Articles | Volume 12, issue 1
https://doi.org/10.5194/soil-12-17-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-12-17-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Living cover crops alter the fate of pesticide residues in soil: influence of pesticide physicochemical properties
Noé Vandevoorde
CORRESPONDING AUTHOR
Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
Igor Turine
Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
Alodie Blondel
Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
Yannick Agnan
Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium
Related authors
No articles found.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Cited articles
Agnan, Y., Alletto, L., Boithias, L., Budzinski, H., Giuliano, S., Deswarte, C., and Pelletier, A.: Suivis pluriannuels des transferts verticaux de pesticides dans des sols de vallée alluviale en monoculture de maïs irriguée [Multi-year monitoring of vertical pesticide transfer in irrigated maize monoculture soils in alluvial valley], in: 49e congrès du Groupe Français de Recherche sur les Pesticides, Montpellier, France, https://biogeoscience.eu/Files/Other/conferences/2019_Agnan_et_al_GFP.pdf (last access: 1 March 2025), 2019. a, b, c, d, e, f
Alletto, L.: Dynamique de l'eau et dissipation de l'isoxaflutole et du dicétonitrile en monoculture de maïs irrigué : effets du mode de travail du sol et de gestion de l'interculture [Water dynamics and dissipation of isoxaflutole and dicetonitrile in irrigated maize monoculture: effects of tillage method and intercrop management], Ph.D. thesis, INAPG, AgroParisTech, Paris, France, https://pastel.hal.science/pastel-00003244 (last access: 1 March 2025), 2007. a
Alletto, L., Benoit, P., Justes, E., and Coquet, Y.: Tillage and fallow period management effects on the fate of the herbicide isoxaflutole in an irrigated continuous-maize field, Agriculture, Ecosystems & Environment, 153, 40–49, https://doi.org/10.1016/j.agee.2012.03.002, 2012. a, b
Alliot, C., Mc Adams-Marin, D., Borniotto, D., and Baret, P. V.: The social costs of pesticide use in France, Frontiers in Sustainable Food Systems, 6, https://doi.org/10.3389/fsufs.2022.1027583, 2022. a
Bedos, C., Cellier, P., Calvet, R., Barriuso, E., and Gabrielle, B.: Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview, Agronomie, 22, 21–33, https://doi.org/10.1051/agro:2001003, 2002. a
Blanco-Canqui, H., Ruis, S. J., Koehler-Cole, K., Elmore, R. W., Francis, C. A., Shapiro, C. A., Proctor, C. A., and Ferguson, R. B.: Cover crops and soil health in rainfed and irrigated corn: What did we learn after 8 years?, Soil Science Society of America Journal, 87, 1174–1190, https://doi.org/10.1002/saj2.20566, 2023. a
Bottomley, P. J., Sawyer, T. E., Boersma, L., Dick, R. P., and Hemphill, D. D.: Winter cover crop enhances 2,4-D mineralization potential of surface and subsurface soil, Soil Biology and Biochemistry, 31, 849–857, https://doi.org/10.1016/S0038-0717(98)00184-9, 1999. a
Bourguet, D. and Guillemaud, T.: The Hidden and External Costs of Pesticide Use, in: Sustainable Agriculture Reviews, vol. 19, edited by: Lichtfouse, E., Springer International Publishing, Cham, Switzerland, 35–120, https://doi.org/10.1007/978-3-319-26777-7_2, 2016. a
Burtscher-Schaden, H., Clausing, P., Lyssimachou, A., and Roynel, S.: TFA: A Forever Chemical in the Water We Drink, Tech. rep., GLOBAL 2000, PAN Germany, PAN Europe, Vienna, Austria, https://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/Report_TFA_The%20Forever%20Chemical%20%20in%20the%20Water%20We%20Drink.pdf (last access: 1 March 2025), 2024. a
Calvet, R., Barriuso, E., Bedos, C., Benoit, P., Charnay, M.-P., and Coquet, Y.: Les pesticides dans le sol: conséquences agronomiques et environnementales [Pesticides in the soil: agronomic and environmental consequences], France agricole éditions, Paris, France, ISBN 2-85557-119-7, https://hal.inrae.fr/hal-02834096v1 (last access: 1 March 2025), 2005. a
Cassigneul, A., Alletto, L., Benoit, P., Bergheaud, V., Etiévant, V., Dumény, V., Le Gac, A. L., Chuette, D., Rumpel, C., and Justes, E.: Nature and decomposition degree of cover crops influence pesticide sorption: Quantification and modelling, Chemosphere, 119, 1007–1014, https://doi.org/10.1016/j.chemosphere.2014.08.082, 2015. a
Cassigneul, A., Benoit, P., Bergheaud, V., Dumeny, V., Etiévant, V., Goubard, Y., Maylin, A., Justes, E., and Alletto, L.: Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study, Science of The Total Environment, 545–546, 582–590, https://doi.org/10.1016/j.scitotenv.2015.12.052, 2016. a
Chaplin-Kramer, R., O'Rourke, M., Schellhorn, N., Zhang, W., Robinson, B. E., Gratton, C., Rosenheim, J. A., Tscharntke, T., and Karp, D. S.: Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes, Frontiers in Sustainable Food Systems, 3, https://doi.org/10.3389/fsufs.2019.00060, 2019. a
Chowdhury, A., Pradhan, S., Saha, M., and Sanyal, N.: Impact of pesticides on soil microbiological parameters and possible bioremediation strategies, Indian Journal of Microbiology, 48, 114–127, https://doi.org/10.1007/s12088-008-0011-8, 2008. a
Chuluun, B., Iamchaturapatr, J., and Rhee, J. S.: Phytoremediation of Organophosphorus and Organochlorine Pesticides by Acorus gramineus, Environmental Engineering Research, 14, 226–236, https://doi.org/10.4491/eer.2009.14.4.226, 2009. a
Cooper, J. and Dobson, H.: The benefits of pesticides to mankind and the environment, Crop Protection, 26, 1337–1348, https://doi.org/10.1016/j.cropro.2007.03.022, 2007. a
Corder: Estimation quantitative des utilisations de produits phytopharmaceutiques par les différents secteurs d'activité [Quantitative estimate of the use of plant protection products by different sectors of activity], Annual repport CSC 03.09.00-21-3261, Public Services of Wallonia, SPW (ARNE-DEMNA & DEE), Louvain-la-Neuve, Belgium, https://www.corder.be/sites/default/files/2024-02/estimation-quantitative-des-utilisations-de-ppp-par-les-differents-secteurs-d%27activite.pdf (last access: 1 March 2025), 2023. a
Cycoń, M., Mrozik, A., and Piotrowska-Seget, Z.: Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review, Chemosphere, 172, 52–71, https://doi.org/10.1016/j.chemosphere.2016.12.129, 2017. a, b, c, d
Dabney, S. M., Delgado, J. A., and Reeves, D. W.: Using Winter Cover Crops to Improve Soil and Water Quality, Communications in Soil Science and Plant Analysis, 32, 1221–1250, https://doi.org/10.1081/CSS-100104110, 2001. a
Damalas, C. A. and Koutroubas, S. D.: Farmers' Exposure to Pesticides: Toxicity Types and Ways of Prevention, Toxics, 4, 1–10, https://doi.org/10.3390/toxics4010001, 2016. a
Das, R., Das, S. J., and Das, A. C.: Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil, European Journal of Soil Biology, 74, 9–15, https://doi.org/10.1016/j.ejsobi.2016.02.005, 2016. a
de Albuquerque, F. P., de Oliveira, J. L., Moschini-Carlos, V., and Fraceto, L. F.: An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology, Science of The Total Environment, 700, 134868, https://doi.org/10.1016/j.scitotenv.2019.134868, 2020. a
Eevers, N., White, J. C., Vangronsveld, J., and Weyens, N.: Bio- and Phyto-remediation of Pesticide-Contaminated Environments: A Review, in: Advances in Botanical Research, edited by: Cuypers, A. and Vangronsveld, J., vol. 83 of Phytoremediation, Academic Press, Amsterdam, the Netherlands, 277–318, https://doi.org/10.1016/bs.abr.2017.01.001, 2017. a, b, c, d, e
Feng, X., Alletto, L., Cong, W.-F., Labreuche, J., and Lamichhane, J. R.: Strategies to improve field establishment of cover crops. A review, Agronomy for Sustainable Development, 44, 47, https://doi.org/10.1007/s13593-024-00986-0, 2024. a
Fenner, K., Canonica, S., Wackett, L. P., and Elsner, M.: Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities, Science, 341, 752–758, https://doi.org/10.1126/science.1236281, 2013. a
Ferrari, F., Trevisan, M., and Capri, E.: Predicting and Measuring Environmental Concentration of Pesticides in Air after Soil Application, Journal of Environmental Quality, 32, 1623–1633, https://doi.org/10.2134/jeq2003.1623, 2003. a
Finney, D., Buyer, J., and Kaye, J.: Living cover crops have immediate impacts on soil microbial community structure and function, Journal of Soil and Water Conservation, 72, 361–373, https://doi.org/10.2489/jswc.72.4.361, 2017. a
Freeling, F. and Björnsdotter, M. K.: Assessing the environmental occurrence of the anthropogenic contaminant trifluoroacetic acid (TFA), Current Opinion in Green and Sustainable Chemistry, 41, 100807, https://doi.org/10.1016/j.cogsc.2023.100807, 2023. a
Gerken, J., Vincent, G. T., Zapata, D., Barron, I. G., and Zapata, I.: Comprehensive assessment of pesticide use patterns and increased cancer risk, Frontiers in Cancer Control and Society, 2, https://doi.org/10.3389/fcacs.2024.1368086, 2024. a
Gish, T. J., Williams, J., Prueger, J. H., Kustas, W., McKee, L. G., and Russ, A.: Pesticide Movement, in: Soil Management: Building a Stable Base for Agriculture, American Society of Agronomy and Soil Science Society of America, Hoboken, USA, 183–197, https://doi.org/10.2136/2011.soilmanagement.c12, 2011. a
Giuliano, S., Alletto, L., Deswarte, C., Perdrieux, F., Daydé, J., and Debaeke, P.: Reducing herbicide use and leaching in agronomically performant maize-based cropping systems: An 8 year study, Science of The Total Environment, 788, 147695, https://doi.org/10.1016/j.scitotenv.2021.147695, 2021. a
Hao, X., Abou Najm, M., Steenwerth, K. L., Nocco, M. A., Basset, C., and Daccache, A.: Are there universal soil responses to cover cropping? A systematic review, Science of The Total Environment, 861, 160600, https://doi.org/10.1016/j.scitotenv.2022.160600, 2023. a
Hussain, S., Siddique, T., Arshad, M., and Saleem, M.: Bioremediation and Phytoremediation of Pesticides: Recent Advances, Critical Reviews in Environmental Science and Technology, 39, 843–907, https://doi.org/10.1080/10643380801910090, 2009. a
Jia, F., Li, Y., Hu, Q.-N., Zhang, L., Mao, L.-G., Zhu, L.-Z., Jiang, H.-Y., Liu, X.-G., and Sun, Y.: Factors impacting the behavior of phytoremediation in pesticide-contaminated environment: A meta-analysis, Science of The Total Environment, 892, 164418, https://doi.org/10.1016/j.scitotenv.2023.164418, 2023. a, b, c, d, e, f
Joerss, H., Freeling, F., van Leeuwen, S., Hollender, J., Liu, X., Nödler, K., Wang, Z., Yu, B., Zahn, D., and Sigmund, G.: Pesticides can be a substantial source of trifluoroacetate (TFA) to water resources, Environment International, 193, 109061, https://doi.org/10.1016/j.envint.2024.109061, 2024. a, b
Justes, E. and Richard, G.: Contexte, concepts et définition des cultures intermédiaires multi-services [Background, concepts and definition of multi-service intermediate crops], Innovations Agronomiques, 62, 1–15, https://doi.org/10.15454/1.5174017785695195E12, 2017. a
Kassambara, A. and Mundt, F.: factoextra: Extract and Visualize the Results of Multivariate Data Analyses, https://doi.org/10.32614/CRAN.package.factoextra, 2016. a
Kim, K.-H., Kabir, E., and Jahan, S. A.: Exposure to pesticides and the associated human health effects, Science of The Total Environment, 575, 525–535, https://doi.org/10.1016/j.scitotenv.2016.09.009, 2017. a
Kim, N., Zabaloy, M. C., Guan, K., and Villamil, M. B.: Do cover crops benefit soil microbiome? A meta-analysis of current research, Soil Biology and Biochemistry, 142, 107701, https://doi.org/10.1016/j.soilbio.2019.107701, 2020. a
Krutz, L. J., Gentry, T. J., Senseman, S. A., Pepper, I. L., and Tierney, D. P.: Mineralisation of atrazine, metolachlor and their respective metabolites in vegetated filter strip and cultivated soil, Pest Management Science, 62, 505–514, https://doi.org/10.1002/ps.1193, 2006. a
Lê, S., Josse, J., and Husson, F.: FactoMineR: An R Package for Multivariate Analysis, Journal of Statistical Software, 25, https://doi.org/10.18637/jss.v025.i01, 2008. a
Leenhardt, S., Mamy, L., Pesce, S., and Sanchez, W. (Eds.): Impacts of plant protection products on biodiversity and ecosystem services, Éditions Quae, Versailles, France, https://doi.org/10.35690/978-2-7592-3749-4, 2023. a, b
Lewis, K. A., Tzilivakis, J., Warner, D. J., and Green, A.: An international database for pesticide risk assessments and management, Human and Ecological Risk Assessment: An International Journal, 22, 1050–1064, https://doi.org/10.1080/10807039.2015.1133242, 2016. a
MacLaren, C., Swanepoel, P., Bennett, J., Wright, J., and Dehnen-Schmutz, K.: Cover Crop Biomass Production Is More Important than Diversity for Weed Suppression, Crop Science, 59, 733–748, https://doi.org/10.2135/cropsci2018.05.0329, 2019. a
Mallawatantri, A. P., McConkey, B. G., and Mulla, D. J.: Characterization of Pesticide Sorption and Degradation in Macropore Linings and Soil Horizons of Thatuna Silt Loam, Journal of Environmental Quality, 25, 227–235, https://doi.org/10.2134/jeq1996.00472425002500020004x, 1996. a
Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., and Manna, M. C.: Impact of agrochemicals on soil health, in: Agrochemicals Detection, Treatment and Remediation, edited by: Prasad, M. N. V., Butterworth-Heinemann, Amsterdam, the Netherlands, 161–187, https://doi.org/10.1016/B978-0-08-103017-2.00007-6, 2020. a
McGuinness, M. and Dowling, D.: Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil, International Journal of Environmental Research and Public Health, 6, 2226–2247, https://doi.org/10.3390/ijerph6082226, 2009. a, b, c
Morrison, B. A., Xia, K., and Stewart, R. D.: Evaluating neonicotinoid insecticide uptake by plants used as buffers and cover crops, Chemosphere, 322, 138154, https://doi.org/10.1016/j.chemosphere.2023.138154, 2023. a
Naumann, K.: Influence of chlorine substituents on biological activity of chemicals: a review, Pest Management Science, 56, 3–21, https://doi.org/10.1002/(SICI)1526-4998(200001)56:1<3::AID-PS107>3.0.CO;2-P, 2000. a
Oerke, E.-C.: Crop losses to pests, The Journal of Agricultural Science, 144, 31–43, https://doi.org/10.1017/S0021859605005708, 2006. a
Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M. D., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E. R., Smith, T., Stier, A., Braak, C. J. F. T., Weedon, J., and Borman, T.: vegan: Community Ecology Package, https://cran.r-project.org/package=vegan (last access: 1 March 2025), 2025. a
Palhano, M. G., Norsworthy, J. K., and Barber, T.: Sensitivity and Likelihood of Residual Herbicide Carryover to Cover Crops, Weed Technology, 32, 236–243, https://doi.org/10.1017/wet.2018.7, 2018. a
PAN Europe and Générations Futures: Europe's toxic harvest. Unmasking PFAS pesticides authorised in Europe, Tech. rep., PAN Europe and Générations Futures, Brussels, Belgium, https://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/PFAS%20Pesticides%20report%20November%202023.pdf (last access: 1 March 2025), 2023. a
Pedersen, N. C., Stubsgaard, E., Thorling, L., Thomsen, R., Søndergaard, V., and Vægter, B.: Legacy pesticide contamination in Aarhus – groundwater protection and management, in: Solving the Groundwater Challenges of the 21st Century, CRC Press, London, UK, https://doi.org/10.1201/b20133-7, 2016. a
Perkins, C. M., Gage, K. L., Norsworthy, J. K., Young, B. G., Bradley, K. W., Bish, M. D., Hager, A., and Steckel, L. E.: Efficacy of residual herbicides influenced by cover-crop residue for control of Amaranthus palmeri and A. tuberculatus in soybean, Weed Technology, 35, 77–81, https://doi.org/10.1017/wet.2020.77, 2021. a
Potter, T. L., Bosch, D. D., Joo, H., Schaffer, B., and Muñoz-Carpena, R.: Summer Cover Crops Reduce Atrazine Leaching to Shallow Groundwater in Southern Florida, Journal of Environmental Quality, 36, 1301–1309, https://doi.org/10.2134/jeq2006.0526, 2007. a
Power, A. G.: Ecosystem services and agriculture: tradeoffs and synergies, Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959–2971, https://doi.org/10.1098/rstb.2010.0143, 2010. a
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., and Kaushal, J.: An extensive review on the consequences of chemical pesticides on human health and environment, Journal of Cleaner Production, 283, 124657, https://doi.org/10.1016/j.jclepro.2020.124657, 2021. a
R Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ (last access: 1 March 2025), 2024. a
Rector, L. S., Pittman, K. B., Beam, S. C., Bamber, K. W., Cahoon, C. W., Frame, W. H., and Flessner, M. L.: Herbicide carryover to various fall-planted cover crop species, Weed Technology, 34, 25–34, https://doi.org/10.1017/wet.2019.79, 2020. a
Reeves, D. W.: Cover Crops and Rotations, in: Crops Residue Management, CRC Press, https://doi.org/10.1201/9781351071246-7, 1994. a
Sabatier, P., Mottes, C., Cottin, N., Evrard, O., Comte, I., Piot, C., Gay, B., Arnaud, F., Lefevre, I., and Develle, A.-L.: Evidence of Chlordecone Resurrection by Glyphosate in French West Indies, Environmental Science & Technology, 55, 2296–2306, https://doi.org/10.1021/acs.est.0c05207, 2021. a
Sanchez-Bayo, F. and Goka, K.: Pesticide Residues and Bees – A Risk Assessment, PLOS ONE, 9, e94482, https://doi.org/10.1371/journal.pone.0094482, 2014. a
Scorza, F. A., Beltramim, L., and Bombardi, L. M.: Pesticide exposure and human health: Toxic legacy, Clinics, 78, 100249, https://doi.org/10.1016/j.clinsp.2023.100249, 2023. a
Shekhar, C., Khosya, R., Thakur, K., Mahajan, D., Kumar, R., Kumar, S., and Sharma, A. K.: A Systematic Review of Pesticide Exposure, Associated Risks, and Long-Term Human Health Impacts, Toxicology Reports, 13, 101840, https://doi.org/10.1016/j.toxrep.2024.101840, 2024. a
Silva, T. S.: Impact of soil residual herbicide on establishment of interseeded-overseeded cover crops in cord and weed control efficacy, Ph.D. thesis, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brasil, https://repositorio.ufersa.edu.br/server/api/core/bitstreams/b6ec9852-ef06-4785-9eef-10a8d2b504c4/content (last access: 1 March 2025), 2023. a
Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., and Geissen, V.: Pesticide residues in European agricultural soils – A hidden reality unfolded, Science of The Total Environment, 653, 1532–1545, https://doi.org/10.1016/j.scitotenv.2018.10.441, 2019. a, b
Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., de Snoo, G. R., and Eden, P.: Ecological impacts of arable intensification in Europe, Journal of Environmental Management, 63, 337–365, https://doi.org/10.1006/jema.2001.0473, 2001. a
Syafrudin, M., Kristanti, R. A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-onazi, W. A., Algarni, T. S., Almarri, A. H., and Al-Mohaimeed, A. M.: Pesticides in Drinking Water – A Review, International Journal of Environmental Research and Public Health, 18, 468–483, https://doi.org/10.3390/ijerph18020468, 2021. a
Tarano, I. G., Boumal, T., De Toffoli, M., Buron, M., Kiljanek, T., Martel, A.-C., Jacquemart, A.-L., and Agnan, Y.: Are cover crops a potential threat for pollinators due to clothianidin residues in floral resources?, Environmental Monitoring and Assessment, 197, 1260, https://doi.org/10.1007/s10661-025-14741-9, 2025. a
Thorup-Kristensen, K., Magid, J., and Jensen, L. S.: Catch crops and green manures as biological tools in nitrogen management in temperate zones, Elsevier, https://orgprints.org/id/eprint/107/ (last access: 1 March 2025), 2003. a
Tixier, C., Bogaerts, P., Sancelme, M., Bonnemoy, F., Twagilimana, L., Cuer, A., Bohatier, J., and Veschambre, H.: Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites, Pest Management Science, 56, 455–462, https://doi.org/10.1002/(SICI)1526-4998(200005)56:5<455::AID-PS152>3.0.CO;2-Z, 2000. a
Tixier, C., Sancelme, M., Aït-Aïssa, S., Widehem, P., Bonnemoy, F., Cuer, A., Truffaut, N., and Veschambre, H.: Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi, Chemosphere, 46, 519–526, https://doi.org/10.1016/S0045-6535(01)00193-X, 2002. a
Unger, P. W. and Vigil, M. F.: Cover crop effects on soil water relationships, Journal of Soil and Water Conservation, 53, 200–207, 1998. a
van den Boogaart, K. G., Tolosana-Delgado, R., and Bren, M.: compositions: Compositional Data Analysis, https://doi.org/10.32614/CRAN.package.compositions, 2005. a
Venter, Z. S., Jacobs, K., and Hawkins, H.-J.: The impact of crop rotation on soil microbial diversity: A meta-analysis, Pedobiologia, 59, 215–223, https://doi.org/10.1016/j.pedobi.2016.04.001, 2016. a
Vryzas, Z., Papadakis, E. N., and Papadopoulou-Mourkidou, E.: Leaching of Br−, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: A field scale experiment in north-east Greece, Water Research, 46, 1979–1989, https://doi.org/10.1016/j.watres.2012.01.021, 2012. a, b
Wang, Y., Liu, L., Tian, Y., Wu, X., Yang, J., Luo, Y., Li, H., Awasthi, M. K., and Zhao, Z.: Temporal and spatial variation of soil microorganisms and nutrient under white clover cover, Soil and Tillage Research, 202, 104666, https://doi.org/10.1016/j.still.2020.104666, 2020. a
Whalen, D. M., Shergill, L. S., Kinne, L. P., Bish, M. D., and Bradley, K. W.: Integration of residual herbicides with cover crop termination in soybean, Weed Technology, 34, 11–18, https://doi.org/10.1017/wet.2019.111, 2020. a
White, P. M., Potter, T. L., Bosch, D. D., Joo, H., Schaffer, B., and Muñoz-Carpena, R.: Reduction in Metolachlor and Degradate Concentrations in Shallow Groundwater through Cover Crop Use, Journal of Agricultural and Food Chemistry, 57, 9658–9667, https://doi.org/10.1021/jf9021527, 2009. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Use R!, 2nd edn., Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-24277-4, 2016. a, b
Wojciechowski, A., Seassau, C., Soerensen, L., Alletto, L., and Lamichhane, J. R.: Effects of cover crops on maize establishment, root mycorrhizal colonization, plant growth and grain yield depend on their botanical family: A global meta-analysis, Agriculture, Ecosystems & Environment, 356, 108648, https://doi.org/10.1016/j.agee.2023.108648, 2023. a
Zioga, E., White, B., and Stout, J. C.: Pesticide mixtures detected in crop and non-target wild plant pollen and nectar, Science of The Total Environment, 879, 162971, https://doi.org/10.1016/j.scitotenv.2023.162971, 2023. a
Short summary
Cover crops (CC) are known to help capture nitrates, but their role in mitigating pesticide impacts has been less studied. We evaluated how two CC densities (vs. bare soil) affected pesticide residues in soil and solution over 3 months in a greenhouse pot experiment. Our results show that well-developed CCs enhance pesticide biodegradation across a wide range of active substances, likely by sustaining active edaphic microbiota. This further confirms the role of CCs in groundwater protection.
Cover crops (CC) are known to help capture nitrates, but their role in mitigating pesticide...