Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-763-2025
https://doi.org/10.5194/soil-11-763-2025
Original research article
 | 
06 Oct 2025
Original research article |  | 06 Oct 2025

Terrain is a stronger predictor of peat depth than airborne radiometrics in Norwegian landscapes

Julien Vollering, Naomi Gatis, Mette Kusk Gillespie, Karl-Kristian Muggerud, Sigurd Daniel Nerhus, Knut Rydgren, and Mikko Sparf

Related authors

Recent history and future demise of Jostedalsbreen, the largest ice cap in mainland Europe
Henning Åkesson, Kamilla Hauknes Sjursen, Thomas Vikhamar Schuler, Thorben Dunse, Liss Marie Andreassen, Mette Kusk Gillespie, Benjamin Aubrey Robson, Thomas Schellenberger, and Jacob Clement Yde
EGUsphere, https://doi.org/10.5194/egusphere-2025-467,https://doi.org/10.5194/egusphere-2025-467, 2025
Short summary
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024,https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023,https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
Trevor R. Hillebrand, John O. Stone, Michelle Koutnik, Courtney King, Howard Conway, Brenda Hall, Keir Nichols, Brent Goehring, and Mette K. Gillespie
The Cryosphere, 15, 3329–3354, https://doi.org/10.5194/tc-15-3329-2021,https://doi.org/10.5194/tc-15-3329-2021, 2021
Short summary

Cited articles

Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating Digital Terrain Indices for Soil Wetness Mapping – a Swedish Case Study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014. a, b
Ahlstrøm, A., Bjørkelo, K., and Fadnes, K. D.: AR5 Klassifikasjonssystem, Tech. rep., NIBIO, http://hdl.handle.net/11250/2596511 (last access: 29 September 2025), 2019. a, b, c
Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A. C., Morgan, C. L. S., Roudier, P., Poggio, L., and Mulder, V. L.: Impressions of Digital Soil Maps: The Good, the Not so Good, and Making Them Ever Better, Geoderma Reg., 20, e00255, https://doi.org/10.1016/j.geodrs.2020.e00255, 2020. a
Bakkestuen, V., Venter, Z., Ganerød, A. J., and Framstad, E.: Delineation of Wetland Areas in South Norway from Sentinel-2 Imagery and LiDAR Using TensorFlow, U-Net, and Google Earth Engine, Remote Sens., 15, 1203, https://doi.org/10.3390/rs15051203, 2023. a
Baranwal, V., Rodionov, A., Ofstad, F., Koziel, J., and Lynum, R.: Helicopter-Borne Magnetic, Electromagnetic and Radiometric Geophysical Surveys in the Kongsberg Region: Krøderen, Sokna, Høneføss, Kongsberg and Numedalen., Tech. Rep. 2013.029, Geological Survey of Norway, https://hdl.handle.net/11250/2664433 (last access: 29 September 2025), 2013. a, b
Download
Short summary
Peat depth is crucial to peatland management but often unknown. We used machine learning to map peat depth in two Norwegian landscapes, based on terrain and remotely sensed radiation. We found that terrain, especially elevation and valley bottom flatness, predicted peat depth better than radiation. Our approach improved existing maps but struggled to identify very deep peat, demonstrating that it can support regional planning but not replace field measurements for local carbon stock assessments.
Share