Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-957-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-957-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical protection of soil carbon stocks under regenerative agriculture
Sam G. Keenor
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Rebekah Lee
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Brian J. Reid
CORRESPONDING AUTHOR
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Related authors
No articles found.
Zhe H. Weng, Ram C. Dalal, Brian J. Reid, Yong-Guan Zhu, Timothy I. McLaren, Brigid A. McKenna, Meghan Barnard, Casey L. Doolette, Enzo Lombi, Johannes Friedl, and Peter M. Kopittke
EGUsphere, https://doi.org/10.5194/egusphere-2025-100, https://doi.org/10.5194/egusphere-2025-100, 2025
Preprint archived
Short summary
Short summary
Long-term cropping reduced total stocks of soil organic carbon (SOC). This study examined the microscale processes which regulates the preservation of SOC under long-term cropping, with an understanding of this being essential for predicting SOC persistence and to identify approaches to re-building SOC stocks in agroecosystems.
Cited articles
Abiven, S., Menasseri, S., and Chenu, C.: The effects of organic inputs over time on soil aggregate stability – A literature analysis, Soil Biology and Biochemistry, 41, 1–12, https://doi.org/10.1016/j.soilbio.2008.09.015, 2009.
Al-Kaisi, M. M. and Lal, R.: Aligning science and policy of regenerative agriculture, Soil Science Society of America Journal, 84, 1808–1820, https://doi.org/10.1002/saj2.20162, 2020.
Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., and Gates, W.: Soil Bulk Density Estimation Methods: A Review, Pedosphere, 28, 581–596, https://doi.org/10.1016/S1002-0160(18)60034-7, 2018.
Allen, D. E., Singh, B. P., and Dalal, R. C.: Soil Health Indicators Under Climate Change: A Review of Current Knowledge, in: Soil Health and Climate Change, edited by: Singh, B. P., Cowie, A. L., and Chan, K. Y., Springer Berlin Heidelberg, Berlin, Heidelberg, 25–45, https://doi.org/10.1007/978-3-642-20256-8_2, 2011.
Amin, M., Salamba, H. N., and Juita, N.: Role of labile fraction of carbon for soil quality assessment (A Review), IOP Conference Series: Earth and Environmental Science, 807, 032095, https://doi.org/10.1088/1755-1315/807/3/032095, 2021.
Baveye, P. C., Baveye, J., and Gowdy, J.: Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground, Frontiers in Environmental Science, 4, https://doi.org/10.3389/fenvs.2016.00041, 2016.
Baveye, P. C., Schnee, L. S., Boivin, P., Laba, M., and Radulovich, R.: Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions, Frontiers in Environmental Science, 8, https://doi.org/10.3389/fenvs.2020.579904, 2020.
Berhe, A. A. and Kleber, M.: Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology, Earth Surface Processes and Landforms, 38, 908-912, https://doi.org/10.1002/esp.3408, 2013.
Bhogal, A., Nicholson, F. A., and Chambers, B. J.: Organic carbon additions: effects on soil bio-physical and physico-chemical properties, European Journal of Soil Science, 60, 276–286, https://doi.org/10.1111/j.1365-2389.2008.01105.x, 2009.
Brodowski, S., John, B., Flessa, H., and Amelung, W.: Aggregate-occluded black carbon in soil, European Journal of Soil Science, 57, 539–546, https://doi.org/10.1111/j.1365-2389.2006.00807.x, 2006.
Chaplot, V. and Cooper, M.: Soil aggregate stability to predict organic carbon outputs from soils, Geoderma, 243–244, 205–213, https://doi.org/10.1016/j.geoderma.2014.12.013, 2015.
Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., and Maity, S.: Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil, International Journal of Scientific and Research Publications, 3, 1–8, 2013.
De Graaff, M. A., Classen, A. T., Castro, H. F., and Schadt, C. W.: Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates, New Phytologist, 188, 1055–1064, 2010.
de Groot, R. S., Wilson, M. A., and Boumans, R. M. J.: A typology for the classification, description and valuation of ecosystem functions, goods and services, Ecological Economics, 41, 393–408, https://doi.org/10.1016/S0921-8009(02)00089-7, 2002.
De Gryze, S., Six, J., and Merckx, R.: Quantifying water-stable soil aggregate turnover and its implication for soil organic matter dynamics in a model study, European Journal of Soil Science, 57, 693–707, https://doi.org/10.1111/j.1365-2389.2005.00760.x, 2006.
DEFRA: Horticulture Statistics 2023, https://www.gov.uk/government/statistics/latest-horticulture-statistics/horticulture-statistics-2024 (last access: 21 August 2024), 2023.
Dell'Abate, M. T., Benedetti, A., and Sequi, P.: Thermal Methods of Organic Matter Maturation Monitoring During a Composting Process, J. Therm. Anal. Calorim., 61, 389–396, https://doi.org/10.1023/A:1010157115211, 2000.
Dell'Abate, M. T., Benedetti, A., and Brookes, P. C.: Hyphenated techniques of thermal analysis for characterisation of soil humic substances, Journal of Separation Science, 26, 433–440, https://doi.org/10.1002/jssc.200390057, 2003.
Dominati, E., Patterson, M., and Mackay, A.: A framework for classifying and quantifying the natural capital and ecosystem services of soils, Ecological Economics, 69, 1858–1868, https://doi.org/10.1016/j.ecolecon.2010.05.002, 2010.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, 18, 1781–1796, https://doi.org/10.1111/j.1365-2486.2012.02665.x, 2012.
Ferreira, C. d. R., Silva Neto, E. C. d., Pereira, M. G., Guedes, J. d. N., Rosset, J. S., and Anjos, L. H. C. d.: Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management, Soil and Tillage Research, 198, 104533, https://doi.org/10.1016/j.still.2019.104533, 2020.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global Consequences of Land Use, Science, 309, 570–574, https://doi.org/10.1126/science.1111772, 2005.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342, https://doi.org/10.1038/nature10452, 2011.
Gál, A., Vyn, T. J., Michéli, E., Kladivko, E. J., and McFee, W. W.: Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths, Soil and Tillage Research, 96, 42–51, https://doi.org/10.1016/j.still.2007.02.007, 2007.
Gärdenäs, A. I., Ågren, G. I., Bird, J. A., Clarholm, M., Hallin, S., Ineson, P., Kätterer, T., Knicker, H., Nilsson, S. I., Näsholm, T., Ogle, S., Paustian, K., Persson, T., and Stendahl, J.: Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale, Soil Biology and Biochemistry, 43, 702–717, https://doi.org/10.1016/j.soilbio.2010.04.006, 2011.
Giller, K. E., Hijbeek, R., Andersson, J. A., and Sumberg, J.: Regenerative agriculture: an agronomic perspective, Outlook on Agriculture, 50, 13–25, 2021.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H., and Yanni, S. F.: Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition, Soil Biology and Biochemistry, 91, 182–191, https://doi.org/10.1016/j.soilbio.2015.08.032, 2015.
Hemming, P. E.: C,H,N MICRO-ANALYSIS: A COMPARATIVE REVIEW OF THE EFFECTS OF INSTRUMENT DESIGN ON ANALYTICAL PERFORMANCE, https://exeteranalytical.com/paper.pdf (last access: 14 Novemeber 2025), 2024.
Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y., and Guo, R.: Global desertification vulnerability to climate change and human activities, Land Degradation & Development, 31, 1380–1391, https://doi.org/10.1002/ldr.3556, 2020.
IPBES: The IPBES assessment report on land degradation and restoration, Zenodo, https://doi.org/10.5281/zenodo.3237393, 2018.
Kan, Z.-R., Liu, Q.-Y., Virk, A. L., He, C., Qi, J.-Y., Dang, Y. P., Zhao, X., and Zhang, H.-L.: Effects of experiment duration on carbon mineralization and accumulation under no-till, Soil and Tillage Research, 209, 104939, https://doi.org/10.1016/j.still.2021.104939, 2021.
Kasper, M., Buchan, G. D., Mentler, A., and Blum, W. E. H.: Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions, Soil and Tillage Research, 105, 192–199, https://doi.org/10.1016/j.still.2009.08.002, 2009.
Kaufmann, M., Tobias, S., and Schulin, R.: Comparison of critical limits for crop plant growth based on different indicators for the state of soil compaction, Journal of Plant Nutrition and Soil Science, 173, 573–583, https://doi.org/10.1002/jpln.200900129, 2010.
Keenor, S. G., Rodrigues, A. F., Mao, L., Latawiec, A. E., Harwood, A. R., and Reid, B. J.: Capturing a soil carbon economy, Royal Society Open Science, 8, 202305, https://doi.org/10.1098/rsos.202305, 2021.
Kleber, M.: What is recalcitrant soil organic matter?, Environmental Chemistry, 7, 320–332, https://doi.org/10.1071/EN10006, 2010.
Lal, R.: Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment, Soil and Tillage Research, 43, 81–107, https://doi.org/10.1016/S0167-1987(97)00036-6, 1997.
Lal, R.: Soil degradation by erosion, Land Degradation & Development, 12, 519–539, https://doi.org/10.1002/ldr.472, 2001.
Lal, R.: Soil carbon sequestration to mitigate climate change, Geoderma, 123, 1–22, https://doi.org/10.1016/j.geoderma.2004.01.032, 2004.
Lal, R.: Restoring Soil Quality to Mitigate Soil Degradation, Sustainability, 7, 5875–5895, 2015.
Lal, R., Griffin, M., Apt, J., Lave, L., and Morgan, M. G.: Managing Soil Carbon, Science, 304, 393–393, https://doi.org/10.1126/science.1093079, 2004.
Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., McBratney, A. B., Sá, J. C. d. M., Schneider, J., Zinn, Y. L., Skorupa, A. L. A., Zhang, H.-L., Minasny, B., Srinivasrao, C., and Ravindranath, N. H.: The carbon sequestration potential of terrestrial ecosystems, Journal of Soil and Water Conservation, 73, 145A–152A, https://doi.org/10.2489/jswc.73.6.145A, 2018.
Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., Skånes, H., Steffen, W., Stone, G. D., Svedin, U., Veldkamp, T. A., Vogel, C., and Xu, J.: The causes of land-use and land-cover change: moving beyond the myths, Global Environmental Change, 11, 261–269, https://doi.org/10.1016/S0959-3780(01)00007-3, 2001.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Global Change Biology, 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Ledo, A., Smith, P., Zerihun, A., Whitaker, J., Vicente-Vicente, J. L., Qin, Z., McNamara, N. P., Zinn, Y. L., Llorente, M., Liebig, M., Kuhnert, M., Dondini, M., Don, A., Diaz-Pines, E., Datta, A., Bakka, H., Aguilera, E., and Hillier, J.: Changes in soil organic carbon under perennial crops, Global Change Biology, 26, 4158–4168, https://doi.org/10.1111/gcb.15120, 2020.
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., and Rillig, M. C.: The concept and future prospects of soil health, Nature Reviews Earth & Environment, 1, 544–553, https://doi.org/10.1038/s43017-020-0080-8, 2020.
Mao, L., Keenor, S. G., Cai, C., Kilham, S., Murfitt, J., and Reid, B. J.: Recycling paper to recarbonise soil, Science of The Total Environment, 847, 157473, https://doi.org/10.1016/j.scitotenv.2022.157473, 2022.
Martin, T. and Sprunger, C. D.: Sensitive Measures of Soil Health Reveal Carbon Stability Across a Management Intensity and Plant Biodiversity Gradient, Frontiers in Soil Science, 2, https://doi.org/10.3389/fsoil.2022.917885, 2022.
McLauchlan, K. K. and Hobbie, S. E.: Comparison of Labile Soil Organic Matter Fractionation Techniques, Soil Science Society of America Journal, 68, 1616–1625, https://doi.org/10.2136/sssaj2004.1616, 2004.
Mikha, M. M., Jin, V. L., Johnson, J. M. F., Lehman, R. M., Karlen, D. L., and Jabro, J. D.: Land management effects on wet aggregate stability and carbon content, Soil Science Society of America Journal, 85, 2149–2168, https://doi.org/10.1002/saj2.20333, 2021.
Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., and Vargas, R.: World's soils are under threat, SOIL, 2, 79–82, https://doi.org/10.5194/soil-2-79-2016, 2016.
Newton, P., Civita, N., Frankel-Goldwater, L., Bartel, K., and Johns, C.: What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes, Frontiers in Sustainable Food Systems, 4, https://doi.org/10.3389/fsufs.2020.577723, 2020.
Nie, X., Li, Z., Huang, J., Liu, L., Xiao, H., Liu, C., and Zeng, G.: Thermal stability of organic carbon in soil aggregates as affected by soil erosion and deposition, Soil and Tillage Research, 175, 82–90, https://doi.org/10.1016/j.still.2017.08.010, 2018.
Ogle, S. M., Swan, A., and Paustian, K.: No-till management impacts on crop productivity, carbon input and soil carbon sequestration, Agriculture, Ecosystems & Environment, 149, 37–49, https://doi.org/10.1016/j.agee.2011.12.010, 2012.
Orgiazzi, A. and Panagos, P.: Soil biodiversity and soil erosion: It is time to get married, Global Ecology and Biogeography, 27, 1155–1167, https://doi.org/10.1111/geb.12782, 2018.
Pandey, D., Agrawal, M., Singh Bohra, J., Adhya, T. K., and Bhattacharyya, P.: Recalcitrant and labile carbon pools in a sub-humid tropical soil under different tillage combinations: A case study of rice–wheat system, Soil and Tillage Research, 143, 116–122, https://doi.org/10.1016/j.still.2014.06.001, 2014.
Paustian, K., Chenu, C., Conant, R., Cotrufo, F., Lal, R., Smith, P., and Soussana, J.-F.: Climate mitigation potential of regenerative agriculture is significant!, Regenerative Agriculture Foundation June, CCSD, https://static1.squarespace.com/static/67d45c6c013eb5317044a558/t/6830e4a56bda5009073448ec/1748034725418/Climate<BMitigation>Potential<Bof>BRegenerative<Ag>is<Significant>-<Response>to<WRI.pdf (last access 14 March 2024), 2020.
Pearson, C. J.: Regenerative, Semiclosed Systems: A Priority for Twenty-First-Century Agriculture, BioScience, 57, 409–418, https://doi.org/10.1641/b570506, 2007.
Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K.: Good practice guidance for land use, land-use change and forestry, Institute for Global Environmental Strategies, http://www.ipcc-nggip.iges.or.jp/public/gpglulucf.html, 2003.
Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., and van Kessel, C.: When does no-till yield more? A global meta-analysis, Field Crop Res., 183, 156–168, https://doi.org/10.1016/j.fcr.2015.07.020, 2015.
Plante, A. F., Pernes, M., and Chenu, C.: Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses, Geoderma, 129, 186–199, https://doi.org/10.1016/j.geoderma.2004.12.043, 2005.
Plante, A. F., Fernández, J. M., Haddix, M. L., Steinweg, J. M., and Conant, R. T.: Biological, chemical and thermal indices of soil organic matter stability in four grassland soils, Soil Biology and Biochemistry, 43, 1051–1058, https://doi.org/10.1016/j.soilbio.2011.01.024, 2011.
Power, A. G.: Ecosystem services and agriculture: tradeoffs and synergies, Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959–2971, https://doi.org/10.1098/rstb.2010.0143, 2010.
Rabbi, S. M. F., Hua, Q., Daniel, H., Lockwood, P. V., Wilson, B. R., and Young, I. M.: Mean Residence Time of Soil Organic Carbon in Aggregates Under Contrasting Land Uses Based on Radiocarbon Measurements, Radiocarbon, 55, 127–139, https://doi.org/10.2458/azu_js_rc.v55i1.16179, 2013.
Rovira, P., Sauras-Yera, T., and Romanyà, J.: Equivalent-mass versus fixed-depth as criteria for quantifying soil carbon sequestration: How relevant is the difference?, CATENA, 214, 106283, https://doi.org/10.1016/j.catena.2022.106283, 2022.
Ruehlmann, J. and Körschens, M.: Calculating the Effect of Soil Organic Matter Concentration on Soil Bulk Density, Soil Science Society of America Journal, 73, 876–885, https://doi.org/10.2136/sssaj2007.0149, 2009.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil carbon debt of 12,000 years of human land use, Proceedings of the National Academy of Sciences, 114, 9575–9580, https://doi.org/10.1073/pnas.1706103114, 2017.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675–1691, https://doi.org/10.5194/bg-10-1675-2013, 2013.
Seybold, C. A. and Herrick, J. E.: Aggregate stability kit for soil quality assessments, CATENA, 44, 37–45, https://doi.org/10.1016/S0341-8162(00)00175-2, 2001.
Shaheb, M. R., Venkatesh, R., and Shearer, S. A.: A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production, Journal of Biosystems Engineering, 46, 417–439, 10.1007/s42853-021-00117-7, 2021.
Sisti, C. P. J., dos Santos, H. P., Kohhann, R., Alves, B. J. R., Urquiaga, S., and Boddey, R. M.: Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil, Soil and Tillage Research, 76, 39–58, https://doi.org/10.1016/j.still.2003.08.007, 2004.
Six, J. and Jastrow, J. D.: Organic matter turnover, Encyclopedia of soil Science, 10, 936–942, 2002.
Six, J., Elliott, E. T., Paustian, K., and Doran, J. W.: Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils, Soil Science Society of America Journal, 62, 1367–1377, https://doi.org/10.2136/sssaj1998.03615995006200050032x, 1998.
Six, J., Bossuyt, H., Degryze, S., and Denef, K.: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil and Tillage Research, 79, 7–31, https://doi.org/10.1016/j.still.2004.03.008, 2004.
Smith, P.: Land use change and soil organic carbon dynamics, Nutrient Cycling in Agroecosystems, 81, 169–178, https://doi-org.uea.idm.oclc.org/10.1007/s10705-007-9138-y, 2008.
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., and Jafari, M.: Agriculture, forestry and other land use (AFOLU), in: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 811–922,https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter11.pdf (last access: 16 June 2024), 2014.
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., van Egmond, F., McNeill, S., Kuhnert, M., Arias-Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., and Klumpp, K.: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal, Global Change Biology, 26, 219–241, https://doi.org/10.1111/gcb.14815, 2020.
Soussana, J.-F., Lutfalla, S., Ehrhardt, F., Rosenstock, T., Lamanna, C., Havlík, P., Richards, M., Wollenberg, E., Chotte, J.-L., Torquebiau, E., Ciais, P., Smith, P., and Lal, R.: Matching policy and science: Rationale for the “4 per 1000 – soils for food security and climate” initiative, Soil and Tillage Research, 188, 3–15, https://doi.org/10.1016/j.still.2017.12.002, 2019.
Sundström, J. F., Albihn, A., Boqvist, S., Ljungvall, K., Marstorp, H., Martiin, C., Nyberg, K., Vågsholm, I., Yuen, J., and Magnusson, U.: Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases – a risk analysis in three economic and climate settings, Food Security, 6, 201–215, https://doi.org/10.1007/s12571-014-0331-y, 2014.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and the sustainable intensification of agriculture, Proceedings of the National Academy of Sciences, 108, 20260–20264, 2011.
Topa, D., Cara, I. G., and Jităreanu, G.: Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis, CATENA, 199, 105102, https://doi.org/10.1016/j.catena.2020.105102, 2021.
Veenstra, J. L., Cloy, J. M., and Menon, M.: Physical and Hydrological Processes in Soils Under Conservation Tillage in Europe, in: Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture, edited by: Jayaraman, S., Dalal, R. C., Patra, A. K., and Chaudhari, S. K., Springer Singapore, Singapore, 391–406, https://doi.org/10.1007/978-981-16-0827-8_19, 2021.
Whalen, J. K., Hu, Q., and Liu, A.: Compost Applications Increase Water-Stable Aggregates in Conventional and No-Tillage Systems, Soil Science Society of America Journal, 67, 1842–1847, https://doi.org/10.2136/sssaj2003.1842, 2003.
Yazdanpanah, N., Mahmoodabadi, M., and Cerdà, A.: The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands, Geoderma, 266, 58–65, https://doi.org/10.1016/j.geoderma.2015.11.032, 2016.
Zika, M. and Erb, K.-H.: The global loss of net primary production resulting from human-induced soil degradation in drylands, Ecological Economics, 69, 310–318, https://doi.org/10.1016/j.ecolecon.2009.06.014, 2009.
Short summary
Regenerative soil management reduced bulk density, increased carbon stocks, and influenced aggregate stability with time. Soils were observed to become proportionally more enriched in stable aggregates and store more carbon with time. Stable aggregates provided physical protection (occlusion) to labile carbon stocks. When considered alongside recalcitrant carbon, these carbon stabilisation mechanisms may provide further opportunities to deliver robust long term carbon sequestration outcomes.
Regenerative soil management reduced bulk density, increased carbon stocks, and influenced...