,552 with geography defined and 35 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 08 May 2021
Download
Short summary
The application of machine learning (ML) has shown an accelerated adoption in soil sciences. It is a difficult task to manually review all papers on the application of ML. This paper aims to provide a review of the application of ML aided by topic modelling in order to find patterns in a large collection of publications. The objective is to gain insight into the applications and to discuss research gaps. We found 12 main topics and that ML methods usually perform better than traditional ones.