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Abstract. While aboveground precision agriculture technologies provide spatial and temporal datasets that are
ever increasing in terms of density and precision, belowground information lags behind and has been typically
limited to time series. As recognized in agrogeophysics, geophysical methods can address the lack of subsurface
spatial information. This study focuses on high-resolution frequency-domain electromagnetic induction (FDEM)
mapping as an ideal complement to aboveground and belowground time series that are commonly available in
precision agriculture. Focused on a Sicilian orange orchard, this study first investigates some methodological
challenges behind seemingly simple FDEM survey choices and processing steps, as well as their interplay with
the spatial heterogeneity of agricultural sites. Second, this study shows how the detailed FDEM-based spatial
information can underpin a surface/subsurface hydrological model that integrates time series from soil mois-
ture sensors and micro-meteorological sensors. While FDEM has long been recognized as a promising solution
in agrogeophysics, this study demonstrates how the approach can be successfully applied in an orchard, whose
3D subsurface variability is a complex combination of root water uptake, irrigation, evapotranspiration, and row–
interrow dynamics. The resulting hydrological model reproduces the observed spatiotemporal water dynamics
with parameters that agree with the results from soil laboratory analysis, supporting gamma-ray and electrical re-
sistivity tomography datasets. The implementation of a hydrological model positively aligns with the increasing
number and variety of methods in precision agriculture, as well as with the need for better predictive capability.

1 Introduction

Precision agriculture, a management strategy for addressing
spatial and temporal variabilities in agricultural fields that in-
volves data and contemporary technologies, directly points
at both spatial mapping and temporal monitoring technolo-
gies (McBratney et al., 2005). Remote sensing, the Internet
of Things, big data, and artificial intelligence drove and drive

significant advances in the monitoring and management of
aboveground variables and agricultural practices (Karunathi-
lake et al., 2023). On the contrary, the understanding of the
subsurface spatiotemporal variability lags behind, hindered
by open methodological challenges and, consequently, lim-
ited information availability.

With regard to the subsurface, soil sensors remain the fore-
most driver of precision agriculture (Shafi et al., 2019). These
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sensors provide high-resolution temporal information on key
soil state variables, such as volumetric water content (VWC),
water potential, heat flux, and temperature (Yu et al., 2021;
Kustas et al., 2000; Tuzet et al., 1997). However, their limited
spatial representativeness and high sensitivity to local and
installation factors are well-known issues (Vereecken et al.,
2016; Rivera et al., 2012; Everett and Chave, 2019; Evett
et al., 2008). Cosmic-ray neutron sensing is a newer technol-
ogy that addresses some of these issues, with the water con-
tent information being integrated over an areal footprint with
a radius of several tens of meters (Zreda et al., 2008; Li et al.,
2019). In this sense, however, the integrated VWC remains
limited to a one-dimensional time series and does not provide
direct information on the spatial variability as the measured
VWC is averaged over the footprint area and a thickness of
a few tens of centimeters. A second concern with cosmic-
ray neutron sensing is the penetration depth being limited by
the physical process and soil conditions, which can be mod-
eled but not controlled (Köhli et al., 2015). This aspect be-
comes particularly relevant when targeting deeper root water
uptake (RWU), for example, beyond 50 cm depth in orchards.
Overall, the combination of soil sensors and cosmic-ray neu-
tron sensing allows for the monitoring of temporal variability
but fails to capture spatial variability with adequate spatial
resolution (Vereecken et al., 2007, 2008; Binley et al., 2015).

The use of geophysics has been explored to address this
key and open issue, e.g., as in Garré et al. (2021) and Binley
et al. (2015). Among geophysical methods, electrical resis-
tivity tomography (ERT) and frequency-domain electromag-
netic induction (FDEM) are used for their sensitivity to water
content, water salinity, and relevant soil properties (O’Leary
et al., 2024; Rubin and Hubbard, 2005). These methods can
target the spatiotemporal water dynamics induced by irriga-
tion and evapotranspiration (ET), including at depths where
soil sensors are difficult to install and where cosmic-ray neu-
tron sensing has limited sensitivity. ERT and FDEM primar-
ily measure the electrical resistivity of the subsurface while
also being sensitive to its capacitive and inductive response
(Rubin and Hubbard, 2005). ERT relies on the galvanic in-
jection of electrical current and measurement of the associ-
ated distribution of the electric field to image the variability
of the electrical resistivity. FDEM uses solenoids to induce
and measure the electromagnetic induction response of the
subsurface, with no direct contact. From the measured elec-
trical resistivity, the relevant hydrological properties are then
qualitatively or quantitatively derived through petrophysical
relationships or the calibration of hydrogeophysical mod-
els (Wagner and Uhlemann, 2021; Boyd et al., 2024), RWU
(Blanchy et al., 2020a; Mary et al., 2021), and ET (Dumont
and Singha, 2024; Chou et al., 2024; Peruzzo et al., 2024).

In recent years, progress has been made in the FDEM-
based study of the intra-field variability and soil–plant cor-
relations at the scale of a few meters (Boaga, 2017). This
scale suitably addresses the soil spatial variability and its im-
pact on irrigation and vegetation, especially in crop farming

(O’Leary et al., 2024; Von Hebel et al., 2021). On the con-
trary, methodological challenges hindered the possibility of
resolving strong spatiotemporal complexity at smaller scales
(Blanchy et al., 2024; Carrera et al., 2024; Klose et al., 2022).
These small-scale spatiotemporal variabilities are associated
with irrigation and RWU–ET dynamics in orchard farming
and thus are central to agroecosystems and precision agri-
culture (Galindo et al., 2018; Yang et al., 2022). ERT has
been applied to the meter and sub-meter scales thanks to its
spatial flexibility in terms of scale and resolution (Cassiani
et al., 2015, 2016; Watlet et al., 2024). Applications have
successfully imaged and monitored the RWU dynamics of
crops (Michot et al., 2003; Beff et al., 2013; Boaga et al.,
2014; Garré et al., 2011; Gu et al., 2025) and fruit trees (Mary
et al., 2018; Mary, 2020; Peddinti et al., 2018; Vanella et al.,
2018, 2021). In general, these ERT setups showed how ERT
successfully addresses the need for high-resolution and time-
lapse measurements (Blanchy et al., 2025; Mary et al., 2023;
Peruzzo et al., 2020). Hence, ERT is often used to provide
specific details supporting the interpretation of the FDEM
results (Blanchy et al., 2020b). In turn, the FDEM results
can guide the ERT surveys and upscale their results (Carrera
et al., 2024; McLachlan et al., 2017) and provide a link with
remote-sensing data (Von Hebel et al., 2021; Hubbard et al.,
2021).

The above geophysical studies have shown how FDEM
and ERT are particularly suitable for targeting water spa-
tiotemporal dynamics, including irrigation strategies, RWU,
and ET. Over the last few decades, there has been extensive
research into irrigation optimization, often in the frame of
regulated deficit irrigation, and other soil and water conser-
vation strategies. The proposed optimizations require care-
ful understanding and monitoring of the ET and RWU dy-
namics (Fereres and Soriano, 2006). Differently, the desired
moderate water stress becomes too severe and causes nega-
tive physiological and yield consequences (Chai et al., 2016).
This optimization faces critical methodological challenges
with regard to how soil heterogeneity and ET changes affect
the irrigation-ET balance. For example, variable soil thick-
ness and texture impact the water dynamics and become crit-
ical for timing the irrigation inputs (Patzold et al., 2008).
Yang et al. (2022) indicated the lack of consensus regarding
suitable irrigation systems and procedures, i.e., rather practi-
cal aspects related to the water dynamics, as a key adoption
problem for regulated deficit irrigation. Beyond the short-
term management of irrigation, a better understanding of
the RWU also underpins the evaluation of long-term mor-
phological and physiological responses of crops to irrigation
changes (Saitta et al., 2021; Maurel and Nacry, 2020).

In orchard farming, the presence of significant row–
interrow differences further increases the spatial complex-
ity. The use of soil water sensors and cosmic-ray neutron
sensing becomes particularly problematic when investigating
the interplay of different treatments, genotypes, and water
deficits as their time series cannot be upscaled or generalized
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(Vanella et al., 2025). Jovanović et al. (2023) investigated the
row-interrow water dynamics in a Japanese plum orchard,
including 2D numerical simulations (HYDRUS-2D). While
the calibrated model successfully reproduced the measured
ET time series, the discussion of the 2D water dynamics was
ultimately limited by the absence of spatial information for
the subsurface. Similarly, Searles et al. (2009) studied the
adaptation of the root system of olive trees to different drip
irrigation systems based on soil auger samples. The results
provided significant statistics on the root morphology but
also highlighted the intrinsic limitations of samples with re-
gard to root functioning and water spatiotemporal dynamics.
In this sense, Vanella et al. (2022) successfully proposed the
use of time-lapse ERT measurements to target spatiotempo-
ral water changes in an almond orchard and discussed the
variable agreement with FDEM surveys and cosmic-ray neu-
tron fluxes. More generally, the complexity of water dynam-
ics supported the increasing integration of geophysical data
and other hydrological datasets. This integration is central to
hydrogeophysics and can follow different approaches (Ru-
bin and Hubbard, 2005; Binley et al., 2015; Uhlemann et al.,
2024), including coupled and uncoupled hydrogeophysical
modeling (Rossi et al., 2015). The implementation of hydro-
logical models is also motivated by the general need for val-
idation and prediction (Beven, 2008; Ward et al., 2018), es-
pecially for precision agriculture in sensitive areas under cli-
mate change (Lakhiar et al., 2024; Fan et al., 2017; Behnassi
et al., 2024).

As introduced above, the increasing number of studies
that explored hydrogeophysical integration largely relied on
ERT surveys because of advantageous spatial scale flexi-
bility and monitoring capabilities. Nonetheless, FDEM has
been presented as the ideal solution to fully match the large
area and spatial variability of agricultural sites. This study
first explores the methodological challenges that hinder high-
resolution FDEM characterizations of the strong spatial vari-
ability associated with irrigation and ET dynamics, espe-
cially in orchards. Our first hypothesis is that these chal-
lenges are not sufficiently recognized or discussed and that
the complexity behind seemingly simple survey choices and
processing steps limits the FDEM technological readiness
and applications in agrogeophysics. We worked in a Sicil-
ian orange orchard where ultra-low drip irrigation is applied,
collecting several FDEM datasets with different instruments,
coil orientations, and coil heights. The direction and spacing
of the survey lines were also varied to investigate the effect of
the field anisotropy associated with tree and irrigation lines.
Three time-lapse ERT datasets were collected and used to
support the FDEM results. Next, this study investigates how
addressing these challenges allows for an effective coupling
between temporal information from the widely used soil wa-
ter sensors and spatial information from FDEM mapping. A
second hypothesis is that this combination can suitably in-
form conceptual hydrological models that are sufficiently de-
tailed to capture the relevant spatiotemporal complexity but

also cover entire plots or large areas, e.g., extending com-
mon ERT applications. Third, the derived conceptual model
was used to implement a 3D (CATHY) numerical model
that includes both soil water dynamics (RWU and irrigation)
and ET (Camporese et al., 2010, 2014). Beyond the valida-
tion of the conceptual model, this last step is aimed toward
agrogeophysical studies that include both subsurface and sur-
face hydrology, as well as hydrological models. The third hy-
pothesis is that the assimilation of soil sensors, FDEM map-
ping, and micro-meteorological data can constrain a realistic
surface and/or subsurface hydrological model. This last step
is a fundamental step forward in the direction of the most
fundamental spirit of “hydrogeophysics” that resides in the
integration of geophysical data as further and often funda-
mental experimental evidence to be compared against mod-
eling predictions, thus closing the loop in the scientific rea-
soning in developing a validated (non-falsified) conceptual
model of the system, to be used for predictions and actual
practical purposes.

2 Materials and methods

The experiments were conducted in a 20 ha orange farm lo-
cated in Lentini (eastern Sicily; 37°20′24′′ N, 14°53′33′′ E;
WGS84) in a Mediterranean semi-arid environment. The to-
pography of the farm is flat. The farm is managed by Cen-
tro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura of
the Italian Council for Agricultural Research and Agricul-
tural Economics Analyses (CREA-OFA). The annual aver-
age precipitation is around 573 mm, with very dry summers
and average air temperatures of 7 °C in winter and 28 °C in
summer (years from 2002 to 2023). The investigated sub-
plot was planted in 2021 with 3-year-old orange trees. The
trees were planted in eight parallel rows that were 100 m
long. The tree rows were spaced 6 m apart, and the tree in-
terspacing along each row was 4 m. The trees had a height
of 88± 41 cm, a crown diameter of 79± 24 cm, and a stem
diameter of 3.7± 0.8 cm (measurements refer to the time of
the study, namely June 2023; the indicated ranges are stan-
dard deviations and reflect the real variability of the trees,
i.e., not the uncertainty of the measurements).

An ultra-low drip irrigation system was designed and in-
stalled by Irritec, made of three independent drip lines along
each tree row (Irritec P5, 16 mm of diameter). Along each
drip line, the drip spacing was 0.5 m. Two of the drip lines
had drippers with a flow rate of 0.8 L h−1. The third drip
line had drippers with a flow rate of 0.6 L h−1. The three
drip lines result in an irrigation of 4.4 L m−1 h−1 along the
tree rows (at the full irrigation rate), distributed over a strip
with a width of 1 m. Focusing on the experiment subplot,
the irrigation lasts, on average, 5 h, typically from 06:00 to
11:00 LT. The irrigation provides about 2850 L over an area
of about 24 m× 33 m. The irrigation input is calculated from
the pressure-regulated drippers and is periodically confirmed
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Figure 1. GEM-2 survey over the entire plot area. The shown apparent resistivities were measured at 5325 Hz and investigate the water
distribution in the deeper region, dominated by the RWU. Panel (a) shows the transversal dataset that captures the variability between the
tree lines – drier and thus more resistive because of the RWU – and the more conductive interrows. In (b), the longitudinal dataset shows
intermediate values, having the tree lines on one side and the interrow on the other. The black dots indicate the position of the soil sensors.
The black triangle indicates the position of the net radiometer. The rectangular black perimeter shows the FDEM’s high-resolution inverted
region. The white segment represents the ERT section. The background is a reconstructed RGB orthophoto mosaic.

by monitoring the water inputs from selected drippers. The
irrigation schedule maintains good soil water potential con-
ditions – between field capacity (FC) and permanent wilting
point (WP) – throughout the year.

Four VWC sensors (Teros 10 by METER Group) and
soil heat flux plates (HFP01-05 by Hukseflux) were installed
in 2021 and maintained throughout the 2023 growing sea-
son (Fig. 1). The sensors were installed along two tree rows
(Fig. 1), with the VWC sensors being installed at a depth of
20 cm and the soil heat flux plates being installed at a depth
of 5 cm. A net radiometer was installed at approximately the
center of the subplot (Fig. 1). Additional agrometeorologi-
cal data (air temperature, air humidity, wind speed, and rain-
fall) were monitored by an automatic weather station located
about 2 km from the orchard and managed by the Agrome-
teorological Service of the Sicilian Region. All of the time
series were homogenized to hourly data and daily averages
(Vanella et al., 2025).

Eight samples were collected to measure the VWC at
FC (−0.3 kPa) and WP (−15 kPa). The obtained values were
used to determine the water retention properties of the soil
and to calibrate the VWC time series from the soil sensors.
While the Teros 10 sensors are standard and reliable sen-
sors, calibration procedures are known to improve their ac-

curacy (Cominelli et al., 2024). Because of the specific irri-
gation schedule and long-term research studies at the site, the
field VWC is known to vary between FC and WP. Hence, the
laboratory VWC values were used to rescale the time series
recorded by the field sensors.

2.1 Geophysical measurements

The field measurements were conducted on 28 June 2023,
a clear-sky day with a maximum air temperature of 36 °C.
The described irrigation schedule was applied in the morn-
ing, from 06:00 to 11:00 LT, with a total input of 2850 L over
the four tree rows. Five FDEM surveys were carried out at
the end of the irrigation, from 11:00 to 14:00 LT, using a
Geophex GEM-2 and a CMD Mini-Explorer. The GEM-2
is a multi-frequency instrument with a fixed coil separation
of 1.66 m that uses multiple frequencies to vary the inves-
tigation depth (Blanchy et al., 2024; Deidda et al., 2023).
In this study, the GEM-2 was set to measure at 425, 1525,
5325, 18 325, 63 025, and 92 775 Hz. The Mini-Explorer is
a multi-coil instrument with three coil separations of 0.32,
0.71, and 1.18 m, operating at a fixed frequency of 30 kHz
(Bonsall et al., 2013). The FDEM surveys were carried out
with the instruments at a height of 0.1 m. Three surveys were
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Figure 2. Mini-Explorer survey over the entire plot area using the horizontal coplanar configuration. The two datasets show how the water
content and, thus, the resistivity distribution become smoother with increasing depth. In (a), the 0.71 m coil separation dataset distinctly
shows the dry interrow, exposed to evaporation without significant irrigation recharge. In (b), the 1.18 m coil separation dataset shows a
smoother transition from the tree lines to the interrow, which is less directly exposed to evaporation.

collected with the GEM-2: two surveys covered the entire
plot, one was parallel to the tree lines, one was transver-
sal to the tree lines, and one focused on a selected sub-area
with a finer spatial resolution and both surveying directions
(Fig. 1). The remaining two surveys were collected with the
Mini-Explorer: one covered the entire plot, only parallel to
the tree lines, while the second survey focused on the same
high-resolution area (Figs. 2 and 3). A GPS (Hemisphere
GPS A101 Smart Antenna) with RTK correction was used
with the Mini-Explorer, while a smaller GPS receiver was
installed directly on the GEM-2 and had no RTK correction.
During the survey, known positions (e.g., ends of tree rows)
were marked to allow for the control and, possibly, to correct
the GPS coordinates. In addition to the above five datasets,
two initial GEM-2 surveys were conducted at an instrument
height of 0.9 m above the ground to test the instrument sensi-
tivity at different heights. However, these two initial datasets
are only considered for the methodological part because they
capture neither the irrigation nor the ET (due to their limited
resolution depth).

The FDEM datasets were processed and inverted us-
ing Python and EMagPy (QGIS Development Team, 2024;
Van Rossum and Drake, 2009; McLachlan et al., 2021).
The datasets were initially imported into EMagPy to obtain
the correct apparent conductivities, taking into account the
relevant survey parameters. The GEM-2 quadrature outputs

were converted into apparent conductivities, and the Mini-
Explorer apparent conductivities were recalculated to correct
the default factory conversion. The latter Mini-Explorer ad-
justment starts by removing (i.e., dividing by) the numeri-
cal factor defined by the manufacturer for the default con-
version from quadrature to apparent conductivities and then
uses the quadrature values in EMagPy to numerically cal-
culate the apparent conductivities, with the correct survey-
ing parameters. No smoothing or filtering was applied dur-
ing this initial step. The corrected apparent conductivities
were then exported and further processed in QGIS, start-
ing from the correct positioning. First, the correctness of the
GPS coordinates was verified by comparing the relative po-
sitions of the datasets and the absolute position based on a
high-resolution orthophotograph of the site. The individual
datasets were georeferenced with respect to known survey
locations when necessary. Second, the data quality of the
individual datasets was evaluated by observing the values
of the apparent conductivity and their distribution. In some
cases, the data appeared to be void of relevant information
and thus were dismissed. This was the case for the two GEM-
2 datasets acquired at 0.9 m elevation and for the two low-
est frequencies of the other GEM-2 datasets (see Results and
Discussion sections). Repeated measurements at the same lo-
cation were compared to verify possible instrumental drift.
The processed datasets were then merged by interpolating all
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Figure 3. (a) Mini-Explorer (0.32 m coil spacing, horizontal coil orientation) and (b) GEM-2 (18325 Hz, horizontal coil orientation) surveys
over the high-resolution area, overlapping with the inversion region. While both datasets present longitudinal resistive strips, the Mini-
Explorer detects the shallow evaporation, while GEM-2 senses the deeper RWU. Both transpiration and RWU are captured and represented
by multiple data points thanks to the denser spatial sampling (i.e., smaller gaps between the survey lines).The rectangular black perimeter
shows the FDEM high-resolution inverted region.

the datasets over a common grid. A 2D kriging interpolation
was performed to properly account for the site anisotropy,
i.e., the periodicity and direction of the tree lines, as well
as their inter- and intra-line tree spacing. Finally, the inter-
polated apparent conductivities were inverted using EMagPy
with a linearized full-Maxwell forward model and a Gauss–
Newton optimization method. The inversion model was de-
fined with 24 layers of increasing thickness downward, from
5 cm at the surface to 30 cm at a depth of 2.6 m. Layer thick-
nesses and maximum depth were chosen based on sensitivity
profiles calculated with EMagPy (Fig. 4).

An algorithm was developed to correct the possible off-
center position of the GPS relative to the instrument foot-
print. The following steps were implemented in Python. Af-
ter removing the GPS outliers or null positions, the coordi-
nates were converted into UTM to ease the geometrical cal-
culations. The step-wise changes in longitude and latitude
were calculated between consecutive positions in order to po-
sition accurately the center of the FDEM coil pairs, starting
from the actual position of the GPS antenna. While this may
seem irrelevant for other studies, it proves to be crucial for
precision measurements in this context. The step-wise mov-
ing angle was calculated from the step-wise changes using
the arctangent function, and the standard atan2 function was
used (Harris et al., 2020). A suitable time window was de-

fined for the calculation of the mean moving angle and as-
sociated standard deviation (e.g., 2 s). Over the defined time
window, the mean moving angle was calculated as the sum of
the sine and cosine components of the step-wise moving an-
gles, i.e., with the correct wrapping between 360 and 0°. The
associated standard deviation of the moving angles was also
calculated over the time windows. An estimate of the off-
center error and needed correction length was defined based
on the initial data visualization, e.g., 0.75 m. The longitude
and latitude corrections were calculated by multiplying the
sine and cosine of the moving angle by the defined correction
length. The calculated corrections were added to the original
coordinates. Relative to a comparison between the first and
last point within the time window, the calculation of the av-
erage moving angle from the step-wise angles is statistically
more robust and also yields the associated standard deviation.
The standard deviation can be used to determine whether the
estimated moving angle is sufficiently reliable to apply the
correction.

Three high-resolution ERT datasets were acquired along a
tree row to support the FDEM investigation of the water dy-
namics (Figs. 1 and 3). Hence, 72 electrodes were installed
with an electrode spacing of 20 cm. The resulting section had
a total length of 14.2 m, and it was located between the two
western soil sensors, just north of the FDEM inversion area
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Figure 4. Sensitivity profiles of the Mini-Explorer (a) and GEM-2 (b). In (a), both horizontal (H ) or vertical (V ) coplanar orientations
are simulated for the Mini-Explorer. The legend describes the coil orientation and their spacing (m). In (b), the GEM-2 horizontal (H ) coil
orientation is shown for the different measurement frequencies (Hz) and two heights of the instrument (m). All sensitivities were calculated
with a homogeneous model of 10 mS m−1 and 250 layers. The sensitivity profiles were not normalized by their maximum value but were
normalized by the layer thickness (Deidda et al., 2023; Von Hebel et al., 2019).

(Fig. 1). The three datasets were acquired at 11:30, 12:00,
and 13:00 LT, i.e., overlapping with the FDEM surveys. Note
that the high-resolution FDEM data were collected right after
the ERT to maximize their representativeness while avoid-
ing the possible effects of the ERT equipment. A dipole–
dipole skip-two sequence with 5097 quadrupoles was used
in line with the relatively short electrode array and desired
high-resolution imaging. The sequence included all recip-
rocal measurements, which were used to estimate the data
quality and the suitable data error for the ERT inversion. A
threshold of 5 % of reciprocal error was used to filter the data
prior to inversion. The retained data were then inverted using
the same 5 % as the estimated error.

Gamma-ray spectroscopy was carried out using a Gamma
Surveyor Vario VN6, by GF Instruments, to support the char-
acterization of the soil texture. The spectrometer uses an
NaI(Tl) detector and has 2048 channels, which allows sep-
arate measurements of the potassium (K), uranium (U), and
thorium (Th). The gamma-ray decays were counted over a
time period of 180 s. Ten evenly distributed measurements
were collected over the orange orchard during the FDEM
surveys. The concentrations of K, U, and Th were used as
proxies for the content of clay and organic matter (Omoniyi
et al., 2013; Dierke and Werban, 2013; Priori et al., 2013;
Chiozzi et al., 2002). See Ahmad et al. (2019) and Rouze
et al. (2017) for recent investigations of the correlations be-
tween soil composition and gamma response, especially K
and clay content.

2.2 Hydrological model

A hydrological model based on CATHY (Camporese et al.,
2010) was constructed from the geophysical spatial infor-
mation, VWC time series from the soil sensors, and other
supporting information. CATHY is a physically based model

that solves the coupled equations for the surface and subsur-
face flow in saturated and unsaturated conditions. CATHY
implements the physical processes that are central to the cur-
rent study. A plant physiology model allows for a refined
control of the RWU as a function of depth and soil water
potential (Feddes et al., 1976, 2001; Camporese et al., 2015).
A boundary condition switch allows for a good description
of the ET dynamics, which are either controlled by the at-
mosphere (net radiation) or limited by soil when the water
suction exceeds a certain threshold (Camporese et al., 2014).
Water input and ET can vary in both space and time, which
allows the simulation of the described irrigation schedule and
the row–interrow ET spatial differences.

The model domain measures 18 m× 2 m, and it is perpen-
dicular to the tree lines. Given the tree row spacing of 6 m,
the length of 18 m covers two tree rows, with their shared
interrow at the center of the model. The model depth was
set to 5 m to exceed the depth of the water dynamics and
the measurement sensitivities. The soil surface was assumed
to be flat over the entire area. The model was horizontally
discretized with 10 cm wide cells. A total of 15 layers were
defined for the vertical discretization, with their thickness in-
creasing downward from 10 cm to 1 m (La Cecilia and Cam-
porese, 2022). The RWU differences between the rows of
orange trees and the interrow were expressed by adjusting
their Feddes parameters (Feddes et al., 1976, 2001). For the
orange trees, the maximum rooting depth was set to 2 m but
with RWU being at its maximum within the first meter (Hou
et al., 2023; Cassiani et al., 2015; Morgan et al., 2007). For
the grass, the maximum rooting depth was set to 0.2 m, with
RWU decreasing linearly from the soil surface. The other
RWU parameters were kept equal for orange trees and grass:
WP at −15 kPa, deficit point at −10 kPa, and anaerobiosis
point at −1 kPa. RWU compensation was included for both
orange trees and grass, which allows the model to adjust
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the RWU profile according to the water stress profile (Cam-
porese et al., 2015).

The irrigation was modeled by distributing the known wa-
ter inputs over two stripes of 1 m width along the two tree
rows. This resulted in a water input of 1.22× 10−6 m s−1

over the 5 h of irrigation, i.e., reproducing both flow rates
and schedule of the irrigation system described above. A pe-
riod of 14 d was simulated to cover three irrigations, with
the third irrigation corresponding to the day of the geophys-
ical measurements. The 2-week period and the two previ-
ous irrigations were simulated to realistically equilibrate the
model (e.g., VWC distribution) before the day of the mea-
surements. The soil hydraulic properties were parameterized
using the Mualem–van Genuchten model and the saturated
hydraulic conductivity, with initial parameter values being
derived from the water retention experiment performed in the
laboratory (1500F1 Pressure Plate Extractor by SoilMoisture
Equipment Corp) and considering the soil texture informa-
tion (Mualem, 1976; van Genuchten, 1980). The ET was de-
fined through a time series of potential ET, expressing the
atmospheric forcing to which the surface (soil and vegeta-
tion) responds accordingly to water availability. The poten-
tial ET was based on the data measured by the local weather
station and eddy covariance tower, in line with studies con-
ducted in the area (Vanella et al., 2025; Mary et al., 2019). No
rain inputs were simulated because the weather remained sta-
ble and sunny during the simulation period, and no rain was
measured by the local rain gauge. Geophysical spatial infor-
mation and soil VWC time series were combined to constrain
the soil parameters values and, thus, the water spatiotemporal
dynamics. The other model inputs (e.g., potential ET, irriga-
tion inputs) were known from measurements and, thus, were
fixed as boundary conditions.

3 Results

The FDEM apparent conductivities, pre-processed and ex-
ported from EMagPy, were visualized over the site or-
thophoto. The data quality was generally good and allowed
for the desired mapping over the entire investigated area.
However, some GPS corrections were needed before exam-
ining the FDEM data. The GPS coordinates of the GEM-2
data were affected by both variable GPS errors (up to 2 m in
some instances) and systematic off-centering of the GPS rel-
ative to the instrument footprint (Choi and Kim, 2020). The
errors were very visible and relevant because of the known
survey geometry imposed by tree lines. The off-centering
caused the high apparent resistivity (ρa) values in Fig. 1a,
corresponding to the tree lines, to shift eastward of about
0.75 m when walking eastward and vice versa when walk-
ing westward, for a combined shift of about 1.5 m. The de-
scribed GPS-centering algorithm successfully corrected the
off-center errors and thus realigned the survey lines. Simi-
larly, the marked survey locations allowed for the correction

of time-variable (variable in time) GPS errors with the QGIS
georeference tools.

Of the six GEM-2 survey frequencies, the lowest two
(425 and 1525 Hz) were discarded because of a very low
signal-to-noise ratio, which resulted in very unstable and
often negative apparent conductivities. The data quality in-
creased significantly at higher frequencies. Figure 1 shows
the GEM-2 data measured at 5325 Hz over the entire field.
The two GEM-2 surveys (along and across the tree lines)
agree on the measured ρa, ranging between 20–30�m along
the interrows. In addition, the transversal survey shows
higher ρa values corresponding to the tree-irrigation lines,
reaching values of 40–45�m. While the spatial correspon-
dence of tree lines and high ρa values is clear over the en-
tire field, only one or two data points capture the resistive
anomaly. The ρa values rapidly decrease on both sides of the
tree lines. In fact, these higher values are not captured by the
longitudinal survey, which was carried out along the tree irri-
gation lines but necessarily to their sides (about 1 m, Fig. 1).
The other GEM-2 datasets, shallower because of the higher
frequencies, also show larger values of resistivity along the
tree irrigation lines but with smaller contrasts.

Figure 2 shows the Mini-Explorer data measured with the
coil separations of 0.71 and 1.18 m in horizontal coplanar
configuration, surveying longitudinally to the tree irrigation
lines over the entire field. The ρa varies between 20 and
45�m. The ρa changes are dominated by differences be-
tween the tree irrigation lines and their interrows, similarly
to the GEM-2. However, the high ρa lines match the tree ir-
rigation lines in the GEM-2 datasets and the center of the in-
terrow in Mini-Explorer; i.e., high- and low-resistivity areas
are inverted. Figure 2 also shows that the high ρa measured
by the Mini-Explorer along the interrows decreases with in-
creasing coil separation, from values of 45 to 35�m. Conse-
quently, the resistivity contrast between tree rows and inter-
rows is larger in the shallower dataset. The dataset acquired
with the shortest coil separation (0.32 cm) and the datasets
acquired in vertical coplanar configuration align with this
trend (see FDEM inversion below).

Figure 3 shows the FDEM surveys with a finer spatial reso-
lution. Both GEM-2 and Mini-Explorer datasets show ρa val-
ues consistent with the respective larger-scale surveys. The
better spatial sampling of both tree irrigation lines and inter-
rows clarifies the transition between rows and interrows in
the Mini-Explorer dataset. The resistive interrow appears to
be wider and not only limited to the center of the interrow,
as in the larger survey. The high-resolution Mini-Explorer
survey also highlights the drop in ρa at the end of the Mini-
Explorer longitudinal lines, when the acquisition pathways
turn. The resulting intermediate ρa values are coherent with
the footprint that becomes transversally elongated with re-
spect to the tree rows and, thus, partially covers both tree
rows and interrows. In the GEM-2 survey, more data points
capture the resistive line associated with the tree row, again,
better defining the width of the resistive line and excluding
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Figure 5. Interpolation of the high-resolution datasets (as ρa) acquired with (a) the GEM-2 at 92 775 Hz and (b) the Mini-Explorer with
the coil separation of 1.18 m. Because of the high frequency and long coil separation (Fig. 4), the two datasets capture the intermediate
depth and thus represent a connection between the GEM-2 and Mini-Explorer surveys. The GEM-2 survey captures well the resistive lines
associated with the tree rows (white lines) but also shows a smaller increase in resistivity at the center of the interrow. Vice versa, the
Mini-Explorer survey better captures the resistive lines along the interrows, with some smaller resistive anomalies matching the tree rows.
The “secondary” resistive features within each survey required the high-resolution surveys, kriging interpolation, and narrow color ranges
in order to be appreciated. The combination of the instruments allowed and guided this detailed investigation. The anomalous regions in the
northern two-thirds of the maps correspond to the area affected by the wiring of the soil sensors (Fig. 3).

possible doubts regarding the reliability of individual data
points. The high-resolution surveys reveal some secondary
detailed spatial features that are missed by the larger sur-
veys. Figure 5 shows how the deepest Mini-Explorer (1.18 m
coil separation) and shallowest GEM-2 (92 775 Hz) surveys
capture an intermediate condition in which both tree rows
and interrow centers appear to be resistive anomalies rela-
tive to the more conductive transition zone (also known as
the quarter-row). These “secondary” resistive features within
each survey result from the combined observation of all of
the acquired datasets, which motivated and guided the GPS
corrections, kriging interpolation, and narrow color ranges.

The data quality of the ERT measurements was good, and
fewer than 4 % of the measurements were filtered out con-
sidering a reciprocity error threshold of 5 %. Hence, the sec-
tion with 72 electrodes and 20 cm spacing allowed for a high-
resolution inversion. The inversions converged to a χ2 value
of 1 within three iterations while also maintaining a rela-
tively smooth model, with a regularization weight, lambda,
of 80 (Rücker et al., 2017). Figure 6a shows the ERT sec-
tion that was acquired along the selected tree irrigation line
at 12:00 LT, i.e., 1 h after the end of the irrigation. The ERT
section shows a relatively resistive (40–45�m) layer be-
tween 0.5 and 1.5 m depth. Above the resistive layer, in the
top 50 cm, the resistivity is significantly lower, with values
around 10�m. The resistivity also decreases below the re-
sistive layer, but the values remain around 20�m. While

relatively continuous, the resistive layer shows some lateral
variability with regions that are more resistive and thicker.
Figure 6b shows the percentage difference between the first
and last acquisitions, respectively, at 11:00 and 13:00 LT. The
time-lapse percentage difference shows how the resistive re-
gions become more resistive during the monitored period.
The maximum percentage differences are around 5 %, which
appears to be significant considering the short time difference
(2 h). In particular, the difference section highlights three re-
gions around 2.5, 6.5, and 10.5 m whose spacings and posi-
tions correspond to the location of individual orange trees.

The spatial variability captured by the FDEM and ERT
motivated the merging of the FDEM datasets through a krig-
ing interpolation and their successive inversion. The opti-
mized kriging for the ρa interpolation had a Gaussian vari-
ogram with a sill of 40�2m2, a range of 3.5 m, and a nugget
equal to 2�2m2. The kriging anisotropy angle matched the
azimuth of the tree rows, measured in QGIS. The merged
dataset included the four GEM-2 datasets measured (as the
two lowest frequencies were not used) and the six CMD-
Explorer datasets (three coil separations with both coil ori-
entations). The dataset was then inverted with EMagPy with
the described parameters and model layers. The inversion
converged at a root mean square percentage error of 11 %
and returned the 3D model of resistivity shown in Fig. 7.
The figure shows a transversal view of the inverted model,
but it also extracts all of the values above 40�m to high-

https://doi.org/10.5194/soil-11-811-2025 SOIL, 11, 811–831, 2025



820 L. Peruzzo et al.: High-resolution frequency-domain electromagnetic mapping for hydrological modeling

Figure 6. (a) ERT resistivity section acquired at 12:00 LT and (b) percentage difference between the first and last sections, acquired at
11:00 and 13:00 LT, respectively. The resistivity section highlights a resistive layer between 0.5 and 1.5 m depth, which is associated with the
RWU. The more conductive layer above, where RWU is also expected, remains wet and more conductive because of the drip irrigation, which
stopped at 11:00 LT, and possibly the effect of canopy cover together with the likely presence of active roots not in the deeper soil regions. The
time-lapse percentage difference shows how the resistive regions become more resistive over time, which supports the RWU interpretation.
In particular, the difference section highlights three regions around 2.5, 6.5, and 10.5 m whose spacings and positions correspond to the tree
locations (green rectangles).

Figure 7. The 3D resistivity model obtained from the FDEM inversion, with a view perpendicular to the tree row direction. Within the
model, the four tree rows are associated with low resistivity at the surface (irrigation lines) and higher resistivity below (RWU). Vice versa,
the five interrows are associated with high resistivity at the surface (caused by direct evaporation with no tree canopy shadowing and absence
of irrigation) and lower resistivity below (region less affected by direct evaporation and absence of tree roots, where the water content tends
to persist as relatively high). A diagonal water movement from the irrigation line to the deeper interrow regions is supported by the fact that
the shallow and deeper resistive regions are separated. The trees sketched in the image indicate the known position of the tree rows.

light the alignment of the resistive regions along the tree
rows and interrows. The inverted model is consistent with the
above description of the individual datasets: the resistivity in-
creases downward along the tree irrigation rows and upward
along the interrows. A generally more conductive quarter-
row divides the two, in line with the high-resolution surveys
(Fig. 3). The inversion highlights the contrast between resis-
tive and conductive regions, with resistivity values diverg-
ing toward 45 and 10�m, respectively. The FDEM resistiv-
ity trend from the shallow irrigated layer (∼ 15�m) to the

deeper and drier RWU regions not yet reached by the wa-
ter infiltration (∼ 45�m) agrees with the ERT inverted sec-
tion shown in Fig. 6. Small ERT vs. FDEM differences are
observed and expected due to the vertical water redistribu-
tion between the ERT measurements and successive high-
resolution FDEM surveys but also because of the higher res-
olution of the ERT surveys with 20 cm spacing relative to the
FDEM and consequent different model discretization and in-
version smoothing.
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Figure 8. Time series of soil VWC (a) and measured energy fluxes (b) in the period of the field campaign (dashed line on 28 June). The
VWC time series respond to the irrigation inputs reaching values around 0.42. From its maximum values, the VWC water first quickly drains
subject to drainage and RWU. The VWC decrease rate slows and stabilizes when reaching the FC. The dashed gray lines indicate the other
irrigations.

The laboratory water retention measurements that were
performed on the eight soil samples yielded a VWC of 0.4
at field capacity (FC, −0.3 kPa) and of 0.28 at wilting
point (WP, −15 kPa). These results indicate a significant wa-
ter retention capacity and the possible presence of clay and
organic matter. The standard deviations were 0.015 kPa at FC
and 0.012 kPa at WP, which suggests relatively homoge-
neous soil characteristics. In line with the sample results, the
gamma-ray survey did not identify significant spatial vari-
ability. Therefore, the results are expressed as average values
and the associated standard deviation. The measured K per-
centage is estimated to be 0.6± 0.1 %, while Th is estimated
to be 3.7± 0.7 ppm, and U is estimated to be 1.8± 0.4 ppm.
The total dose rate is equal to 4.7± 2 nGy h−1. These val-
ues agree with the retention curves obtained from the soil
samples and the measured low electrical resistivities in the
presence of clay mineral and organic matter (Omoniyi et al.,
2013; Dierke and Werban, 2013).

The soil sensors recorded VWC changes during the
2023 growing season, including the period of the field cam-
paign. However, the soil sensor in the northwest did not func-
tion correctly and was not considered. Figure 8a shows the
recorded VWC time series from 21 June to 5 July. The VWC
increases following the irrigations to values around 0.42,
slightly above the FC measured in the soil samples. In fact,
VWC initially drains more sharply, suggesting a combina-
tion of gravitational drainage and RWU. The VWC decrease

Figure 9. Conceptual model of spatial variability of volumetric wa-
ter content (VWC) induced by irrigation and ET dynamics. In red
are the drier and more resistive regions. The trees indicate the tree
lines, where the shallow irrigation and deep RWU induce a wet-
to-dry VWC profile along the tree lines. On the contrary, shallow
evaporation and deep water redistribution lead to a dry-to-wet VWC
profile along the interrow. At the transition depth, the quarter-row is
wetter, with dryer soil on both sides.

rate slows and stabilizes when reaching FC. Figure 8b shows
the measured net radiation (Rn) and soil heat flux (G). Both
energy fluxes are relatively stable in the selected period, with
net radiation maxima around 500 W m−2 and soil heat flux
maxima around 50 W m−2.
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The above results agree with a conceptual model that dis-
tinguishes tree rows, interrows, and quarter-rows (Fig. 9).
The specific spatial variability of electrical resistivity sug-
gests that VWC is the dominant factor. This agrees with the
homogeneity of the soil samples and gamma results. Shallow
irrigation and deep RWU induce a wet-to-dry VWC profile
along the tree lines. Shallow evaporation and deep water re-
distribution lead to a dry-to-wet VWC profile along the inter-
row. At the transition depth, the quarter-row is wetter (more
conductive region) with dryer soil on both sides. The soil sen-
sors indicate a relatively short interval in which water (above
the FC) drains toward the deeper and drier region and the
interrows.

4 Hydrological model

The conceptual model was used to implement a
3D (CATHY) numerical model that includes both soil
water dynamics (RWU and irrigation) and ET. The model
was discretized and constrained as described, i.e., coupling
geophysical spatial information and VWC time series, and
using the known forcing and water inputs as boundary
conditions. Figure 10 shows the CATHY-simulated VWC
distribution at the time of the FDEM measurements and
the fitting of the VWC time series from the co-located soil
sensors (20 cm depth along the tree rows, Figs. 1 and 2).
The figure shows a good spatiotemporal agreement of the
simulated VWC distribution with field observations. In
Fig. 10b, the simulated VWC values follow adequately the
measured VWC time series. The simulation reproduces
(1) the three sharp increases associated with the irrigations,
(2) the quick VWC drop occurring right after the irrigation,
and (3) the stabilization of the VWC change with time.
The fitting remains good over the explored period of 14 d,
indicating the model stability with respect to the irrigations
and successive ET dynamics. Spatially, the simulation
reproduces the key aspects present in the conceptual model
derived from the FDEM data and relevant inverted model
(Fig. 7). Tree rows and interrows are well distinguished by
their opposite VWC profiles, with the widths and depths
of the VWC transition reflecting the FDEM model. The
model also reproduces the presence of a transition region
(quarter-row) that connects the irrigation bulb with the
deep part of the interrow, also relatively wet because of the
reduced impact of the evaporation at depth. The adopted
Mualem–van Genuchten parameters had an air entry head of
1 m, a residual VWC of 0.08, a saturation VWC of 0.48, and
n equal to 1.25. These values reproduce the VWC values
measured in the laboratory at FC (0.4) and WP (0.28) and
agree with the presence of clay and organic matter (Carsel
and Parrish, 1988). Costa et al. (2013) reported similar VWC
values (0.41 and 0.31) for a sandy clay loam in a shallow
soil horizon with 4 % organic matter (their Tables 1 and 2).
Rab et al. (2011) reported values of 0.43 and 0.28 for a silty

clay loam, with an average organic matter of 1.2 % (their
Table 5). The van Genuchten parameters also agree with the
transition from the drainage slope to the extraction RWU
slope observed in the VWC time series after irrigations
(Wilcox, 1962; Dittmar et al., 2021).

The hydraulic conductivity estimated from the CATHY
calibration is 1× 10−5 m s−1. Although different values of
hydraulic conductivity were tested, the spatiotemporal infor-
mation strongly constrained its value. Larger values would
lead to a steeper drop drainage of the VWC after the irriga-
tion and to an excessively large wet and/or conductive irriga-
tion bulb along the tree rows. The hydrological simulations
also explored the possible anisotropy of the hydraulic con-
ductivity, with values that were larger in the horizontal direc-
tion (Fan and Miguez-Macho, 2011), as reported for natural
and managed soils (Pirastru et al., 2017; Brooks et al., 2004;
Shaw et al., 2001; Bagarello et al., 2009). However, introduc-
ing this anisotropy excessively widened the irrigation bulb,
led to a shallower RWU dry region, and shifted the break-
point in the time series. Therefore, an isotropic hydraulic
conductivity has been hypothesized, with the interpretation
that the tree roots could channel the water and balance the
possible intrinsic anisotropy of the soil hydraulic conductiv-
ity. This also explains the relatively large value of the hy-
draulic conductivity despite the presence of clay and organic
matter (Carsel and Parrish, 1988; Schaap et al., 2001).

The potential ET was maintained as homogeneous for all
simulated days, reflecting the stable sunny conditions (Fig. 8)
and considering a maximum value of 7 mm d−1 based on
the available eddy covariance data (located within the farm
property 500 m from the site). This value agrees with the
previous studies conducted in the area (Vanella et al., 2025;
Mary et al., 2019) and other studies conducted under simi-
lar Mediterranean conditions (Cammalleri et al., 2013; Au-
tovino et al., 2016, 2018; Abedi-Koupai et al., 2022). Con-
sidering the geometry of the tree rows (partial tree cover-
age) and the limited ET from the dry interrows, these val-
ues are also consistent with the resulting values of ET from
irrigated orange trees. For example, Mishra et al. (2021) re-
ported transpiration values from 2 L d−1 in 5-year-old trees
to 5 L d−1 in 15-year-old trees. Mira-García et al. (2021) re-
ported actual RWU values ranging between 2 and 3 L d−1 for
young lime trees under Mediterranean summer conditions.
Hou et al. (2023) reported values between 2 and 3 mm d−1

in orange trees under similar conditions of air temperature
and net radiation. The CATHY simulation showed that the
ET value controls the slope of the VWC time series after the
initial drainage period, i.e., the tail after the break-point. The
simulated slope agrees with the values measured by the co-
located soil sensor (Fig. 10b). The ET also controls the size
of the RWU dry region, while its depth mostly depends on
the hydraulic conductivity. For example, the dry RWU re-
gion would become enlarged and overlap the interrow dry
region when the ET value was too large, e.g., maintaining
the 7 mm d−1 ET rate for the entire day.
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Figure 10. CATHY hydrological simulation of the spatial distribution of the VWC at the time of the field campaign (a) and its temporal
variability over a period of 14 d. The spatial distribution reproduces the conceptual model derived from the FDEM and ERT results. In (b) is
the simulated VWC (red dots) extracted from the model position that matches the three soil moisture sensors in the field (VWC2–4, 20 cm
depth along tree lines, Figs. 1 and 2). The time series show the model-consistent response, reproducing three irrigation periods and successive
ET responses.

5 Discussion

This agrogeophysical study explores the potential and chal-
lenges in high-resolution FDEM mapping, aiming to develop
a more quantitative coupling with soil and atmospheric sen-
sors through a hydrological model that includes the spa-
tiotemporal dynamics of irrigation and RWU–ET. On the one
hand, the results show how FDEM can address the common
lack of spatial information expected to inform present and
future precision agriculture practices. The 1 d characteriza-
tion successfully led to a conceptual model that highlights
the interplay of irrigation and RWU along the tree rows, in-
cluding the widths and depths of the affected regions (Fig. 9).
The characterization also captured the opposite VWC pro-
files along the interrows and the details of the transition re-
gion, i.e., the interaction between tree rows and interrows.
The irrigation bulbs spread toward the interrows and con-
nect to their deeper and wetter regions, dividing the shallow-
transpiration and deeper-RWU regions. Thanks to the con-
venience of the FDEM surveying practice, local variability
within this general model was resolved over the entire field,
both laterally and vertically (Fig. 7). The RWU–irrigation
dynamics are central to precision agriculture and irrigation
strategies. Nonetheless, the interrow hydrology and its cou-
pling with the plant rows has been receiving significant at-
tention because of its impact on vegetation, soil quality and
erosion, and general ecosystem resilience (Bagagiolo et al.,
2018; Morlat and Jacquet, 1993). The 3D FDEM character-

ization was successfully coupled with the soil sensors, soil
samples, and ERT sections thanks to its large spatial ex-
tension, sufficient spatial resolution, investigation depth, and
coverage of both tree rows and interrows. While FDEM has
long been recognized as an ideal and promising solution in
agrogeophysics (Garré et al., 2021; Boaga, 2017; O’Leary
et al., 2024; Von Hebel et al., 2021), this study first realizes
such expectations in an orchard, whose 3D subsurface vari-
ability is a complex combination of RWU, irrigation, ET, and
row–interrow dynamics.

On the other hand, this study also highlights critical
methodological challenges that are commonly hidden be-
hind seemingly simple survey choices and processing steps,
potentially limiting the otherwise wide potential of FDEM
in agrogeophysics. A Geophex GEM-2 and a CMD Mini-
Explorer were used, with the latter in a vertical and horizontal
configuration. Initial GEM-2 measurements were also per-
formed at 1 m height above the ground, but the results and the
modeling of the sensitivity profiles motivated ground-level
measurements (Fig. 4), which captured the deeper-RWU re-
gion (Figs. 1 and 3). The choice of instruments and survey
design was suitable for this study, but this was not obvi-
ous a priori, nor is a similar combination always possible
or adopted. It is highlighted how the use of a single instru-
ment would miss or misinterpret either the RWU or the ET.
While two intermediate-depth datasets captured both aspects
(Fig. 5), the required combination with higher-resolution sur-
veying, sensitivity analysis, and processing, and visualization
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was only possible as an a posteriori effort, after the concep-
tual model was derived. In turn, these datasets and their de-
tailed analysis were essential to confirm the vertical connec-
tion between the two instruments and to finalize the concep-
tual model, defining the actual extent and transition of the
conceptualized regions (Fig. 9).

The individual FDEM datasets may also differ because of
their instrumental drift or calibration (Blanchy et al., 2024;
Boaga, 2017; McLachlan et al., 2021; Delefortrie et al.,
2014). In this study, the two lowest frequencies of the GEM-
2 measured apparent conductivities that were anomalously
low. This fact initially motivated an ERT-based calibration of
the FDEM data in EMagPy, but the two datasets were even-
tually discarded because they also had a low signal-to-noise
ratio level. Nonetheless, the presence of anomalous datasets
would have been hard to detect in the absence of the ERT
section and sensitivity analysis, which highlighted how the
low conductivities were inconsistent with the other FDEM
datasets and the ERT results.

The quantitative use of the two instruments required spa-
tial alignment and joint inversion. The standard GPS systems
did not provide a reliable alignment of the surveys relative
to the spatial scale of the orchard and the associated need
for a fine spatial resolution. While the corrections of the off-
centering and random errors were successful, they required
time-consuming GIS corrections for both intra- and inter-
dataset shifts and alignments. The GPS marker positions col-
lected during the survey and the simple geometry of the site
surely helped in this context. In particular, the off-centering
corrections were motivated by the typical sinusoidal distor-
tion (Choi and Kim, 2020) of the straight tree rows. The off-
centering correction required the implementation of a spe-
cific and automatic procedure because of its complexity and
the numerousness of the FDEM datasets. Yet, weaker ρa con-
trasts or a more variable tree distribution would have hin-
dered this correction and, thus, the alignment with the Mini-
Explorer. In general, it should be stressed that, in order to
make suitable use of FDEM data for this type of application,
precise attention to high-resolution positioning will have to
be ensured. Otherwise, most of the most important spatial
variability features can be overlooked.

After the GPS alignment, the surveys were interpolated
over a common grid to allow the joint inversion. Because
of the spatial heterogeneity and anisotropy in the general
orchard geometry, the interpolation required careful param-
eterization of the kriging algorithm (Fig. 5). Other inter-
polation algorithms could not preserve the spatial features
present in the datasets, particularly because of the transversal
smoothing between tree rows and interrows. Again, this as-
pect becomes essential when the ρa contrasts are weak (e.g.,
secondary resistive features in Fig. 5), even more so if the
anomalies are relatively narrow or poorly sampled (Fig. 1a).
The interpolation step is also tightly coupled with the survey
direction and smoothing of the data. The smoothing is com-
monly applied to the FDEM data to address the variability

caused by the noise or survey instability (McLachlan et al.,
2021). While automation is critical for adoption, the frequent
use of simple smoothing solutions (i.e., moving average) is
in contrast with the spatial variability and anisotropy of many
agricultural sites. For example, the resistive anomaly cap-
tured by the transversal GEM-2 larger-scale survey would
have been strongly altered by a 1D moving average because
of the survey direction and narrow target anomaly (Fig. 1a).

Addressing the above challenges in a very careful manner
allowed for an effective coupling of the geophysical results
with data from the soil and atmospheric sensors. In particu-
lar, the final 3D FDEM model successfully added the spatial
dimensionality into the VWC time series measured by the
commonly deployed soil sensors (Yu et al., 2021; Garré et al.,
2021). This led to a conceptual model that, in turn, guided
the implementation of a CATHY-based hydrological model
(Figs. 9 and 10). In this respect, the CATHY hydrological
model allows the integration of all available data (spatially
extensive geophysical data and time-intensive single-probe
time series) in order to construct a fully consistent concep-
tual model of the shallow subsurface; in this study, the model
expresses the complementarity of specifically timed FDEM
characterizations and long-term time series. The CATHY hy-
drological model reproduces the observed spatiotemporal dy-
namics with parameters that agree with soil laboratory anal-
ysis, gamma-ray surveys, and reviewed literature. Specifi-
cally, the soil hydraulic properties (Mualem–van Genuchten
parameters and hydraulic conductivity) were constrained to
specific values that reproduced the field’s spatial and tem-
poral variabilities in terms of the VWC (Fig. 10). This is a
significant result considering the fact that hydraulic proper-
ties and VWC ultimately control the presence and mobility of
water, nutrients, and pesticides (Vereecken et al., 2007, 2008;
Bünemann et al., 2006; Patzold et al., 2008). The ET was bet-
ter known from a literature review of comparable studies and
eddy covariance estimates. Hence, the ET was set as a known
forcing, which limited the number of free parameters and re-
alistically tested the stability of the model during a period of
14 d and three irrigations (Fig. 10). While this study did not
explore data assimilation approaches and uncertainty anal-
ysis, the hydrological parameters appeared to be well con-
strained by the available combination of spatial and temporal
information. As discussed above and in the specific section,
changing the soil hydraulic properties significantly impacted
both the extension and the depth of the conceptualized re-
gions, as well as the misfit relative to the measured VWC
time series. This suggests that future works could positively
explore advanced quantitative investigations of the hydrolog-
ical model. Data assimilation approaches may also ease the
integration of successive FDEM surveys, whose design and
timing may be guided by the hydrological model to target
specific aspects of the growing season.

Our FDEM results showed a number of important effects
related to the instrument footprints, for example, at the turns
of the high-resolution Mini-Explorer surveys (Fig. 3) and the
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differences between the longitudinal and transversal GEM-
2 results (Fig. 1). The footprint effects become significant
because of the anisotropy and spatial scale of the orchard
relative to the desired high resolution (Klose et al., 2022).
In this respect, this study points toward the development of
2D and/or 3D FDEM inversion codes (Klose et al., 2022;
Heagy et al., 2017; Guillemoteau and Tronicke, 2016) and
a better understanding of the FDEM instrument footprints
(Guillemoteau and Tronicke, 2015). This development would
also need to account for the relative positions of the instru-
ment coils and, thus, the surveying direction, for example,
with the proposed algorithm for the correction of the GPS
off-centering. In contrast to other FDEM applications, this
is especially relevant in agrogeophysics because of the sub-
tle conductivity contrasts, typically dominated by the VWC,
and the need for a very fine (sub-meter) spatial resolution.
Nonetheless, this study also showed how surveying in mul-
tiple directions and with different spacings can mitigate the
impact of the footprint effects, improving the interpretation
and interpolation of the results and, thus, the final 3D FDEM
model (Figs. 5 and 7).

Time-lapse geophysical measurements are central to hy-
drogeophysics (Rubin and Hubbard, 2005; Binley et al.,
2015). However, the trade-off between time-lapse measure-
ments and spatial characterization remains because of in-
trinsic time and economical resource limitations and method
characteristics (e.g., ERT and FDEM or others). This study
adopted a variant hydrogeophysics approach where the
FDEM mapping has been coupled with temporal informa-
tion from soil and atmospheric sensors, which are com-
monly available and more conveniently provide temporal in-
formation. This perspective aligns with the concept of agro-
geophysics as agricultural sites are being increasingly in-
strumented, and supporting information is often available
(McBratney et al., 2005; Karunathilake et al., 2023). The
surface–subsurface hydrological model appeared to be nec-
essary to fully explore and take advantage of such coupling
involving very different datasets, both aboveground and be-
lowground. This added complexity, however, connects with
existing practices and methods, such as eddy covariance, soil
sensors, and cosmic-ray neutron sensing, as well as with
the need for a better understanding and prediction capability
in precision agriculture and irrigation management (Beven,
2008; Javansalehi and Shourian, 2024; Xi et al., 2017).

Overall, this study presents an agrogeophysical FDEM ap-
plication that focuses on small-scale aspects that had not
been properly considered in previous studies. The presented
challenges explain the lack of similar studies and should
be considered when discussing the FDEM convenience and
adoption. The successful characterization and its hydrolog-
ical coupling with soil and atmospheric sensors motivates
such future efforts in the field of agrogeophysics.

6 Conclusions

This agrogeophysical study explored the potential and chal-
lenges in high-resolution FDEM mapping, aiming at a quan-
titative coupling of extensive hydrogeophysical data with soil
and atmospheric sensors through a 3D hydrological model
that reproduces the spatiotemporal dynamics of irrigation
and RWU–ET. Several FDEM datasets and ERT time-lapse
measurements were collected. Additional supporting infor-
mation was also available from soil and atmospheric sen-
sors, which are becoming increasingly common at agricul-
tural sites. The first goal, relating to the FDEM methodolog-
ical challenges, motivated a careful investigation of the sur-
vey choices and processing steps. Several challenges and pit-
falls were recognized and addressed to obtain a final 3D in-
verted model of soil resistivity, starting from the choice of
a suitable combination of instruments and survey config-
urations, directions, and spatial resolutions. An initial ex-
ploratory phase with survey variations was essential, but
the success of the characterization was only confirmed af-
ter time-consuming processing, visualization, and interpreta-
tion steps. These steps included GPS positioning corrections,
data filtering, kriging interpolation, and sensitivity analysis.
Addressing the above challenges allowed the coupling of the
FDEM characterization with soil and atmospheric sensors.
This led to a conceptual model that guided the implemen-
tation of a 3D surface–subsurface hydrological model. The
hydrological model was necessary to fully take advantage
of such coupling involving very different datasets and, thus,
connect the aboveground and belowground processes. This
approach has the great advantage of making full use of ex-
isting practices and methods, such as eddy covariance, soil
sensors, and cosmic-ray neutron sensing, adding the infor-
mation coming from spatially dense (and time-lapse) non-
invasive data that are the fundamental building blocks for the
construction of a successful, scientifically sound, site con-
ceptual model. Beyond the integration of available datasets,
such conceptual and numerical models align with the need
for a better understanding of and prediction capability in pre-
cision agriculture and irrigation management.
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Appendix A: Abbreviations

ET Evapotranspiration
VWC Volumetric water content
RWU Root water uptake
FC Field capacity
WP Wilting point
ρa Measured apparent electrical resistivity
ρ Electrical resistivity
ERT Electrical resistivity tomography
FDEM Frequency-domain electromagnetics
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