Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution frequency-domain electromagnetic mapping for the hydrological modeling of an orange orchard
Luca Peruzzo
CORRESPONDING AUTHOR
Department of Geosciences, University of Padova, Via G. Gradenigo 6, 35131, Padua, Italy
Ulrike Werban
Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
Marco Pohle
Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
Mirko Pavoni
Department of Geosciences, University of Padova, Via G. Gradenigo 6, 35131, Padua, Italy
Benjamin Mary
Institute of Agricultural Sciences, Consejo Superior de Investigaciones Científicas, Calle de Serrano 115, Madrid 28006, Spain
Giorgio Cassiani
Department of Geosciences, University of Padova, Via G. Gradenigo 6, 35131, Padua, Italy
Simona Consoli
Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95128, Catania, Italy
Daniela Vanella
Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95128, Catania, Italy
Related authors
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
The Cryosphere, 19, 4141–4148, https://doi.org/10.5194/tc-19-4141-2025, https://doi.org/10.5194/tc-19-4141-2025, 2025
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Mirko Pavoni, Luca Peruzzo, Jacopo Boaga, Alberto Carrera, Ilaria Barone, and Alexander Bast
The Cryosphere, 19, 4141–4148, https://doi.org/10.5194/tc-19-4141-2025, https://doi.org/10.5194/tc-19-4141-2025, 2025
Short summary
Short summary
We propose an alternative electrode to perform Electrical Resistivity Tomography measurements in coarse blocky environments, such as rock glaciers. Compared to the traditional steel spike electrodes, which need to be hammered between the blocks, the proposed steel-net electrodes can be easily pushed between the builders by hand and then removed. Furthermore, the steel-net electrode weighs one-sixth of the steel spike, and is, therefore, easier to carry in challenging mountain environments.
Christoph Zielhofer, Marie Kaniecki, Anne Köhler, Vera Seeburg, Arnela Rollo, Laura Bergmann, Stefanie Berg, Barbara Stammel, Rita Gudermann, William J. Fletcher, Ulrike Werban, Anja Linstädter, and Natascha Mehler
E&G Quaternary Sci. J., 74, 105–124, https://doi.org/10.5194/egqsj-74-105-2025, https://doi.org/10.5194/egqsj-74-105-2025, 2025
Short summary
Short summary
This study presents a quantitative reconstruction over a 235-year time frame of the development of the natural Donaumoos fen and Danube River into an anthroposphere. The selected proxies are the Donaumoos drainage ditch length and the Danube surface water area traced through the multi-temporal analysis of old maps. A comparison of quantitative proxies with the state of research from written sources leads to the discovery of potential great transitions in floodplain and peatland transformation.
Ilaria Barone, Alexander Bast, Mirko Pavoni, Steven Javier Gaona Torres, and Jacopo Boaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-962, https://doi.org/10.5194/egusphere-2025-962, 2025
Short summary
Short summary
Different geophysical methods such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW) were jointly used to characterize the internal structure of the Flüela rock glacier, Switzerland. We show that the MASW method can efficiently resolve an ice-rich layer even in presence of a supra-permafrost water flow, a situation when SRT may fail. Our results are corroborated by seismic synthetic modelling.
Peter Jung, Götz Hornbruch, Andreas Dahmke, Peter Dietrich, and Ulrike Werban
Solid Earth, 15, 1465–1477, https://doi.org/10.5194/se-15-1465-2024, https://doi.org/10.5194/se-15-1465-2024, 2024
Short summary
Short summary
We demonstrate the feasibility of imaging vertical freezing boundaries using borehole ground-penetrating radar (GPR) in experimental geological latent heat storage, where part of a shallow Quaternary aquifer is frozen. To gain insights into the current thermal state in the subsurface, we assess the frozen volume dimension. We show that a combination of crosshole and reflection measurements allows us to image the ice body with high accuracy in the challenging environment of saturated sediments.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Alberto Carrera, Luca Peruzzo, Matteo Longo, Giorgio Cassiani, and Francesco Morari
SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, https://doi.org/10.5194/soil-10-843-2024, 2024
Short summary
Short summary
Soil compaction resulting from inappropriate agricultural practices affects soil ecological functions, decreasing the water-use efficiency of plants. Recent developments contributed to innovative sensing approaches aimed at safeguarding soil health. Here, we explored how the most used geophysical methods detect soil compaction. Results, validated with traditional characterization methods, show the pros and cons of non-invasive techniques and their ability to characterize compacted areas.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Benjamin Mary, Veronika Iván, Franco Meggio, Luca Peruzzo, Guillaume Blanchy, Chunwei Chou, Benedetto Ruperti, Yuxin Wu, and Giorgio Cassiani
Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, https://doi.org/10.5194/bg-20-4625-2023, 2023
Short summary
Short summary
The study explores the partial root zone drying method, an irrigation strategy aimed at improving water use efficiency. We imaged the root–soil interaction using non-destructive techniques consisting of soil and plant current stimulation. The study found that imaging the processes in time was effective in identifying spatial patterns associated with irrigation and root water uptake. The results will be useful for developing more efficient root detection methods in natural soil conditions.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Georg Kaufmann, Douchko Romanov, Ulrike Werban, and Thomas Vienken
Solid Earth, 14, 333–351, https://doi.org/10.5194/se-14-333-2023, https://doi.org/10.5194/se-14-333-2023, 2023
Short summary
Short summary
We discuss collapse sinkholes occuring since 2004 on the sports field of Münsterdorf, a village north of Hamburg. The sinkholes, 2–5 m in size and about 3–5 m deep, develop in peri-glacial sand, with a likely origin in the Cretaceous chalk, present at about 20 m depth. The area has been analyzed with geophysical and direct-push-based methods, from which material properties of the subsurface have been derived. The properties have been used for mechanical models, predicting the subsidence.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Stefano Urbini, Fabrizio de Blasi, and Jacopo Gabrieli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-190, https://doi.org/10.5194/tc-2022-190, 2022
Revised manuscript not accepted
Short summary
Short summary
The Ice Memory project aims to extract, analyze, and store ice cores from worldwide retreating glaciers. One of the selected sites is the last remaining ice body in the Apennines, the Calderone Glacier. To assess the most suitable drilling position, geophysical surveys were performed. Reliable ground penetrating radar measurements have been positively combined with a geophysical technique rarely applied in glacier environments, the Frequency Domain Electro-Magnetic prospection.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Cited articles
Abedi-Koupai, J., Dorafshan, M.-M., Javadi, A., and Ostad-Ali-Askari, K.: Estimating Potential Reference Evapotranspiration Using Time Series Models (Case Study: Synoptic Station of Tabriz in Northwestern Iran), Appl. Water Sci., 12, 212, https://doi.org/10.1007/s13201-022-01736-x, 2022. a
Ahmad, A. Y., Al-Ghouti, M. A., AlSadig, I., and Abu-Dieyeh, M.: Vertical Distribution and Radiological Risk Assessment of 137Cs and Natural Radionuclides in Soil Samples, Sci. Rep., 9, 12196, https://doi.org/10.1038/s41598-019-48500-x, 2019. a
Autovino, D., Minacapilli, M., and Provenzano, G.: Modelling Bulk Surface Resistance by MODIS Data and Assessment of MOD16A2 Evapotranspiration Product in an Irrigation District of Southern Italy, Agr. Water Manage., 167, 86–94, https://doi.org/10.1016/j.agwat.2016.01.006, 2016. a
Autovino, D., Rallo, G., and Provenzano, G.: Predicting Soil and Plant Water Status Dynamic in Olive Orchards under Different Irrigation Systems with Hydrus-2D: Model Performance and Scenario Analysis, Agr. Water Manage., 203, 225–235, https://doi.org/10.1016/j.agwat.2018.03.015, 2018. a
Bagagiolo, G., Biddoccu, M., Rabino, D., and Cavallo, E.: Effects of Rows Arrangement, Soil Management, and Rainfall Characteristics on Water and Soil Losses in Italian Sloping Vineyards, Environ. Res., 166, 690–704, https://doi.org/10.1016/j.envres.2018.06.048, 2018. a
Bagarello, V., Sferlazza, S., and Sgroi, A.: Testing Laboratory Methods to Determine the Anisotropy of Saturated Hydraulic Conductivity in a Sandy–Loam Soil, Geoderma, 154, 52–58, https://doi.org/10.1016/j.geoderma.2009.09.012, 2009. a
Beff, L., Günther, T., Vandoorne, B., Couvreur, V., and Javaux, M.: Three-Dimensional Monitoring of Soil Water Content in a Maize Field Using Electrical Resistivity Tomography, Hydrol. Earth Syst. Sci., 17, 595–609, https://doi.org/10.5194/hess-17-595-2013, 2013. a
Behnassi, M., Al-Shaikh, A. A., Hussain Qureshi, R., Barjees Baig, M., and Faraj, T. K. A., eds.: Climate-Smart and Resilient Food Systems and Security, Springer Nature Switzerland, Cham, ISBN 978-3-031-65967-6 https://doi.org/10.1007/978-3-031-65968-3, 2024. a
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The Emergence of Hydrogeophysics for Improved Understanding of Subsurface Processes over Multiple Scales: The Emergence of Hydrogeophysics, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a, b, c, d
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an Intuitive Open Source Software for Complex Geoelectrical Inversion/Modeling, Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020a. a
Blanchy, G., Watts, C. W., Richards, J., Bussell, J., Huntenburg, K., Sparkes, D. L., Stalham, M., Hawkesford, M. J., Whalley, W. R., and Binley, A.: Time-lapse Geophysical Assessment of Agricultural Practices on Soil Moisture Dynamics, Vadose Zone J., 19, e20080, https://doi.org/10.1002/vzj2.20080, 2020b. a
Blanchy, G., McLachlan, P., Mary, B., Censini, M., Boaga, J., and Cassiani, G.: Comparison of Multi-Coil and Multi-Frequency Frequency Domain Electromagnetic Induction Instruments, Front. Soil Sci., 4, 1239497, https://doi.org/10.3389/fsoil.2024.1239497, 2024. a, b, c
Blanchy, G., Deroo, W., De Swaef, T., Lootens, P., Quataert, P., Roldán-Ruíz, I., Versteeg, R., and Garré, S.: Closing the Phenotyping Gap with Non-Invasive Belowground Field Phenotyping, SOIL, 11, 67–84, https://doi.org/10.5194/soil-11-67-2025, 2025. a
Boaga, J.: The Use of FDEM in Hydrogeophysics: A Review, Journal of Appl. Geophys., 139, 36–46, https://doi.org/10.1016/j.jappgeo.2017.02.011, 2017. a, b, c
Boaga, J., D'Alpaos, A., Cassiani, G., Marani, M., and Putti, M.: Plant-soil Interactions in Salt Marsh Environments: Experimental Evidence from Electrical Resistivity Tomography in the Venice Lagoon, Geophys. Res. Lett., 41, 6160–6166, https://doi.org/10.1002/2014GL060983, 2014. a
Bonsall, J., Fry, R., Gaffney, C., Armit, I., Beck, A., and Gaffney, V.: Assessment of the CMD Mini-Explorer, a New Low-frequency Multi-coil Electromagnetic Device, for Archaeological Investigations: Assessment of the CMD Mini-Explorer Low-frequency Electromagnetic Device, Archaeolog. Prospect., 20, 219–231, https://doi.org/10.1002/arp.1458, 2013. a
Boyd, J. P., Chambers, J. E., Wilkinson, P. B., Meldrum, P. I., Bruce, E., and Binley, A.: Coupled Hydrogeophysical Modeling to Constrain Unsaturated Soil Parameters for a Slow-Moving Landslide, Water Resour. Res., 60, e2023WR036319, https://doi.org/10.1029/2023WR036319, 2024. a
Brooks, E. S., Boll, J., and McDaniel, P. A.: A Hillslope-scale Experiment to Measure Lateral Saturated Hydraulic Conductivity, Water Resources Research, 40, 2003WR002858, https://doi.org/10.1029/2003WR002858, 2004. a
Bünemann, E. K., Schwenke, G. D., and Van Zwieten, L.: Impact of Agricultural Inputs on Soil Organisms – a Review, Soil Res., 44, 379, https://doi.org/10.1071/SR05125, 2006. a
Cammalleri, C., Rallo, G., Agnese, C., Ciraolo, G., Minacapilli, M., and Provenzano, G.: Combined Use of Eddy Covariance and Sap Flow Techniques for Partition of ET Fluxes and Water Stress Assessment in an Irrigated Olive Orchard, Agr. Water Manage., 120, 89–97, https://doi.org/10.1016/j.agwat.2012.10.003, 2013. a
Camporese, M., Paniconi, C., Putti, M., and Orlandini, S.: Surface-subsurface Flow Modeling with Path-based Runoff Routing, Boundary Condition-based Coupling, and Assimilation of Multisource Observation Data, Water Resour. Res., 46, 2008WR007536, https://doi.org/10.1029/2008WR007536, 2010. a, b
Camporese, M., Daly, E., Dresel, P. E., and Webb, J. A.: Simplified Modeling of Catchment-Scale Evapotranspiration via Boundary Condition Switching, Adv. Water Resour., 69, 95–105, https://doi.org/10.1016/j.advwatres.2014.04.008, 2014. a, b
Camporese, M., Daly, E., and Paniconi, C.: Catchment-scale Richards Equation-based Modeling of Evapotranspiration via Boundary Condition Switching and Root Water Uptake Schemes, Water Resour. Rese., 51, 5756–5771, https://doi.org/10.1002/2015WR017139, 2015. a, b
Carrera, A., Peruzzo, L., Longo, M., Cassiani, G., and Morari, F.: Uncovering Soil Compaction: Performance of Electrical and Electromagnetic Geophysical Methods, SOIL, 10, 843–857, https://doi.org/10.5194/soil-10-843-2024, 2024. a, b
Carsel, R. F. and Parrish, R. S.: Developing Joint Probability Distributions of Soil Water Retention Characteristics, Water Resour. Res., 24, 755–769, https://doi.org/10.1029/WR024i005p00755, 1988. a, b
Cassiani, G., Boaga, J., Vanella, D., Perri, M. T., and Consoli, S.: Monitoring and Modelling of Soil–Plant Interactions: The Joint Use of ERT, Sap Flow and Eddy Covariance Data to Characterize the Volume of an Orange Tree Root Zone, Hydrol. Earth Syst. Sci., 19, 2213–2225, https://doi.org/10.5194/hess-19-2213-2015, 2015. a, b
Cassiani, G., Boaga, J., Rossi, M., Putti, M., Fadda, G., Majone, B., and Bellin, A.: Soil–Plant Interaction Monitoring: Small Scale Example of an Apple Orchard in Trentino, North-Eastern Italy, Sci. Total Environ., 543, 851–861, https://doi.org/10.1016/j.scitotenv.2015.03.113, 2016. a
Chai, Q., Gan, Y., Zhao, C., Xu, H.-L., Waskom, R. M., Niu, Y., and Siddique, K. H. M.: Regulated Deficit Irrigation for Crop Production under Drought Stress. A Review, Agron. Sustain. Dev., 36, 3, https://doi.org/10.1007/s13593-015-0338-6, 2016. a
Chiozzi, P., Pasquale, V., and Verdoya, M.: Naturally Occurring Radioactivity at the Alps–Apennines Transition, Radiat. Meas., 35, 147–154, https://doi.org/10.1016/S1350-4487(01)00288-8, 2002. a
Choi, S. and Kim, J.-H.: Leveraging Localization Accuracy With Off-Centered GPS, IEEE T. Intel. Transport. Syst., 21, 2277–2286, https://doi.org/10.1109/TITS.2019.2915108, 2020. a, b
Chou, C., Peruzzo, L., Falco, N., Hao, Z., Mary, B., Wang, J., and Wu, Y.: Improving Evapotranspiration Computation with Electrical Resistivity Tomography in a Maize Field, Vadose Zone J., 23, e20290, https://doi.org/10.1002/vzj2.20290, 2024. a
Cominelli, S., Rivera, L. D., Brown, W. G., Ochsner, T. E., and Patrignani, A.: Calibration of TEROS 10 and TEROS 12 Electromagnetic Soil Moisture Sensors, Soil Sci. Soc. Am. J., saj2.20777, https://doi.org/10.1002/saj2.20777, 2024. a
Costa, A. D., Albuquerque, J. A., Costa, A. D., Pértile, P., and Silva, F. R. D.: Water Retention and Availability in Soils of the State of Santa Catarina-Brazil: Effect of Textural Classes, Soil Classes and Lithology, Revista Brasileira de Ciência do Solo, 37, 1535–1548, https://doi.org/10.1590/S0100-06832013000600010, 2013. a
Deidda, G. P., Díaz De Alba, P., Pes, F., and Rodriguez, G.: Forward Electromagnetic Induction Modelling in a Multilayered Half-Space: An Open-Source Software Tool, Remote Sens., 15, 1772, https://doi.org/10.3390/rs15071772, 2023. a, b
Delefortrie, S., De Smedt, P., Saey, T., Van De Vijver, E., and Van Meirvenne, M.: An Efficient Calibration Procedure for Correction of Drift in EMI Survey Data, J. Appl. Geophys., 110, 115–125, https://doi.org/10.1016/j.jappgeo.2014.09.004, 2014. a
Dierke, C. and Werban, U.: Relationships between Gamma-Ray Data and Soil Properties at an Agricultural Test Site, Geoderma, 199, 90–98, https://doi.org/10.1016/j.geoderma.2012.10.017, 2013. a, b
Dittmar, P. J., Barrett, C. E., Zotarelli, L., Dukes, M. D., and Simonne, E. H.: Chapter 3. Principles and Practices of Irrigation Management for Vegetables: CV297, 5/2021, EDIS, https://doi.org/10.32473/edis-cv297-2021, 2021. a
Dumont, M. and Singha, K.: Geophysics as a Hypothesis-testing Tool for Critical Zone Hydrogeology, WIREs Water, e1732, https://doi.org/10.1002/wat2.1732, 2024. a
Everett, M. E. and Chave, A. D.: On the Physical Principles Underlying Electromagnetic Induction, Geophysics, 84, W21–W32, https://doi.org/10.1190/geo2018-0232.1, 2019. a
Evett, S. R., Heng, L. K., Moutonnet, P., and Nguyen, M. L.: Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology, in: Soil and Water Management & Crop Nutrition Section, 30, International Atomic Energy Agency, Vienna, IAEA-TCS-30, 2008. a
Fan, X., Fei, C., and McCarl, B.: Adaptation: An Agricultural Challenge, Climate, 5, 56, https://doi.org/10.3390/cli5030056, 2017. a
Fan, Y. and Miguez-Macho, G.: A Simple Hydrologic Framework for Simulating Wetlands in Climate and Earth System Models, Clim. Dynam., 37, 253–278, https://doi.org/10.1007/s00382-010-0829-8, 2011. a
Feddes, R. A., Kowalik, P., Kolinska-Malinka, K., and Zaradny, H.: Simulation of Field Water Uptake by Plants Using a Soil Water Dependent Root Extraction Function, J. Hydrol., 31, 13–26, https://doi.org/10.1016/0022-1694(76)90017-2, 1976. a, b
Feddes, R. A., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P., Dirmeyer, P., Jackson, R. B., Kabat, P., Kleidon, A., Lilly, A., and Pitman, A. J.: Modeling Root Water Uptake in Hydrological and Climate Models, B. Am. Meteorol. Soc., 82, 2797–2809, https://doi.org/10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2, 2001. a, b
Fereres, E. and Soriano, M. A.: Deficit Irrigation for Reducing Agricultural Water Use, J. Exp. Bot., 58, 147–159, https://doi.org/10.1093/jxb/erl165, 2006. a
Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M., Girón, I., Rodríguez, P., Cruz, Z., Memmi, H., Carbonell-Barrachina, A., Hernández, F., Torrecillas, A., Moriana, A., and Pérez-López, D.: Deficit Irrigation and Emerging Fruit Crops as a Strategy to Save Water in Mediterranean Semiarid Agrosystems, Agr. Water Manage., 202, 311–324, https://doi.org/10.1016/j.agwat.2017.08.015, 2018. a
Garré, S., Javaux, M., Vanderborght, J., Pagès, L., and Vereecken, H.: Three-Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics, Vadose Zone J., 10, 412–424, https://doi.org/10.2136/vzj2010.0079, 2011. a
Garré, S., Hyndman, D., Mary, B., and Werban, U.: Geophysics Conquering New Territories: The Rise of “Agrogeophysics”, Vadose Zone J., 20, e20115, https://doi.org/10.1002/vzj2.20115, 2021. a, b, c
Gu, H., Wang, Y., Peruzzo, L., Li, B., Lu, Y., and Liu, X.: Linking Winter Wheat (Triticum Aestivum L) Root Traits and Root Water Uptake with Electrical Resistivity Tomography, Agr. Water Manage., 307, 109247, https://doi.org/10.1016/j.agwat.2024.109247, 2025. a
Guillemoteau, J. and Tronicke, J.: Non-Standard Electromagnetic Induction Sensor Configurations: Evaluating Sensitivities and Applicability, J. Appl. Geophys., 118, 15–23, https://doi.org/10.1016/j.jappgeo.2015.04.008, 2015. a
Guillemoteau, J. and Tronicke, J.: Evaluation of a Rapid Hybrid Spectral-Spatial Domain 3D Forward-Modeling Approach for Loop-Loop Electromagnetic Induction Quadrature Data Acquired in Low-Induction-Number Environments, Geophysics, 81, E447–E458, https://doi.org/10.1190/geo2015-0584.1, 2016. a
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array Programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Heagy, L. J., Cockett, R., Kang, S., Rosenkjaer, G. K., and Oldenburg, D. W.: A Framework for Simulation and Inversion in Electromagnetics, Comput. Geosci., 107, 1–19, https://doi.org/10.1016/j.cageo.2017.06.018, 2017. a
Hou, P., Chen, D., Wei, X., Hu, X., Duan, X., Zhang, J., Qiu, L., and Zhang, L.: Transpiration Characteristics and Environmental Controls of Orange Orchards in the Dry-Hot Valley Region of Southwest China, Agr. Water Manage., 288, 108467, https://doi.org/10.1016/j.agwat.2023.108467, 2023. a, b
Hubbard, S. S., Schmutz, M., Balde, A., Falco, N., Peruzzo, L., Dafflon, B., Léger, E., and Wu, Y.: Estimation of Soil Classes and Their Relationship to Grapevine Vigor in a Bordeaux Vineyard: Advancing the Practical Joint Use of Electromagnetic Induction (EMI) and NDVI Datasets for Precision Viticulture, Precis. Agricult., 22, 1353–1376, https://doi.org/10.1007/s11119-021-09788-w, 2021. a
Javansalehi, M. and Shourian, M.: Assessing the Impacts of Climate Change on Agriculture and Water Systems via Coupled Human-Hydrological Modeling, Agr. Water Manage., 300, 108919, https://doi.org/10.1016/j.agwat.2024.108919, 2024. a
Jovanović, N., Motsei, N., Mashabatu, M., and Dube, T.: Modelling Soil Water Redistribution in Irrigated Japanese Plum (Prunus Salicina) Orchards in the Western Cape (South Africa), Horticulturae, 9, 395, https://doi.org/10.3390/horticulturae9030395, 2023. a
Karunathilake, E. M. B. M., Le, A. T., Heo, S., Chung, Y. S., and Mansoor, S.: The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture, Agriculture, 13, 1593, https://doi.org/10.3390/agriculture13081593, 2023. a, b
Klose, T., Guillemoteau, J., Vignoli, G., and Tronicke, J.: Laterally Constrained Inversion (LCI) of Multi-Configuration EMI Data with Tunable Sharpness, J. Appl. Geophys., 196, 104519, https://doi.org/10.1016/j.jappgeo.2021.104519, 2022. a, b, c
Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S.: Footprint Characteristics Revised for Field-scale Soil Moisture Monitoring with Cosmic-ray Neutrons, Water Resour. Res., 51, 5772–5790, https://doi.org/10.1002/2015WR017169, 2015. a
Kustas, W. P., Prueger, J. H., Hatfield, J. L., Ramalingam, K., and Hipps, L. E.: Variability in Soil Heat Flux from a Mesquite Dune Site, Agr. Forest Meteorol., 103, 249–264, https://doi.org/10.1016/S0168-1923(00)00131-3, 2000. a
La Cecilia, D. and Camporese, M.: Resolving Streamflow Diel Fluctuations in a Small Agricultural Catchment with an Integrated Surface-subsurface Hydrological Model, Hydrol. Process., 36, e14768, https://doi.org/10.1002/hyp.14768, 2022. a
Lakhiar, I. A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B., Han, Y., Wang, B., Bao, R., Syed, T. N., Chauhdary, J. N., and Rakibuzzaman, M.: A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints, Agriculture, 14, 1141, https://doi.org/10.3390/agriculture14071141, 2024. a
Li, D., Schrön, M., Köhli, M., Bogena, H., Weimar, J., Jiménez Bello, M. A., Han, X., Martínez Gimeno, M. A., Zacharias, S., Vereecken, H., and Hendricks Franssen, H.-J.: Can Drip Irrigation Be Scheduled with Cosmic-Ray Neutron Sensing?, Vadose Zone J., 18, 190053, https://doi.org/10.2136/vzj2019.05.0053, 2019. a
Mary, B.: Agrogeophy/Catalog: Pre-release Version 0.1 (Zenodo Integration), Zenodo [data set], https://doi.org/10.5281/ZENODO.4058556, 2020. a
Mary, B., Peruzzo, L., Boaga, J., Schmutz, M., Wu, Y., Hubbard, S. S., and Cassiani, G.: Small-Scale Characterization of Vine Plant Root Water Uptake via 3-D Electrical Resistivity Tomography and Mise-à-La-Masse Method, Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, 2018. a
Mary, B., Vanella, D., Consoli, S., and Cassiani, G.: Assessing the Extent of Citrus Trees Root Apparatus under Deficit Irrigation via Multi-Method Geo-Electrical Imaging, Sci. Rep., 9, 9913, https://doi.org/10.1038/s41598-019-46107-w, 2019. a, b
Mary, B., Peruzzo, L., Iván, V., Facca, E., Manoli, G., Putti, M., Camporese, M., Wu, Y., and Cassiani, G.: Combining Models of Root-Zone Hydrology and Geoelectrical Measurements: Recent Advances and Future Prospects, Front. Water, 3, 767910, https://doi.org/10.3389/frwa.2021.767910, 2021. a
Mary, B., Iván, V., Meggio, F., Peruzzo, L., Blanchy, G., Chou, C., Ruperti, B., Wu, Y., and Cassiani, G.: Imaging of the Electrical Activity in the Root Zone under Limited-Water-Availability Stress: A Laboratory Study for Vitis Vinifera, Biogeosciences, 20, 4625–4650, https://doi.org/10.5194/bg-20-4625-2023, 2023. a
Maurel, C. and Nacry, P.: Root Architecture and Hydraulics Converge for Acclimation to Changing Water Availability, Nat. Plants, 6, 744–749, https://doi.org/10.1038/s41477-020-0684-5, 2020. a
McBratney, A., Whelan, B., Ancev, T., Mcbratney, A., and Bouma, J.: Future Directions of Precision Agriculture, Precision Agriculture, 6, 7–23, https://doi.org/10.1007/s11119-005-0681-8, 2005. a, b
McLachlan, P., Chambers, J., Uhlemann, S., and Binley, A.: Geophysical Characterisation of the Groundwater–Surface Water Interface, Adv. Water Resour., 109, 302–319, https://doi.org/10.1016/j.advwatres.2017.09.016, 2017. a
McLachlan, P., Blanchy, G., and Binley, A.: EMagPy: Open-source Standalone Software for Processing, Forward Modeling and Inversion of Electromagnetic Induction Data, Comput. Geosci., 146, 104561, https://doi.org/10.1016/j.cageo.2020.104561, 2021. a, b, c
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., and Tabbagh, A.: Spatial and Temporal Monitoring of Soil Water Content with an Irrigated Corn Crop Cover Using Surface Electrical Resistivity Tomography, Water Resour. Res., 39, 2002WR001581, https://doi.org/10.1029/2002WR001581, 2003. a
Mira-García, A., Vera, J., Conejero, W., Conesa, M., and Ruiz-Sánchez, M.: Evapotranspiration in Young Lime Trees with Automated Irrigation, Scient. Horticult., 288, 110396, https://doi.org/10.1016/j.scienta.2021.110396, 2021. a
Mishra, A. K., Pujari, P. R., Dhyani, S., Verma, P., Janipella, R., Balwant, P., Purkayastha, S. D., Quamar, R., and Veligeti, J.: Assessing Water Requirement of Orange Trees Using Sap Flow Measurements in Narkhed-Pandhurna Critical Zone Observatory (CZO) in Central India, J. Agrometeorol., 23, 14–20, https://doi.org/10.54386/jam.v23i1.83, 2021. a
Morgan, K. T., Obreza, T., and Scholberg, J.: Orange Tree Fibrous Root Length Distribution in Space and Time, J. Am. Soc. Horticult. Sci., 132, 262–269, https://doi.org/10.21273/JASHS.132.2.262, 2007. a
Morlat, R. and Jacquet, A.: The Soil Effects on the Grapevine Root System in Several Vinejards of the Loire Valley (France), Vitis, 32, 35–42, 1993. a
Mualem, Y.: A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/wr012i003p00513, 1976. a
O'Leary, D., Brogi, C., Brown, C., Tuohy, P., and Daly, E.: Linking Electromagnetic Induction Data to Soil Properties at Field Scale Aided by Neural Network Clustering, Front. Soil Sci., 4, 1346028, https://doi.org/10.3389/fsoil.2024.1346028, 2024. a, b, c
Omoniyi, I. M., Oludare, S. M. B., and Oluwaseyi, O. M.: Determination of Radionuclides and Elemental Composition of Clay Soils by Gamma- and X-ray Spectrometry, SpringerPlus, 2, 74, https://doi.org/10.1186/2193-1801-2-74, 2013. a, b
Patzold, S., Mertens, F. M., Bornemann, L., Koleczek, B., Franke, J., Feilhauer, H., and Welp, G.: Soil Heterogeneity at the Field Scale: A Challenge for Precision Crop Protection, Precis. Agricult., 9, 367–390, https://doi.org/10.1007/s11119-008-9077-x, 2008. a, b
Peddinti, S. R., Kambhammettu, B., Ranjan, S., Suradhaniwar, S., Badnakhe, M. R., Adinarayana, J., and Gade, R.: Modeling Soil–Water–Disease Interactions of Flood-Irrigated Mandarin Orange Trees: Role of Root Distribution Parameters, Vadose Zone J., 17, 1–13, https://doi.org/10.2136/vzj2017.06.0129, 2018. a
Peruzzo, L.: Field Campaign at Lentini – June 28 2023 – V1, Zenodo [data set],https://doi.org/10.5281/zenodo.15349446, 2025. a
Peruzzo, L., Chou, C., Wu, Y., Schmutz, M., Mary, B., Wagner, F. M., Petrov, P., Newman, G., Blancaflor, E. B., Liu, X., Ma, X., and Hubbard, S.: Imaging of Plant Current Pathways for Non-Invasive Root Phenotyping Using a Newly Developed Electrical Current Source Density Approach, Plant Soil, 450, 567–584, https://doi.org/10.1007/s11104-020-04529-w, 2020. a
Peruzzo, L., Chou, C., Hubbard, S., Brodie, E., Uhlemann, S., Dafflon, B., Wielandt, S., Mary, B., Cassiani, G., Morales, A., and Wu, Y.: Outdoor Mesoscale Fabricated Ecosystems: Rationale, Design, and Application to Evapotranspiration, Sci. Total Environ., 957, 177565, https://doi.org/10.1016/j.scitotenv.2024.177565, 2024. a
Pirastru, M., Marrosu, R., Di Prima, S., Keesstra, S., Giadrossich, F., and Niedda, M.: Lateral Saturated Hydraulic Conductivity of Soil Horizons Evaluated in Large-Volume Soil Monoliths, Water, 9, 862, https://doi.org/10.3390/w9110862, 2017. a
Priori, S., Bianconi, G., Fantapié, M., Pellegrini, S., Ferrigno, G., Guaitoli, F., and Costantini, E. A.: The potential of γ-ray spectroscopy for soil proximal survey in clayey soils, EQA – International J. Environ. Qual., 29–38, https://doi.org/10.6092/ISSN.2281-4485/4086, 2013. a
QGIS Development Team: QGIS Geographic Information System, QGIS Association, http://www.qgis.org (last access: 1 April 2025), 2024. a
Rab, M. A., Chandra, S., Fisher, P. D., Robinson, N. J., Kitching, M., Aumann, C. D., and Imhof, M.: Modelling and Prediction of Soil Water Contents at Field Capacity and Permanent Wilting Point of Dryland Cropping Soils, Soil Res., 49, 389, https://doi.org/10.1071/SR10160, 2011. a
Rivera, D., Granda, S., Arumí, J. L., Sandoval, M., and Billib, M.: A Methodology to Identify Representative Configurations of Sensors for Monitoring Soil Moisture, Environ. Monit. Assess., 184, 6563–6574, https://doi.org/10.1007/s10661-011-2441-8, 2012. a
Rossi, M., Manoli, G., Pasetto, D., Deiana, R., Ferraris, S., Strobbia, C., Putti, M., and Cassiani, G.: Coupled Inverse Modeling of a Controlled Irrigation Experiment Using Multiple Hydro-Geophysical Data, Adv. Water Resour., 82, 150–165, https://doi.org/10.1016/j.advwatres.2015.03.008, 2015. a
Rouze, G., Morgan, C., and McBratney, A.: Understanding the Utility of Aerial Gamma Radiometrics for Mapping Soil Properties through Proximal Gamma Surveys, Geoderma, 289, 185–195, https://doi.org/10.1016/j.geoderma.2016.12.004, 2017. a
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An Open-Source Library for Modelling and Inversion in Geophysics, Comput. Geosci., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017. a
Saitta, D., Consoli, S., Ferlito, F., Torrisi, B., Allegra, M., Longo-Minnolo, G., Ramírez-Cuesta, J. M., and Vanella, D.: Adaptation of Citrus Orchards to Deficit Irrigation Strategies, Agr. Water Manage., 247, 106734, https://doi.org/10.1016/j.agwat.2020.106734, 2021. a
Schaap, M. G., Leij, F. J., and Van Genuchten, M. T.: Rosetta : A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions, J. Hydrol., 251, 163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001. a
Searles, P. S., Saravia, D. A., and Rousseaux, M. C.: Root Length Density and Soil Water Distribution in Drip-Irrigated Olive Orchards in Argentina under Arid Conditions, Crop Past. Sci., 60, 280, https://doi.org/10.1071/CP08135, 2009. a
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., and Iqbal, N.: Precision Agriculture Techniques and Practices: From Considerations to Applications, Sensors, 19, 3796, https://doi.org/10.3390/s19173796, 2019. a
Shaw, J., Bosch, D., West, L., Truman, C., and Radcliffe, D.: Lateral Flow in Loamy to Sandy Kandiudults of the Upper Coastal Plain of Georgia (USA), Geoderma, 99, 1–25, https://doi.org/10.1016/S0016-7061(00)00061-6, 2001. a
Tuzet, A., Castell, J.-F., Perrier, A., and Zurfluh, O.: Flux Heterogeneity and Evapotranspiration Partitioning in a Sparse Canopy: The Fallow Savanna, J. Hydrol., 188–189, 482–493, https://doi.org/10.1016/S0022-1694(96)03189-7, 1997. a
Uhlemann, S., Peruzzo, L., Chou, C., Williams, K. H., Wielandt, S., Wang, C., Falco, N., Wu, Y., Carr, B., Meldrum, P., Chambers, J., and Dafflon, B.: Variations in Bedrock and Vegetation Cover Modulate Subsurface Water Flow Dynamics of a Mountainous Hillslope, Water Resour. Res., 60, e2023WR036137, https://doi.org/10.1029/2023WR036137, 2024. a
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, Soil Sci. Soc. Am. J., 44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a
Vanella, D., Cassiani, G., Busato, L., Boaga, J., Barbagallo, S., Binley, A., and Consoli, S.: Use of Small Scale Electrical Resistivity Tomography to Identify Soil-Root Interactions during Deficit Irrigation, J. Hydrol., 556, 310–324, https://doi.org/10.1016/j.jhydrol.2017.11.025, 2018. a
Vanella, D., Ramírez-Cuesta, J. M., Sacco, A., Longo-Minnolo, G., Cirelli, G. L., and Consoli, S.: Electrical Resistivity Imaging for Monitoring Soil Water Motion Patterns under Different Drip Irrigation Scenarios, Irrig. Sci., 39, 145–157, https://doi.org/10.1007/s00271-020-00699-8, 2021. a
Vanella, D., Peddinti, S. R., and Kisekka, I.: Unravelling Soil Water Dynamics in Almond Orchards Characterized by Soil-Heterogeneity Using Electrical Resistivity Tomography, Agr. Water Manage., 269, 107652, https://doi.org/10.1016/j.agwat.2022.107652, 2022. a
Vanella, D., Guarrera, S., Ferlito, F., Longo-Minnolo, G., Milani, M., Pappalardo, G., Nicolosi, E., Giuffrida, A., Torrisi, B., Las Casas, G., and Consoli, S.: Effects of Organic Mulching and Regulated Deficit Irrigation on Crop Water Status, Soil and Yield Features in an Orange Orchard under Mediterranean Climate, Sci. Total Environ., 958, 177528, https://doi.org/10.1016/j.scitotenv.2024.177528, 2025. a, b, c, d
Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, ISBN 1-4414-1269-7, 2009. a
Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.: Upscaling Hydraulic Properties and Soil Water Flow Processes in Heterogeneous Soils: A Review, Vadose Zone J., 6, 1–28, https://doi.org/10.2136/vzj2006.0055, 2007. a, b
Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., Vrugt, J. A., and Hopmans, J. W.: On the Value of Soil Moisture Measurements in Vadose Zone Hydrology: A Review, Water Resour. Res., 44, 2008WR006829, https://doi.org/10.1029/2008WR006829, 2008. a, b
Vereecken, H., Schnepf, A., Hopmans, J., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M., Amelung, W., Aitkenhead, M., Allison, S., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H., Heppell, J., Horn, R., Huisman, J., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S., Vogel, H., Vrugt, J., Wöhling, T., and Young, I.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, https://doi.org/10.2136/vzj2015.09.0131, 2016. a
Von Hebel, C., Van Der Kruk, J., Huisman, J. A., Mester, A., Altdorff, D., Endres, A. L., Zimmermann, E., Garré, S., and Vereecken, H.: Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data, Sensors, 19, 4753, https://doi.org/10.3390/s19214753, 2019. a
Von Hebel, C., Reynaert, S., Pauly, K., Janssens, P., Piccard, I., Vanderborght, J., Van Der Kruk, J., Vereecken, H., and Garré, S.: Toward High-resolution Agronomic Soil Information and Management Zones Delineated by Ground-based Electromagnetic Induction and Aerial Drone Data, Vadose Zone J., 20, e20099, https://doi.org/10.1002/vzj2.20099, 2021. a, b, c
Wagner, F. M. and Uhlemann, S.: An Overview of Multimethod Imaging Approaches in Environmental Geophysics, in: Advances in Geophysics, vol. 62, Elsevier, 1–72, ISBN 978-0-12-824026-7, https://doi.org/10.1016/bs.agph.2021.06.001, 2021. a
Ward, N. K., Maureira, F., Stöckle, C. O., Brooks, E. S., Painter, K. M., Yourek, M. A., and Gasch, C. K.: Simulating Field-Scale Variability and Precision Management with a 3D Hydrologic Cropping Systems Model, Precis. Agricult., 19, 293–313, https://doi.org/10.1007/s11119-017-9517-6, 2018. a
Watlet, A., Wilkinson, P., Whiteley, J., White, A., Uhlemann, S., Swift, R., Ouellet, S., Minto, C., Meldrum, P., Jones, L., Gunn, D., Godfrey, A., Dshwood, B., Crickmore, R., Clarkson, P., Boyd, J., and Chambers, J.: High-Resolution Geophysical Monitoring of Moisture Accumulation Preceding Slope Movement – a Path to Improved Early Warning, Environ. Res. Lett., 19, 124059, https://doi.org/10.1088/1748-9326/ad8fbe, 2024. a
Wilcox, J. C.: Rate of soil drainage following an irrigation.: III. A new concept of the upper limit of available moisture, Can. J. Soil Sci., 42, 122–128, https://doi.org/10.4141/cjss62-017, 1962. a
Xi, M., Lu, D., Gui, D., Qi, Z., and Zhang, G.: Calibration of an Agricultural-Hydrological Model (RZWQM2) Using Surrogate Global Optimization, J. Hydrology, 544, 456–466, https://doi.org/10.1016/j.jhydrol.2016.11.051, 2017. a
Yang, B., Fu, P., Lu, J., Ma, F., Sun, X., and Fang, Y.: Regulated Deficit Irrigation: An Effective Way to Solve the Shortage of Agricultural Water for Horticulture, Stress Biol., 2, 28, https://doi.org/10.1007/s44154-022-00050-5, 2022. a, b
Yu, L., Gao, W., R. Shamshiri, R., Tao, S., Ren, Y., Zhang, Y., and Su, G.: Review of Research Progress on Soil Moisture Sensor Technology, Int. J. Agricult. Biol. Eng., 14, 32–42, https://doi.org/10.25165/j.ijabe.20211404.6404, 2021. a, b
Zreda, M., Desilets, D., Ferré, T. P. A., and Scott, R. L.: Measuring Soil Moisture Content Non-invasively at Intermediate Spatial Scale Using Cosmic-ray Neutrons, Geophys. Res. Lett., 35, 2008GL035655, https://doi.org/10.1029/2008GL035655, 2008. a
Short summary
Both spatial and temporal information is important in agriculture. Information regarding the aboveground variables is ever increasing in terms of density and precision. On the contrary, belowground information lags behind and has been typically limited to time series. This study uses methods that map the subsurface spatial variability. Numerical simulations of aboveground and belowground water fluxes are then based on such spatial information and additional time-oriented datasets that are common in agriculture.
Both spatial and temporal information is important in agriculture. Information regarding the...
Special issue