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Abstract. Peatlands are Earth’s most carbon-dense terrestrial ecosystems and their carbon density varies with
the depth of the peat layer. Accurate mapping of peat depth is crucial for carbon accounting and land manage-
ment, yet existing maps lack the resolution and accuracy needed for these applications. This study evaluates
whether digital soil mapping using remotely sensed data can improve existing maps of peat depth in western and
southeastern Norway. Specifically, we assessed the predictive value of lidar-derived terrain variables and airborne
radiometric data across two, > 10 km2 sites. We measured peat depth by probing and ground-penetrating radar
at 372 and 1878 locations at the two sites, respectively. Then we trained Random Forest models using radiomet-
ric and terrain variables, plus the national map of peat depth, to predict peat depth at 10 m resolution. The two
best models achieved mean absolute errors of 60 and 56 cm, explaining one-third of the variation in peat depth.
Terrain variables were better predictors than radiometric variables, with elevation and valley bottom flatness
showing the strongest relationships to depth. Radiometric variables showed inconsistent and weak predictive
value – improving performance at one site while degrading it at the other. Our remote sensing models had better
accuracy than the national map of peat depth, even when we calibrated the national map to the same depth data.
Still, weak relationships with remotely sensed variables made peat depth hard to predict overall. Based on these
findings, we conclude that digital soil mapping can improve the existing, national map of peat depth in Norway,
but detailed local maps are best made from tailored field measurements. Together, these pathways promise more
accurate landscape-scale carbon stock assessments and better-informed land management policies.

1 Introduction

Peat soils are a terrestrial carbon stock of global importance.
They store 450–650 Gt of carbon, or about 30 % of global
soil carbon, despite covering only 2 %–3 % of Earth’s land
(Xu et al., 2018; Friedlingstein et al., 2020; UNEP, 2022).
Peatlands (areas with peat soil) are more carbon dense per
square meter than any other ecosystem (Temmink et al.,
2022). This makes them crucial to climate change mitiga-
tion. Intact peatlands sequester carbon and overall produce
a negative temperature forcing (Joosten et al., 2016). When

disturbed – often by conversion to another land use – they can
produce large greenhouse gas emissions (Ma et al., 2022).

One of the keys to the areal density of peatland carbon
stocks (and variation therein) lies in the third dimension:
their depth. Peat soils range from zero to over ten meters
deep (Widyastuti et al., 2024). Their depth depends on the
rate and duration of organic matter accumulation, potentially
over thousands of years (Loisel et al., 2014; Joosten et al.,
2016). In the anoxic and acidic conditions created by a high
water table, plant material decay is slightly outweighed by
new growth, and the surplus carbon is laid down as peat.
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Peatlands are most common at high latitudes, and in re-
gions with high cover they are frequently converted to hu-
man land use (UNEP, 2022). They are attractive for agri-
culture and forestry because they are flat, treeless, and have
developed soils, but other land uses also displace peatlands.
In Norway – where flat lowland is relatively scarce but up-
ward of 9 % of the land area is peatland (Bryn et al., 2018;
Bakkestuen et al., 2023) – lawmakers have restricted peat-
land afforestation and cultivation in recent decades. Since
then, a larger proportion of peatland loss is driven by con-
struction (Flaget et al., 2024).

Variation in peat depth and its spatial distribution is of-
ten overlooked in land use planning and carbon account-
ing because peat depth is not mapped with sufficient cov-
erage, resolution, or accuracy (Beilman et al., 2008; Hastie
et al., 2022; UNEP, 2022). Maps are crucial because, un-
like spatially aggregated estimates, they link high-level tar-
gets to specific management decisions (OECD, 2022). Maps
of peat depth also make it possible to quantify the effect of
specific management decisions and thereby understand how
local outcomes contribute to regional and national outcomes
(OECD, 2022).

Measuring peat depth on the ground is straightforward,
and a field survey can map a small area at low cost. How-
ever, surveying large areas is impractical when depth varies
widely over short distances (e.g., 10 m) – as in many peat-
lands (Torppa, 2011; Proulx-McInnis et al., 2013; Henrion
et al., 2024). A complementary approach from soil science is
digital soil mapping (DSM). DSM scales up field measure-
ments from a set of locations to a wider area, by relating the
measured values to other variables mapped over the area of
interest, through a statistical model. This approach has grown
in importance with the availability of remotely sensed data
and the advancement of machine learning methods (Minasny
et al., 2019; Wadoux et al., 2020).

The crux for DSM of peat depth is the relationship be-
tween peat depth and the other, mapped predictors. For DSM
to be effective, these relationships must be strong and consis-
tent over the area of interest. They can be purely correlative
rather than causal, but mechanistic relationships are stronger
and more consistent than non-causal ones. The scorpan
framework for DSM suggests seven predictor classes to ex-
plore: other soil properties, climate, organisms, relief (topog-
raphy), parent material, age, and spatial position (McBratney
et al., 2003).

For peat depth, the most practical and widespread scor-
pan factors are relief and spatial position. Spatial position is
unique because it is always known (with varying accuracy).
However, the short range of spatial autocorrelation in peat
depth limits its mapping value (Hengl et al., 2004). Relief,
or topography, is widely and accurately mapped in digital
terrain models (DTMs). For example, most of mainland Nor-
way has at least one elevation measurement per square me-
ter from airborne light detection and ranging (lidar) surveys.

Moreover, mechanisms of peat formation are linked to topog-
raphy.

Studies have consistently shown relationships between
peat depth and topography, though the specific patterns vary.
One of the most robust relationships is a negative correlation
between depth and terrain slope (e.g., Holden and Connolly,
2011; Parry et al., 2012; Gatis et al., 2019). Peat depth also
changes with elevation in many contexts, but with inconsis-
tent directionality (e.g., Holden and Connolly, 2011; Parry
et al., 2012; Rudiyanto et al., 2016, 2018; Koganti et al.,
2023; Li et al., 2024). Also more complex derivations of to-
pography, such as the Topographic Wetness Index and the
Multi-Resolution Valley Bottom Flatness index, have shown
associations with peat depth (e.g., Rudiyanto et al., 2018; Ko-
ganti et al., 2023; Li et al., 2024; Pohjankukka et al., 2025).
Some of the variation between studies in quantifying these
relationships is undoubtedly attributable to issues of spatial
scale – both the scaling of the topographic predictors and the
resolution of the peat depth analysis.

Another set of predictors related to peat depth are mea-
surements of natural radioactivity from the ground surface.
Gamma-ray spectrometry can survey the activity (decay
counts per second) from radioactive isotopes in bedrock and
mineral soils: potassium-40, uranium-238, and thorium-232
(Beamish, 2014; Reinhardt and Herrmann, 2019). Although
survey measurements are commonly reported as ground con-
centrations (linearly scaled from decay counts per second),
in peatland environments these predictors do not reflect the
concentration of radionuclides near the ground surface, but
rather the radiation intensity after attenuation by the peat
overburden. Deep soil with high water content will attenu-
ate radiation most (Beamish, 2013; Reinhardt and Herrmann,
2019). Thus, reported ground concentrations can be statisti-
cally informative about peat soils, even if not physically cor-
rect, with respect to two scorpan factors: other soil properties
and parent material (McBratney et al., 2003).

Although theory suggests that one meter of peat may fully
attenuate radiometric signal (Beamish, 2013; Reinhardt and
Herrmann, 2019), empirical investigations show that the as-
sociation between peat depth and radioactivity can extend be-
yond the first meter (Keaney et al., 2013; Gatis et al., 2019;
Koganti et al., 2023). Radiometric data are increasingly avail-
able over large areas (Minasny et al., 2019; Baranwal and
Rønning, 2020), and – insofar as they are predictive of peat
depth – this presents an opportunity for DSM.

The effectiveness of DSM depends not only on the meth-
ods and data, but also on the characteristics of the mapping
area. Norway may be instructive in this respect because its
peatlands vary widely across climates and topographies. Nor-
way has 22 peatland mesotopes, with different hydrology,
formation, and development – from topogeneous or solige-
neous fens to blanket or raised bogs (Joosten and Clarke,
2002; Lyngstad et al., 2023). These mesotopes have funda-
mentally different geomorphology, which suggests that rela-
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tionships between peat depth and terrain or radiometric pre-
dictors may vary by landscape.

The only systematic mapping of peat depth at the na-
tional scale in Norway comes from surveys meant to iden-
tify arable land. After scattered efforts in the early 20th cen-
tury, a comprehensive round of surveying was completed
1964–2001 as part of a wider land cover mapping in Norway
(Bjørdal, 2007). This survey produced the initial maps from
which Norway’s most detailed updated land cover datasets
are derived – including the AR5 and DMK datasets used
in this study and described later. Because of its agricul-
tural and silvicultural focus, the survey covered only produc-
tive areas below the tree line, and peat depth was measured
only in places judged to be potentially arable or afforestable
(Ahlstrøm et al., 2019). Field surveyors carried a 1 m probe
and they measured peat depth as a categorical variable: shal-
low (< 1 m), or deep (> 1 m). These classes were assigned
to whole polygons, so spatial resolution is on the order of
hectares. The number of measurements per unit area was not
standardized but probably low.

The push for nature-based climate solutions motivates for
extensive mapping of peat depth, to identify peatlands with
rich carbon stocks to avoid their conversion and prioritize
their preservation or restoration (Strack et al., 2022). Al-
though ground surveys of peat depth are accurate and fea-
sible across small areas, having landscape-scale maps avail-
able before detailed investigation increases the option space
for spatial planning and land management. For example, the
Norwegian Public Roads Administration routinely measures
peat depth during geotechnical work before road construc-
tion, but by that time, the route of the road is already set.
With a landscape-scale peat depth map, planners could bet-
ter compare the climate impact of different routes. To make
landscape-scale maps possible, more studies need to investi-
gate the relationships between peat depth and topographic or
radiometric variables, to determine how strong and consis-
tent these are.

Here, we assess how well remotely sensed topographic
and radiometric data can predict peat depth at two contrast-
ing sites, with a view toward revising regional and national
maps in Norway. Specifically, we aim to: (1) quantify the ac-
curacy of predictions from topographic and radiometric vari-
ables, and (2) identify key predictive variables. Reflecting on
our results and the need for continued improvement in peat
depth maps, we close by discussing implications for digital
soil mapping of peat depth.

To our knowledge, this is the first study to predict con-
tinuous peat depth from airborne radiometric data using ma-
chine learning. Where airborne radiometric data have previ-
ously been used to predict continuous peat depth, it has been
through modeling techniques less suited for prediction and
spatial extrapolation (e.g., Keaney et al., 2013; Gatis et al.,
2019; Siemon et al., 2020). Where machine learning has pre-
viously been used with airborne radiometric data, it has been

to predict peat extent or depth classes rather than continuous
depth (e.g., O’Leary et al., 2022; Pohjankukka et al., 2025).

2 Materials and methods

2.1 Sites

To assess the predictive value of terrain and radiometric
data for mapping peat depth, we chose two sites with con-
spicuously different physical geography: Skrimfjella in east-
ern Norway (Fig. 1a) and Ørskogfjellet in western Norway
(Fig. 1b). These sites were chosen because they were covered
by radiometric data from airborne surveys, had relatively lit-
tle built-up area, and were accessible by road. Ørskogfjellet
was additionally chosen for its relatively uniform bedrock
geology, which should improve the peat depth signal in ra-
diometric data, all else being equal (Minasny et al., 2019).

At Skrimfjella we delineated a study area of 34 km2 based
on radiometric coverage (limiting to the west) and accessibil-
ity (limiting to the south), as part of a pilot project (Fig. 1a).
In Norway’s AR5 national land cover dataset (“areal re-
sources in scale 1 : 5000”; Ahlstrøm et al., 2019), 1.5 km2

(4.5 %) of the study area is classified as “mire” – defined
as areas with mire vegetation and at least 30 cm of peat
depth. Relatively sparse peatland cover did not disqualify the
area for our purposes, since we were also interested in peat-
land extent mapping in the pilot project. The study area has
a diverse bedrock, with 32 % alkali feldspar granite, 26 %
marlstone, 10 % granite, 8 % monzonite, 7 % sandstone, 6 %
limestone, and five other rock types with 1 %–5 % cover-
age (Geological Survey of Norway, 1 : 250000 dataset). It is
almost without human infrastructure, dominated by conifer
forest, and borders on a nature reserve. Its mean elevation
is 438 m a.s.l. (range 223–711 m, IQR 351–509 m), and its
mean slope at 10 m resolution is 10.8° (IQR 4.6–15.1°).

At Ørskogfjellet we defined a study area of 124 km2 which
basically followed the southernmost part of the radiomet-
ric survey extent (Fig. 1b). In the AR5 dataset, 15.3 km2

(12.4 %) of the study area is classified as mire. Bedrock in
the area is 84 % granitic gneiss, 11 % granite, and 5 % alu-
minium silicate gneiss (Geological Survey of Norway, 1 :
250000 dataset). This study area is mostly forested, but also
contains considerable farmland and open upland, and has
several large lakes. Its mean elevation is 211 m a.s.l. (above
sea level) (range 0–807 m, IQR 73–310 m), and its mean
slope at 10 m resolution is 13.0° (IQR 4.7–18.3°).

2.2 Peat depth predictors

We created the same suite of peat depth predictors for both
sites (25 continuous and 1 categorical; Table 1). All contin-
uous predictors were derived either from an airborne radio-
metric survey or from a DTM. From the radiometric surveys,
we simply used the four variables produced by the Geolog-
ical Survey of Norway: ground concentration of potassium,
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Figure 1. Study areas with land cover at Skrimfjella (a) and Ørskogfjellet (b). To fit the scale of the maps, the land cover shown here is from
the AR50 national land resource dataset, which has simplified geometry with respect to the AR5 dataset that is used in the study. Terrain
is visualized with light orange contour lines at intervals of 100 m, and a hillshade with slope 45° and azimuth 225°. AR50 data are from
Norwegian Institute of Bioeconomy Research under the Norwegian Licence for Open Government Data (https://data.norge.no/nlod/en/1.0,
last access: 19 September 2024) and terrain data are from the Norwegian Mapping Authority under the Creative Commons Attribution 4.0
International license (https://creativecommons.org/licenses/by/4.0/, last access: 20 September 2024) © Kartverket.

thorium, uranium, as well as total count. From the DTMs
we calculated several land surface parameters, ranging from
simple terrain indices to more complex geomorphometric
and hydrological variables (Maxwell and Shobe, 2022). The
categorical predictor was peat depth class, from a national
map dataset. Predictor preparation is described in more de-
tail below.

We chose a spatial resolution of 10 m for our predictors,
depth sampling, and modeling. We considered this a reason-
able compromise between DTM resolution (1 m) and small
peatlands on the one hand, and airborne radiometric resolu-
tion (50 m) on the other hand.
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Table 1. Twenty-six candidate predictors of peat depth. Note that each continuous predictor contributes one variable to the model while the
single categorical predictor (DMK) contributes two binary variables, corresponding to its three levels (one level is used as the reference).
This results in a total of 27 variables.

Group Code Units Description

Radiometric radK % Potassium ground concentration
radTh ppm Thorium ground concentration
radU ppm Uranium ground concentration
radTC counts per second Total Count of gamma radiation

Terrain elevation m mean elevation from DTM with 1 m resolution
slope1m degrees mean of slope at 1 m resolution
TPI1m m mean of Topographic Position Index at 1 m resolution
TRI1m m mean of Terrain Ruggedness Index at 1 m resolution
roughness1m m mean of roughness at 1 m resolution
slope10m degrees slope from DTM with 10 m resolution
TPI10m m Topographic Position Index from DTM with 10 m resolution
TRI10m m Terrain Ruggedness Index from DTM with 10 m resolution
roughness10m m roughness from DTM with 10 m resolution
MRVBF dimensionless Multi-Resolution Valley Bottom Flatness
TWI5m dimensionless mean of Topographic Wetness Index at 5 m resolution
TWI10m dimensionless Topographic Wetness Index at 10 m resolution
TWI20m dimensionless bilinear interpolation of Topographic Wetness Index at 20 m resolution
TWI50m dimensionless bilinear interpolation of Topographic Wetness Index at 50 m resolution
DTW2500 m Depth-To-Water index, flow initiation area of 0.25 ha
DTW5000 m Depth-To-Water index, flow initiation area of 0.5 ha
DTW10000 m Depth-To-Water index, flow initiation area of 1 ha
DTW20000 m Depth-To-Water index, flow initiation area of 2 ha
DTW40000 m Depth-To-Water index, flow initiation area of 4 ha
DTW80000 m Depth-To-Water index, flow initiation area of 8 ha
DTW160000 m Depth-To-Water index, flow initiation area of 16 ha

DMK DMK categorical peat depth class in the DMK national map dataset: shallow/deep/unknown

2.2.1 Radiometric

The Geological Survey of Norway conducted and processed
radiometric surveys over our study areas, as reported in
Baranwal et al. (2013) and Ofstad (2015). They provided
us for each site four variables at 50 m resolution, which
we downscaled to 10 m resolution by cubic spline resam-
pling. Sensitivity analysis showed that Pearson correlations
between cubic spline and bilinear resampling methods ex-
ceeded 0.995 for all radiometric variables, so we are confi-
dent that the choice of resampling method did not affect our
results.

The radiometric surveys were conducted with 75–80 m
average flight altitude, 88–108 km h−1 average flight speed,
and 200 m flight line spacing (Table A1). Spectrometer count
rates were calibrated to known concentrations of potassium,
thorium, and uranium in mobile pads. Data were processed
following standard procedures outlined by the International
Atomic Energy Association. Processing included: correction
for aircraft and cosmic background radiation, correction for
radon in the air, window stripping of the gamma ray spec-
trum, correction for flying height, conversion of count rates
to ground concentrations, and finally gridding to 50 m res-

olution with micro-leveling. At Ørskogfjellet an additional
convolution filter was added to smooth the gridded data.

Although radiometric data must be in units of counts per
second to model attenuation directly (O’Leary et al., 2022),
we used the radiometric data as provided to us: in units
of concentration for potassium, thorium, and uranium (con-
verted from counts per second by scalar calibration factors).
The monotonic transformation between counts per second
and concentration has no effect on the tree-based machine
learning algorithm that we used to model peat depth (Hastie
et al., 2009). We also used the total count variable as pro-
vided, rather than calculating a gamma dose rate based on
the potassium, thorium, and uranium (as was done in Gatis
et al., 2019), because these were highly correlated at both
study sites (ρ = 0.989, 0.986), and because conversions to
dose rates are approximations (IAEA, 2003).

2.2.2 Terrain

For terrain-derived predictors, we obtained 1 m resolution
rasters from the national DTM (https://creativecommons.org/
licenses/by/4.0/, last access: 9 September 2024, CC BY 4.0,
Norwegian Mapping Authority). The DTM for Skrimfjella
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was produced from airborne laser scanning surveys in 2015
and 2022, with laser point density of 5 pts m−2. For Ørskogf-
jellet, the DTM was produced from a 2015 survey with
2 pts m−2. Where necessary, DTMs were resampled to the
coordinate reference system of the radiometric data.

We used the terra R package (v.1.8; Hijmans, 2025) to
calculate from the DTMs: slope, Topographic Position Index
(difference from mean of eight neighbors), Terrain Rugged-
ness Index (mean of absolute differences from eight neigh-
bors), and roughness (range in the nine-cell neighborhood).
These were derived at two scales to produce eight different
predictors; we either calculated the indices at 1 m DTM reso-
lution and then aggregated to 10 m resolution, or aggregated
to 10 m DTM resolution and then calculated the indices. This
kind of multiscale feature engineering of land surface param-
eters has been found to improve machine learning predictions
of soil properties (Miller et al., 2015; Dornik et al., 2022;
Newman et al., 2023). We know that peat depth tends to vary
at fine scales in Norway, which is why we chose 1 and 10 m
resolutions (Maxwell and Shobe, 2022). We also calculated
the Multi-Resolution Valley Bottom Flatness index, which
indicates the degree of valley bottom flatness at a given loca-
tion via a multiscale algorithm (Gallant and Dowling, 2003).
We calculated this index in SAGA GIS (v.9.3.2, Morphome-
try library; Conrad et al., 2015) with default parameters (ini-
tial slope threshold= 16 %, lowness threshold= 0.4, upness
threshold= 0.35, slope shape parameter= 4, elevation shape
parameter= 3).

The Topographic Wetness Index (Quinn et al., 1991) is no-
toriously scale-dependent and often matches real hydrologi-
cal conditions best when calculated from moderate to coarse
resolution DTMs (Ågren et al., 2014; Riihimäki et al., 2021),
so we calculated it from 5, 10, 20, and 50 m DTM resolution.
The calculations were performed with Whitebox software
(Lindsay, 2016a), accessed through the whitebox R package
(v.2.4; Wu and Brown, 2022). We filled depressions in the
DTM with the algorithm in Wang and Liu (2006), and used
the deterministic infinity flow accumulation algorithm (Tar-
boton, 1997).

The Depth-to-Water index (Murphy et al., 2007) approx-
imates a location’s vertical height above the surface water
feature (e.g., stream, lake, or sea) that it is likely to drain
towards. It is calculated as the minimum cumulative slope
(scaled by cell size) to a surface water feature (Eq. 5 in Mur-
phy et al., 2009). We calculated unitless slope from the 1 m
DTM using Whitebox. We defined surface water features
from the DTM by filling depressions and then calculating
flow accumulation to define catchment areas for each cell
(Schönauer et al., 2021; Schönauer and Maack, 2021). This
catchment area layer was then thresholded at seven differ-
ent levels (flow initiation area 0.25–16 ha) to estimate surface
water features under moisture scenarios varying from wet to
dry (Murphy et al., 2011; Ågren et al., 2014; Schönauer et al.,
2021). In addition, all surface water features mapped in the
AR5 dataset were also transferred to the raster layer. For each

of the seven surface water layers, we derived Depth-to-Water
using the Distance Accumulation tool in ArcGIS Pro (v.3.1,
ESRI, USA), which has an efficient algorithm to find the cu-
mulative distance over a cost surface to the least-cost source.

2.2.3 Peat depth class

We prepared one categorical predictor – peat depth class –
from the national map dataset called DMK (Ahlstrøm et al.,
2019). The DMK dataset is derived from the same histor-
ical surveys as the AR5 dataset, and peat depth classes are:
< 1 m (shallow),> 1 m (deep), and unknown. Surveyors gen-
erally assigned peat depth classes to polygons of at least
0.5 ha, although delineating polygons down to 0.2 ha was al-
lowed if peat depth showed a “particularly marked differ-
ence” (Bjørdal, 2007). We rasterized the peat depth class
attribute to our 10 m grid and this predictor equates to two
variables in the model because its three levels become two
indicator variables (one level is used as the reference).

2.3 Peat depth sample selection

The places (10 m raster cells) we chose to measure peat depth
were sampled from mire areas in the AR5 dataset, and opti-
mized for training a Random Forest (RF) model of peat depth
(Brus, 2019). Broadly, we aimed for a sample that was rep-
resentative of the predictor space defined by the most im-
portant predictors of peat depth (Wadoux et al., 2019; Ma
et al., 2020). A sample that preserves the properties of the
multivariate distribution of predictor and outcome variables
is most likely to maintain any complex, non-linear relation-
ships that exist in the population, while avoiding spurious
ones (Brus, 2019). Although we implemented the sampling
design differently at Skrimfjella (in 2020) than at Ørskogf-
jellet (in 2023), the overall approach was the same. We chose
105 raster cells at Skrimfjella and 160 raster cells at Ørskogf-
jellet as our designed samples. A complete description of our
sample selection is in Appendix B1.

2.4 Depth measurements

We measured peat depths at Skrimfjella in August 2020 and
at Ørskogfjellet in August 2023. We made at least three point
measurements of peat depth within each of the raster cells in
the designed samples. At both sites, we used manual probing
as the primary method of measuring peat depth and ground-
penetrating radar (GPR) as a secondary method. That is: peat
depth was always measured by probing in our designed sam-
ples, and we also used GPR in a set of cells that partly over-
lapped with the designed samples. We chose this combined
approach because probing is a fast and reliable method for
point measurements, while GPR can provide higher lateral
density of data in the same amount of time (Parry et al.,
2014). Probed depths serve to calibrate GPR measurements
when calibration by common midpoint survey is not possi-
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ble – as was the case with our fixed radar antennas – so the
methods are complementary. A complete description of our
peat depth measurements is in Appendix B2.

At Ørskogfjellet we were also able to use two existing sets
of peat depth measurements in addition to our own. We ex-
tracted a set of 44 borehole depths (in decimeters) across a
9 ha peatland area, from a paper map made by the Norwe-
gian Soil and Mire Company in 1984. We also used a set
of GPR-based depth measurements, commissioned and pro-
vided to us by the Norwegian Public Roads Administration.
These data were collected in 2020 and 2021 with a dual chan-
nel system (70 and 300 MHz; ImpulseRadar AB, Sweden),
connected to GNSS with CPOS correction. We used a total
of 403 440 interpreted and calibrated traces along 7.4 km of
transects from this work – discarding data where multiple
depths were interpreted for the same location.

All point measurements described above (Vollering et al.,
2025) were ultimately aggregated to 10 m resolution by tak-
ing the mean of point values within each cell, inversely
weighted by their distances to the cell center.

2.5 Predictive models of peat depth

2.5.1 Modeling approach

We used Random Forests (RF) to predict peat depth at both
sites. RF is an ensemble machine learning algorithm that
builds many decision trees on bootstrapped samples of the
training data, randomly subsets predictors in the trees, and
averages the predictions of the trees (Breiman, 2001). We
chose RF because it can handle complex interactions be-
tween predictors, is robust to overfitting, and generally shows
higher performance in DSM applications than other algo-
rithms (Beguin et al., 2017; Nussbaum et al., 2018; Lamich-
hane et al., 2019). It is suited for use on relatively small train-
ing datasets and its predictions can be interrogated to learn
about predictor importance (Khaledian and Miller, 2020).

RF by itself is not a spatial model, and it will only pre-
dict spatial structure in the peat depth to the degree that spa-
tial structure is captured by predictors. We considered us-
ing regression kriging – a hybrid between non-spatial and
spatial techniques that adds to the RF predictions a geosta-
tistically interpolated surface of RF residuals (Hengl et al.,
2004). The spatial component in regression kriging often im-
proves map accuracy (Beguin et al., 2017; Lamichhane et al.,
2019; Molla et al., 2023), but it can do so only if the spa-
tial autocorrelation range in the non-spatial residuals is large
compared to distances between samples and prediction loca-
tions (Hengl et al., 2004; Szabó et al., 2019; Takoutsing and
Heuvelink, 2022). If the outcome varies at fine scales and
the samples are clustered in small parts of the study area, a
spatial component will hardly improve overall map accuracy.
We used semivariograms to assess the spatial structure in the
residuals of the RF predictions, and found that (non-spatial)
RF was justified at both sites.

We implemented models in the tidymodels framework in R
(Kuhn and Wickham, 2020), with the ranger R package for
RFs (v.0.16; Wright and Ziegler, 2017). RFs were fit with
1000 trees, minimum node size of 5, and the number of pre-
dictors randomly sampled at each split was the square root
of the total number of predictors (ranger default). We did not
tune these hyperparameters because RFs are relatively insen-
sitive to tuning (Probst et al., 2019), and because it would
require nested spatial cross-validation to prevent data leak-
age (Schratz et al., 2019).

2.5.2 Model performance

For both sites, we compared the performance of models with
different predictor configurations, where each configuration
was one of the seven combinations of the three predictor
groups: (1) radiometric (2) terrain and (3) DMK. Comparing
the different configurations allowed us to isolate the added
value of each of the predictor groups. The models with only
DMK peat depth class served to provide a fair comparison
between the accuracy of the RF models and the existing na-
tional map of peat depth, calibrated on the same data.

We used a spatial cross-validation scheme to evalu-
ate model performance (Wadoux et al., 2021; Meyer and
Pebesma, 2022). To set the folds we used k-Means Near-
est Neighbor Distance Matching (kNNDM), which aims to
mimic the spatial prediction task that is defined as the goal
(Linnenbrink et al., 2024). In particular, kNNDM searches
for a fold assignment that minimizes the difference between
two distributions: nearest neighbor distances between train-
ing and test locations in the cross-validation, and nearest
neighbor distances between training and prediction locations
for the model. That way, the spatial separation between folds
is similar to the separation between training and prediction
locations – which increases the quality of the map accuracy
estimate (Linnenbrink et al., 2024). For spatially clustered
training data, this approach strikes a balance between the risk
of optimistic metrics from random cross-validation and the
risk of pessimistic metrics from other forms of spatial cross-
validation (Wadoux et al., 2021). We implemented the kN-
NDM with the CAST R package (v.1.0; Meyer et al., 2024),
setting prediction locations to all AR5 mire cells in the study
area, and choosing a number of folds (k = 5–20) that pro-
duced the best match between the two NND distributions.
From the cross-validation we quantified mean absolute er-
ror (error magnitude, original scale),R2 (explained variation,
standardized scale), and Lin’s concordance correlation coef-
ficient (error magnitude and explained variation, standard-
ized scale). We formally assessed the effect of predictor con-
figuration on performance metrics using mixed-effects mod-
els to account for the cross-validation fold structure (folds
as random effects), and testing pairwise differences between
configurations.

DSM products have much more value when their pre-
dictions are accompanied by uncertainty estimates, and all
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Table 2. Selected attributes of the peat depth datasets at Skrimfjella and Ørskogfjellet. The first row summarizes all 10m cells, while
subsequent rows stratify the dataset by AR5 land class and DMK peat depth class.

Skrimfjella Ørskogfjellet

n % Mean (SD) n % Mean (SD)
depth depth

All 372 100 119 (83) cm 1878 100 126 (119) cm

AR5 Agricultural 21 1 30 (8) cm
Forest 52 14 65 (63) cm 272 14 71 (68) cm
Open upland 19 5 98 (83) cm 134 7 39 (21) cm
Peatland 301 81 130 (82) cm 1451 77 145 (125) cm

DMK deep (> 100 cm) 94 25 100 (53) cm 659 35 219 (143) cm
shallow (< 100 cm) 6 2 50 (31) cm 838 45 82 (54) cm
unknown 272 73 127 (90) cm 381 20 60 (62) cm

DSM should strive to assess uncertainty (Arrouays et al.,
2020; Wadoux et al., 2020) and evaluate uncertainty esti-
mates (Heuvelink and Webster, 2022). Therefore, we pro-
duced prediction intervals with quantile regression forests
(Meinshausen, 2006), and used the same spatial cross-
validation to evaluate the prediction interval coverage proba-
bility (Shrestha and Solomatine, 2006). The quantile regres-
sion forests were trained with the predictor configuration that
showed the highest performance at each site, and we ex-
tracted 90 % prediction intervals.

2.5.3 Model interpretation

We quantified global variable importance (predictor influ-
ence across all locations) and examined partial dependence
plots (curves of fitted relationships) for the best-performing
predictor configuration at each site. Both are useful for un-
derstanding the mechanisms behind the model’s predictions
and the roles of the predictors in the model.

For both sites, we interpreted a model trained on a non-
collinear subset of variables from the best performing pre-
dictor configuration – because correlation between predictors
degrades variable importance metrics (Strobl et al., 2008;
Biau and Scornet, 2016) and can produce misleading vi-
sualizations of predictor–outcome relationships (Biecek and
Burzykowski, 2021; Dwivedi et al., 2023). Specifically, we
eliminated variables from the best performing predictor con-
figuration to obtain a set with no pairwise Pearson correlation
coefficient above 0.7 (an arbitrary but conventional threshold
for this purpose). Thus, highly correlated sets of variables are
represented by a single variable for the purposes of model in-
terpretation.

We calculated variable importance with the vip R pack-
age (v.0.4), by three different methods: FIRM, permutation,
and Shapley (Greenwell and Boehmke, 2020). FIRM values
measure the flatness of the partial dependence plot, permu-
tation values measure the decrease in model performance

when the predictor is permuted, and Shapley values are ag-
gregated from local, game-theoretical measures of variable
importance (Greenwell and Boehmke, 2020). Since FIRM re-
flects the flatness of the partial dependence plot, it captures
functional complexity rather than overall predictive impact.
Permutation values were obtained from ten iterations, with
root mean square error as the performance measure.

We calculated partial dependence with the pdp R package
(v.0.8; Greenwell, 2017). For the six most important vari-
ables, we plotted partial dependence to show the average ef-
fect of the predictor on the outcome and individual condi-
tional expectations to show variation in the effect across ob-
servations (Goldstein et al., 2015). Non-parallel individual
conditional expectation lines indicate the presence of inter-
actions between predictors.

3 Results

Our point measurements of peat depth (all sources) produced
aggregated depths for 372 cells or 2.4 % of AR5 mire area
at Skrimfjella, and 1878 cells or 1.2 % of AR5 mire area at
Ørskogfjellet. Approximately 80 % of these 10 m cells were
within AR5 mires, and the remainder in forest, open up-
land, or farmland (Table 2). DMK peat depth had higher
coverage at Ørskogfjellet than at Skrimfjella (80 % versus
27 % of cells not unknown), and at Ørskogfjellet the deep
and shallow classes showed a larger difference in measured
depth. Overall, mean peat depths were similar at Skrimfjella
and Ørskogfjellet (119 cm versus 126 cm) but the distribution
was more right-skewed at Ørskogfjellet (Fig. 2).

3.1 Model performance

None of the models were able to predict peat depth across
the study areas with high accuracy (Fig. 3). For Skrimfjella,
the best model achieved a concordance correlation coeffi-
cient of 0.30, an R2 of 0.34, and a mean absolute error of
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Figure 2. Spatial and statistical distributions of mean peat depth in 10 m cells at Skrimfjella, N = 372 (a) and Ørskogfjellet, N = 1878 (b).
Terrain is visualized with a hillshade with slope 45° and azimuth 225°. Terrain data are from the Norwegian Mapping Authority under
the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/, last access: 20 September 2024)
© Kartverket.

60 cm. For Ørskogfjellet, the concordance correlation co-
efficient was 0.39, R2 was 0.33, and mean absolute error
was 56 cm, so the best model at Ørskogfjellet was slightly
more accurate than the best model at Skrimfjella. These val-
ues were derived from kNNDM spatial cross-validation with
20 folds at Skrimfjella and 10 folds at Ørskogfjellet.

For Skrimfjella, the best predictor configuration was
all predictors, followed closely by terrain+ radiometric

(Fig. 3). The terrain configuration outperformed the radio-
metric configuration by 0.27 in concordance correlation coef-
ficient (p < 0.001; Table C1), by 0.16 in R2 (p = 0.190; Ta-
ble C2), and by 10 cm in mean absolute error (p = 0.038; Ta-
ble C3). The terrain+DMK configuration outperformed the
radiometric+DMK configuration by 0.32 in concordance
correlation coefficient (p < 0.001; Table C1), by 0.11 in R2
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Figure 3. Performance of peatland depth models with different predictor configurations, evaluated via spatial cross-validation. Parentheses
denote the number of variables in each predictor configuration, and point estimates are shown± their standard error.

Figure 4. Calibration plots for the best-performing models at Skrimfjella (a) and Ørskogfjellet (b), with predictions and 90 % prediction
intervals (grey vertical lines) from spatial cross-validation. Points have transparency to show overlap. Blue lines are local polynomial regres-
sions and the red dashed line in each panel shows the 1 : 1 line. Marginal distributions (top) are shaded by quartile.

(p = 0.605; Table C2), and by 11 cm in mean absolute error
(p = 0.011; Table C3).

For Ørskogfjellet, the best predictor configuration was
terrain+DMK, followed by terrain (Fig. 3). Adding ra-
diometric predictors to these configurations slightly wors-
ened model performance. The terrain configuration outper-
formed the radiometric configuration by 0.24 in concor-
dance correlation coefficient (p = 0.068; Table C4), by 0.24
in R2 (p = 0.004; Table C5), and by 25 cm in mean abso-
lute error (p = 0.086; Table C6). The terrain+DMK config-

uration outperformed the radiometric+DMK configuration
by 0.28 in concordance correlation coefficient (p = 0.015;
Table C4), by 0.27 in R2 (p < 0.001; Table C5), and by
28 cm in mean absolute error (p = 0.031; Table C6).

The best models at both sites overpredicted shallow peats
and strongly underpredicted very deep peats (Fig. 4). The
mean error (bias) of these models was 10 cm at Skrimfjella
and−4 cm at Ørskogfjellet. Although the prediction intervals
from the quantile regression forests were wide, they were
well calibrated. At Skrimfjella, the prediction interval cov-
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Figure 5. Global variable importance in the best-performing models at Skrimfjella (a) and Ørskogfjellet (b), as measured by three different
metrics: Shapley values, permutation importance, and the Feature Importance Ranking Measure (Greenwell and Boehmke, 2020). Variables
removed due to collinearity are shown to the right of the variable with which they are most correlated. Spearman rank correlations between
the three metrics at each site are displayed in matrices.

erage probability was 92 %, and at Ørskogfjellet it was 84 %
(both compared to the target value of 90 %). Observations
outside of the prediction intervals showed no obvious spatial
pattern.

3.2 Model interpretation

For the purpose of model interpretation, the all predictors
configuration for Skrimfjella was reduced from 27 vari-
ables to 11 non-collinear variables, by removing one of
the variables in each highly-correlated pair. Similarly, the
terrain+DMK configuration for Ørskogfjellet was reduced
from 23 variables to 11 non-collinear variables. The permu-
tation and Shapley methods of variable importance showed
high Spearman rank correlation at both sites, while the FIRM
method ranked variable importance differently (Fig. 5).

3.2.1 Variable importance

At both sites, elevation and Multi-Resolution Valley Bottom
Flatness were important predictors (Fig. 5). At Skrimfjella
these two predictors were of similar importance, while at
Ørskogfjellet elevation had higher predictive impact (permu-
tation and Shapley) but lower functional complexity (FIRM)
than Multi-Resolution Valley Bottom Flatness. DMK was
also important – the shallow class in particular – but only at
Ørskogfjellet. Some realizations of the hydrological predic-
tors Topographic Wetness Index and Depth-to-Water showed
considerable importance, while others showed little – with no
clear consistency between sites. At both sites, the most im-
portant hydrological predictors were more important than the
simple terrain indices slope, Terrain Ruggedness Index, To-
pographic Position Index, and roughness. At Skrimfjella, the
radiometric predictor uranium ground concentration – which
was highly correlated with all other radiometric variables –
showed moderate importance.
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Figure 6. Partial dependence plots of the six most important variables in the best-performing models at Skrimfjella (a) and Ørskogfjellet (b).
The average effect of the predictor on the outcome (red line) overlays the individual conditional expectations, which show the variation in
the effect across observations (grey lines). The variables’ training data distributions are indicated with rug plots along the x-axes.

3.2.2 Partial dependence

Many of the most important predictors in the best performing
models showed non-monotonic effects on peat depth (Fig. 6).
At Ørskogfjellet, for example, increasing elevation was pre-
dictive of deeper peat up to about 75 m a.s.l., after which a
further increase was predictive of shallower peat. At Skrim-
fjella the partial dependence on elevation had the opposite
shape but covers a higher elevation range, with the shallowest
peats predicted around 350 m a.s.l. TWI50m at Ørskogfjellet
and DTW4000 and uranium ground concentration at Skrim-
fjella were other predictors that showed non-monotonic as-
sociations with peat depth. The radiometric predictor in par-
ticular displayed an idiosyncratic effect, with a marked dip
in predicted depth at intermediate values of uranium ground
concentration. On the other hand, the partial effects of some
important predictors were more straightforward. The partial
dependence on Multi-Resolution Valley Bottom Flatness was
quite similar across sites, with the deepest peats predicted in
the very flattest valley bottoms. Also, TWI5m and DTW2500

at Skrimfjella showed monotonically positive and negative
predictive effects, respectively.

Individual conditional expectation lines indicated some in-
teractions between predictors (Fig. 6). For example, the pos-
itive association of depth with elevation at Ørskogfjellet was
larger for some observations than others; depth increases
ranged 40–100 cm over the same elevation gain. Similarly,
individual conditional expectations along uranium ground
concentration at Skrimfjella were non-parallel, with some lo-
cations showing decreasing peat depth predictions (unlike the
average effect). Nevertheless, most individual conditional ex-
pectations were approximately parallel, so the average effects
of the predictors are mostly representative of their overall ef-
fects.
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4 Discussion

4.1 Can we improve Norway’s peat depth maps?

4.1.1 Remotely sensed variables are weak predictors of
peat depth

Our ability to predict peat depth in the study sites based on
terrain and radiometric data was limited. Mean absolute er-
rors of 60 and 56 cm at the two sites – relative to mean depths
of 119 and 126 cm – illustrate the practical limitations of
these maps. Since any given 10 m cell will miss by about
60 cm, applications requiring detailed peat depth in a small
area (e.g., < 1 ha) would benefit from measuring depth on
the ground rather than relying on the DSM alone.

Although model performance was limited, we improved
on the best available map of peat depth (DMK depth class),
which is based on field measurements only. This highlights
the general value of remotely sensed data, whose complete
coverage can improve maps even when their association with
the variable of interest is weak (Mulder et al., 2011). Since
remotely sensed data are widely available, improvements to
soil maps as shown here are readily achievable at low cost
(Minasny et al., 2019).

DMK peat depth classes were a worse predictor of peat
depth than our models even though we calibrated them with
the same data (Fig. 3). If we had taken the DMK peat depth
classes at face value and assumed depths according to their
class definitions (< 1, > 1 m), they would have performed
worse and the advantage of the DSM would be greater. The
advantage of the DSM was not large in absolute terms (9 and
21 cm improvements in mean absolute error), but it explained
much more of the variation in depth (improvements in R2

of 0.16 and 0.19). We attribute this result to the poor spatial
and thematic resolution of DMK peat depth, which precludes
a robust correlation with peat depths.

The accuracy of our mapping could have been improved
with a spatially explicit approach like regression kriging.
However, residuals of the RF predictions showed weak spa-
tial structure at Skrimfjella, and only up to a range of 150 m
at Ørskogfjellet. Therefore, the improvement from regression
kriging would be small overall and limited to parts of the
maps close to measurements.

4.1.2 Similar error but less explanatory power in
Norwegian peatlands

Compared to other studies using terrain and radiometric data
to predict peat depth, our models explained less variability in
peat depth (R2) but generally produced better or comparable
error magnitude (mean absolute error or root mean square
error; Wadoux et al., 2022). It is important to keep in mind
that differences in peat depth distributions, spatial scales, and
evaluation methods make direct performance comparisons
precarious. For example, R2 is sensitive to high leverage, ex-
treme values, so it will evaluate a right-skewed distribution

differently than a symmetrical distribution. We evaluated our
models with respect to the explicit purpose of creating peat
depth maps across the study areas, but not all studies tailored
evaluation to match an explicitly formulated problem (Milà
et al., 2022).

Gatis et al. (2019) used similar predictors and the same
spatial grain, finding a much stronger relationship between
predicted and observed peat depth (R2

= 0.68). Although
their random evaluation data partition could make perfor-
mance estimates too optimistic (Roberts et al., 2017; Wadoux
et al., 2021), the confounding effect of spatial structure is
probably small because they used linear regression and few
predictors, so their model had limited opportunity to overfit
to the spatial structure in peat depth. The most salient dif-
ference in Gatis et al. (2019) compared to our study is the
character of the study area. They study a flatter area with
a higher proportion of peatland cover, and their peatland is
primarily blanket bog. The peat surface of a blanket bog is
tied more closely to its underlying topography than the peat
surface of raised bogs or fens (Lindsay, 2016b), which may
make blanket bog depth easier to predict. The predominance
of fens and smaller peatland extent may have contributed to
worse performance in our study.

Marchant (2021) examined a subset of the area studied in
Gatis et al. (2019) at 100 m resolution, using splines to re-
lax linearity between radiometry/terrain and peat depth. He
found that potassium ground concentration alone predicted
peat depth with much higher concordance than our models
(concordance correlation coefficient= 0.76) and that eleva-
tion alone produced comparable performance (concordance
correlation coefficient= 0.27). The root mean square error
from these univariate models was 46–68 cm (cf. 78 and 75 cm
for Skrimfjella and Ørskogfjellet).

Koganti et al. (2023) had a peat depth distribution and
predictors similar to ours, but at much smaller spatial grain
and extent. Their training and validation points are closer
than the range of spatial autocorrelation in peat depth, so
our results are best compared to their non-spatial models.
They accounted for more variability in peat depth (adjusted
R2
= 0.71) but had larger errors (RSME= 110 cm). The lin-

ear regression models in Koganti et al. (2023) produced neg-
ative predictions, and it is unclear whether the values quoted
above include these. If we disregard the negative predic-
tions, their model showed the same pattern as ours in over-
predicting shallow peats and underpredicting deep peats, al-
though their underprediction was less severe. An important
difference between Koganti et al. (2023) and our study (be-
sides spatial scale) is that they measured radiometrics on the
ground, rather than using airborne survey data. Thus, the
footprint of their detector was smaller and they captured vari-
ation in radiation at finer scales.
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4.1.3 Asymmetries in depth predictions for land use
planning and carbon accounting

Our models erred most for the deepest peats (Fig. 4). Where
overprediction occurred, the error was smaller. This is not
unexpected for the right-skewed distributions of peat depth,
but it has implications for potential users of the maps. For ex-
ample, it makes the maps more suited for “red-lighting” than
“green-lighting” peatland conversion (assuming depth is the
determinative factor). Identifying the deepest peats will re-
quire additional field work in candidate areas – where candi-
date areas could be defined by some upper quantile of pre-
dicted depth.

4.2 Which variables predict peat depth?

4.2.1 Airborne radiometrics do not predict Norwegian
peat depth

Radiometric data had little to no predictive value at either site
(poor performance of radiometric configuration), although
they did contribute to the best model at Skrimfjella (marginal
improvement in all predictors configuration compared to ter-
rain+DMK). These results contrast with earlier studies that
found that radiometrics were useful predictors of peat depth
(Keaney et al., 2013; Gatis et al., 2019; Koganti et al., 2023;
Pohjankukka et al., 2025). The bedrock is more homoge-
neous at Ørskogfjellet than at Skrimfjella, so uneven radio-
genesis is not a good explanation for the higher predictive
value of radiometric variables at Skrimfjella (Beamish, 2014;
Reinhardt and Herrmann, 2019). All four radiometric vari-
ables were highly correlated within the peatland parts of our
study sites, so there could be no large differences in their
predictive value. This contrasts with Koganti et al. (2023),
who found that radiometric total count and potassium ground
concentration were better predictors than thorium or uranium
ground concentration.

We suspect that the primary reason for the poor predic-
tive value of the radiometric data was the large footprint of
the detector in the airborne survey. With an average flight al-
titude of 75 m, less than half of the radiation reaching the
detector comes from inside the 100 m diameter circle di-
rectly below it (Beamish, 2016; Beamish and White, 2024).
The rest of the measured activity integrates a much wider
area. For comparison, empirical variograms of peat depth at
Skrimfjella and Ørskogfjellet showed no spatial autocorrela-
tion beyond 50 and 75 m (among GPR data) or 110 and 230 m
(among 10 m cells). Basically, the airborne radiometric data
will not capture large variation over short (< 100 m) dis-
tances; the instrument’s field of view has a large smoothing
effect on the data (Beamish, 2016; Reinhardt and Herrmann,
2019). Different landforms and the changes they cause in
the geometry between the radioactive source and the detector
can also distort airborne measurements (Reinhardt and Her-
rmann, 2019).

Studies comparing airborne and ground radiometric sur-
veys confirm that they are poorly correlated in low-activity
areas like peatlands (Kock and Samuelsson, 2011; Kar-
jalainen et al., 2025). Karjalainen et al. (2025) found that
ground-based measurements predicted peat depth better than
airborne measurements. Nevertheless, a large radiometric
footprint did not prevent strong associations with peat depth
in Gatis et al. (2019) and Marchant (2021), perhaps because
the extensive blanket bog landscape in these studies has more
gradual changes in depth (Lindsay, 1995). We are unsure
whether short-range depth changes explain the weak asso-
ciations that Siemon et al. (2020) found in a large raised bog.

Another possible reason for the poor predictive value of
the radiometric data could be that other physical parame-
ters influencing the amount of intercepted radiation varied
too much within sites. Initial source strength, soil moisture,
bulk density, and porosity all affect the amount of radiation
that reaches the detector (Beamish, 2013; Reinhardt and Her-
rmann, 2019). Therefore, variation in these parameters could
have masked the relationship between peat depth and radio-
metric data. This makes physical modeling of peat depth
from radiometric data an undetermined problem. We chose
the Ørskogfjellet site in part because it has a relatively ho-
mogeneous bedrock, which should reduce the variation in
initial source strength. Soil moisture, bulk density, and poros-
ity, however, are not easily measured across landscape scales
and were assumed to be homogeneous. Uneven snow cover
and air moisture during the Ørskogfjellet radiometric survey
may also have masked the soil signal in these data, as Of-
stad (2015) reports large variation in weather conditions. If
maps of these other physical parameters at the time of the
radiometric survey were available and included in the model,
the predictive value of radiometric data might improve, but
this is not a practical solution for digital soil mapping of peat
depth.

We do not believe that the poor predictive value of the
radiometric data in this study was caused primarily by full
attenuation of radioactivity. The RF algorithm’s flexibility
means that radiometrics could be used for shallower peats
if they provided predictive value for that part of the depth
distribution, but there is no evidence of that in our results. In
the partial dependence plot of uranium ground concentration
at Skrimfjella, the expected negative relationship between
depth and uranium ground concentration cannot be found by
ignoring the left (highly attenuated) side of the distribution
(Fig. 6). More than a quarter of the peats in each of our study
areas were less than 60 cm deep, and full attenuation is un-
likely for these (Beamish, 2013).

Although we do not believe full attenuation is the primary
reason for poor performance in our study, it may limit peat
depth mapping under other circumstances. First-principle
calculations suggest that radiation should be 90 % attenuated
after about 50–60 cm of typical, wet peat or 85 cm of unnat-
urally dry peat (Beamish, 2013; Beamish and White, 2024),
and some field tests support these values (Billen et al., 2015).
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It is remarkable that particular studies detected radiation dif-
ferences up to several meters deep (Gatis et al., 2019; Ko-
ganti et al., 2023), but these may be the exceptions rather
than the rule. Perhaps relatively deeper water tables in these
study sites (blanket bog, drained fen; Price et al., 2016) con-
tributed to better penetration.

4.2.2 Terrain-based variables can predict peat depth

At both our sites, lidar-derived terrain variables predicted
peat depth much better than radiometric variables (Fig. 3).
This is consistent with the findings of Pohjankukka et al.
(2025), who mapped peat depth classes at 50 m resolution
across Finland.

At both our sites, elevation was the most important pre-
dictor, and peat depth showed non-monotonic responses to
changes in elevation (Figs. 5 and 6). We believe that the id-
iosyncratic elevational relationships we detected are mostly
not generalizable beyond the study areas, because we see no
simple mechanism (e.g., via climate) to explain the observed
patterns. For example, the increase in peat depth from 350 to
700 m a.s.l. at Skrimfjella is opposite to the general pattern
of deeper peats in lowland than upland Norway (Lyngstad
et al., 2023). Moreover, elevation at Ørskogfjellet seems to
interact with other variables (non-parallel individual condi-
tional expectation lines), complicating its interpretation. Re-
lationships between elevation and peat depth have previously
shown opposite shapes in different areas (Finlayson et al.,
2021). Nonetheless, a relationship that is not generalizable
beyond the mapping area is still useful for DSM, as long as
it is evaluated to demonstrate its robustness for the predictive
task (e.g., through kNNDM spatial cross-validation).

One interesting feature of the elevational relationships we
found may be generalizable: a steep increase in peat depth
near the marine limit after the last ice age. At Ørskogfjellet,
the marine limit is about 75 meters above today’s sea level
(Geological Survey of Norway; Høgaas et al., 2012), where
the partial dependence plot of elevation shows a sharp in-
crease in peat depth. In areas under the marine limit there
has been less time for peat accumulation since the ice sheets
retreated, and it is plausible that this makes peats there shal-
lower, all else being equal. This hypothesis is supported
by similar findings at a coarser scale in the Hudson Bay
Lowlands, where a strong positive relationship between peat
depth and distance from the coast can be explained by iso-
static uplift and time since peat initiation (Li et al., 2025).
The same has been reported for Finland (Pohjankukka et al.,
2025). We cannot evaluate this effect at Skrimfjella, where
the marine limit is below our study area (at 175 m a.s.l.).

Another influential terrain-based predictor was Multi-
Resolution Valley Bottom Flatness (Fig. 5). Unlike elevation,
it showed a monotonic effect on peat depth: greater valley
bottom flatness was always associated with increases in peat
depth (Fig. 6). Delineating a valley bottom involves ambigu-
ity, but the Multi-Resolution Valley Bottom Flatness index

is a pragmatic approach that considers a location a valley
bottom if it is sufficiently low and flat at a particular scale
(Gallant and Dowling, 2003). The multiscale nature of the
index allows small elevated but flat areas (including sad-
dles) to be characterized as having high valley bottom flat-
ness (Gallant and Dowling, 2003). Our results suggest that
Multi-Resolution Valley Bottom Flatness is a robust indica-
tor of high water tables (and peat accumulation) over millen-
nial time scales, corroborating other studies (Rudiyanto et al.,
2018; Deragon et al., 2023).

Other terrain-derived predictors with predictive value in
our study are hydrological (Topographic Wetness Index and
Depth-to-Water). Notably, slope was inferior to (at Ørskogf-
jellet) or highly correlated with (at Skrimfjella) these hydro-
logical indices. Mappers of peat depth should not assume that
slope is the best terrain-derived predictor, despite its preva-
lence in the literature (Pohjankukka et al., 2025). Wetter lo-
cations (high Topographic Wetness Index and low Depth-
to-Water) were generally associated with deeper peat, but
these relationships were not as strong or consistent as with
Multi-Resolution Valley Bottom Flatness (Figs. 5 and 6). The
optimal scale for Topographic Wetness Index and Depth-to-
Water varied, and likely depends on both the dominant peat
formation processes and the typical size of peatland features
in a landscape. Including multiple scales of these variables
allows the model to capture different hydrological mecha-
nisms or patterns operating at different spatial scales.

4.2.3 Legacy depth maps have inconsistent predictive
value

DMK peat depth class proved an inconsistent predictor of
peat depth. At Skrimfjella, it barely improved model perfor-
mance (Fig. 3). At Ørskogfjellet, it increased performance
more, and both indicator variables (shallow and unknown)
were among the most important in the model (Fig. 5). We
suspect the discrepancy between sites is due to different lev-
els of effort and coverage during the historical surveys; more
lowland peatland near agriculture at Ørskogfjellet may have
caused more purposeful surveying. This is evidenced by the
fact that 73 % of the cells measured at Skrimfjella had un-
known depth in DMK, compared to 20 % at Ørskogfjellet. In-
teractions between DMK and other variables also underline
the inconsistency of DMK depth maps, even within a site.
For example, shallow peat classification in DMK sometimes
increased rather than decreased predicted depth at Ørskogf-
jellet.

4.3 Implications for digital soil mapping of peat depth

The performance gap between the best models and the DMK
models shows that DSM of peat depth has value in Norway.
Where calibrating measurements are available, better maps
than DMK peat depth class can be produced at low cost.
Moreover, DSM can make the production of maps transpar-
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ent, reproducible, and updatable. We can apply the same ap-
proach across different areas and make maps with full spatial
coverage, continuous values, and validated uncertainty. The
large difference in coverage and quality of DMK peat depth
at Skrimfjella versus Ørskogfjellet underlines these advan-
tages.

4.3.1 Peat depth measurements should be organized

High-quality DTMs are available for mainland Norway,
which makes peat depth measurements the critical train-
ing data needed for DSM. Better infrastructure to make
depth measurements findable, accessible, interoperable, and
reusable would help DSM and other applications. Geoportal
access and data exchange standards, such as those developed
in Natural England (2023) for peat surveys, are important.
Peat depth is quick and easy to measure, so integrating its
measurement into existing national field programs, like Nor-
way’s spatially representative nature monitoring or national
forest inventory, would be helpful (although not sufficient
for regional or local mapping). Low-altitude, drone-mounted
GPR may prove an efficient approach for collecting many,
accurate depth data in a landscape, by combining the advan-
tages of airborne deployment and active sensing (Pelletier
et al., 1991; Ruols et al., 2023).

4.3.2 Spatial scale affects model performance and utility

Peat depths typically vary over short distances (e.g., < 1 m),
so mapping at 10 m resolution implies that the map will com-
press much of the fine-scale variation. Terrain–depth rela-
tionships might be stronger at finer resolution than 10 m,
especially considering the hummock–hollow microtopogra-
phy of many peatlands (Rydin et al., 1999; Lindsay, 2010).
Therefore, it may be advantageous to model peat depth at 1 m
resolution – even if land use planning and carbon accounting
do not operate at such fine scale.

To define a spatial extent for a particular DSM, kN-
NDM can be used to investigate how far the map can ex-
tend beyond a set of point measurements; if the sample-to-
prediction nearest neighbor distribution cannot be simulated
by any set of cross-validation folds, then the extent is too
expansive (Meyer and Pebesma, 2022; Linnenbrink et al.,
2024). However, the tradeoff between multiple small-extent
DSM and fewer large-extent DSM needs research. Bohn
and Miller (2024) advocate for bottom-up stitching of lo-
cal DSM, and for peat depth we assert that these should at
least stay within peatland regions (or “supertopes”), where
the composition of mesotopes is similar – e.g., regions dom-
inated by raised bogs versus regions dominated by sloping
fens (Moen, 1999; Joosten and Clarke, 2002). Depth varies
systematically between bogs and fens (Lindsay, 2016b), be-
tween peats formed by terrestrialization versus paludification
(Buffam et al., 2010), and probably along other axes of peat-
land typology. Therefore, DSM is more likely to uncover

consistent predictor–depth relationships within peatland re-
gions than across them.

4.3.3 Machine learning approaches can build on
success

The DSM literature and our results support using flexible
machine learning algorithms like RF to predict peat depth.
RF avoids negative predictions (cf. Koganti et al., 2023)
and produces good uncertainty estimates (our study; Vaysse
and Lagacherie, 2017; Takoutsing and Heuvelink, 2022).
As depth data become more abundant, pixel-based learners
may be surpassed by deep learning approaches like convo-
lutional neural networks. The success of Multi-Resolution
Valley Bottom Flatness as a predictor of peat depth demon-
strates that multiscale spatial patterns matter for peat depth,
and convolutional neural networks are designed to learn such
patterns (Borowiec et al., 2022). The kind of relationship de-
scribed in Buffam et al. (2010), where peat depth in basins
related to terrain slope at the basin edge, is also something
a convolutional neural network could learn. However, since
this approach is data-hungry, we should build soil knowledge
into the DSM where we can (Minasny et al., 2024b).

4.3.4 Peat extent and depth should be mapped together

Finally, we would like to highlight briefly the need for peat-
land extent mapping and peat depth mapping to be better in-
tegrated. Since peatland extent is defined by non-zero peat
depth (the specific threshold varies by definition; Minasny
et al., 2024a), the lateral and vertical dimensions are funda-
mentally linked. The goal, therefore, should be a unified pre-
diction framework for extent and depth. Research is needed
to determine whether it is better to parameterize a single
model of peat depth across a full landscape, or to break down
the problem into a hurdle model by classifying zero depth
and then regressing non-zero depths. Though peatland defini-
tions may encourage reducing continuous depth predictions
to arbitrary classes, we caution against this practice (as in
Ivanovs et al., 2024; Karjalainen et al., 2025).

5 Conclusions

This study demonstrates that digital soil mapping at 10 m res-
olution can improve upon existing peat depth maps in Nor-
way, though the strength of the relationship between avail-
able predictors and peat depth remains limited. Our findings
show that terrain-derived variables, particularly elevation and
Multi-Resolution Valley Bottom Flatness, provide predictive
value for peat depth mapping within peatland extents. In con-
trast, airborne radiometric data showed little to no predictive
value at either of two study sites, possibly because of the
large footprint of airborne spectrometers relative to the fine-
scale variation in peat depths.
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The best models achieved mean absolute errors of 56–
60 cm against mean depths of 119–126 cm, and explained
approximately one-third of the variation in peat depth across
landscapes with aggregate peatland areas of 1.5–15.3 km2.
Though field measurements remain necessary for local, de-
tailed assessments of peat depth, digital soil maps at 10 m
resolution can provide valuable information for landscape-
scale planning and regional carbon assessments. The mod-
els’ tendency to underpredict the deepest peats has important
practical implications, making them more suitable for pre-
cautionary screening than comprehensive coverage. As Nor-
way and other nations pursue nature-based climate solutions,
these findings highlight both the potential and limitations of
remote sensing for peatland carbon mapping.

Appendix A

Table A1. Attributes of the radiometric surveys, as reported in
Baranwal et al. (2013) and Ofstad (2015).

Skrimfjella Ørskogfjellet

Survey period 2008–2011 Dec 2014–Jan 2015
Average flight altitude (m) 75 80
Average flight speed (km h−1) 108 88
Flight line spacing (m) 200 200

Appendix B

B1 Peat depth sample selection

B1.1 Skrimfjella

At Skrimfjella, we used the eSample function in the iSDM
R package (v.1.0) to stratify our sample across elevation,
slope, and potassium concentration. This function defines
the environmental space as a two-dimensional convex hull
around the PCA-ordinated data, then creates a regular grid
across that space, and lastly finds for each grid cell the da-
tum that is nearest (Hattab et al., 2017). We set a target sam-
ple size of 100, excluded the top and bottom percentile from
the convex hull, and eSample returned 105 raster cells.

B1.2 Ørskogfjellet

At Ørskogfjellet, we first determined a minimal sample size
that would adequately capture the slope and radiometric
properties (potassium, thorium, uranium, and total count) of
the entire AR5 mire area (Saurette et al., 2023). Specifically,
we identified an elbow point in a curve of similarity between
sample and population (Malone et al., 2019). For a sequence
of sample sizes (50–500) (ten replicates each, drawn by con-
ditioned latin hypercube sampling; Minasny and McBratney,

2006; Roudier, 2011), we calculated the mean Kullback–
Leibler divergence between sample and population distribu-
tions (Malone et al., 2019; Saurette et al., 2023). Then we
fitted an asymptotic regression of mean divergence on sam-
ple size, and found that the curve reached 95 % of the fitted
asymptote at a sample size of 160.

To choose 160 locations, we performed feature space
coverage sampling, implemented using the kmeans func-
tion in base R and the rdist function in the fields pack-
age (v.14.2; Nychka et al., 2025). Feature space coverage
sampling chooses locations that are closest to cluster centers
in standardized predictor space (Brus, 2019). This approach
has been found to produce higher accuracy in RFs than con-
ditioned latin hypercube sampling (Wadoux et al., 2019; Ma
et al., 2020). Feature space coverage sampling works best
when all dimensions are important predictors of the outcome
(Wadoux et al., 2019), and we used the same five predictors
that we used to choose sample size: slope and four radiomet-
rics.

We adjusted the feature space coverage sampling to ensure
that locations were accessible within time constraints, and
assessed how this changed our sample from an ideal feature
space coverage sample. Adjusting for accessibility is justified
because the smaller sample size that would result if acces-
sibility were ignored can degrade model accuracy as much
or more as deviations from ideal sampling designs (Wadoux
et al., 2019; Ma et al., 2020). To adjust, we first restricted the
sampling population to AR5 mire areas that were within an
arbitrary cost distance of publicly accessible roads. Cost dis-
tance was calculated using GRASS’s r.walk function, with
friction costs defined by AR5 land classes (GRASS Devel-
opment Team, 2022). After creating a feature space coverage
sample with this restriction, we also inspected a map of the
sample and substituted 16 inaccessible locations with acces-
sible locations from the same or a nearby cluster. Our two ac-
cessibility adjustments increased the distance in standardized
predictor space between sample locations and cluster centers
by 78 % (compared to the ideal sample), but distance in our
sample was still only 46 % of the mean distance to cluster
centers – i.e., accessibility did not force locations far from
cluster centers relative to the size of the clusters.

B2 Depth measurements

B2.1 Peat probing

We navigated to the centers of the raster cells in
our samples using handheld (Skrimfjella) or real-time
kinematic (Ørskogfjellet) global navigation satellite sys-
tem (GNSS) receivers. We dampened the effect of outlying
measurements by probing three times at each location (Parry
et al., 2014), at the vertices of a centered triangle with 2 m
(Skrimfjella) or 4.5 m (Ørskogfjellet) sides. We used changes
in resistance to indicate the base of the peat column. Probe
locations were adjusted up to 20 cm if the base of the peat
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column seemed to be blocked by an obvious artifact, like a
buried rock. Where the peat column was deeper than the ex-
tendable probe could be manually inserted and extracted by
a pair of operators, we recorded a right-censored result (one
at Skrimfjella, five at Ørskogfjellet).

B2.2 Ground-penetrating radar

We performed GPR surveys in three subjectively chosen
peatlands at Skrimfjella and in areas with a high density
of sampled raster cells at Ørskogfjellet. We used the Malå
ProEx GPR system (Guideline Geo AB, Sweden) with a
GNSS-enabled control unit connected to a 500 MHz shielded
antenna mounted in a plastic sledge (transmitter–receiver
separation 0.18 m, trace frequency 10 Hz). For some tran-
sects at Ørskogfjellet we substituted a 100 MHz Malå rough
terrain antenna (transmitter–receiver separation 2.2 m, trace
frequency 5 Hz), because the lower frequency antenna gives
greater penetration depth. In all cases the system was towed
by a walking GPR operator.

GPR traces were recorded along zigzag (Skrimfjella) or
snaking (Ørskogfjellet) transects. At Ørskogfjellet, transects
were predetermined to pass through the centers of sampled
raster cells, and we marked these precisely with flags to guide
the GPR operator. A GPR records the time taken for a radio
wave to travel from the transmitter to a reflector and back to
the receiver, and the velocity of the wave varies with prop-
erties of the peat column. Therefore, wave velocity has to be
calibrated to convert travel time to peat depth, and we probed
peat depth along the transects.

We processed the GPR data with Reflex2DQuick (v.3.0;
Skrimfjella) or REFLEXW (v.8.5; Ørskogfjellet) software
(Sandmeier Scientific Software, Germany). We applied a
time-zero correction, a dewow filter, and a gain filter based on
observed energy decay. With Ørskogfjellet data, we also ap-
plied a bandpass filter and a dynamic correction that accounts
for the non-vertical wave path between offset transmitter and
receiver antennas. The latter is important for the rough terrain
antenna, where the antenna separation is comparable to typ-
ical peat depths. From the processed radargrams, we picked
travel times from strong reflectors that we interpreted as the
base of the peat column.

We used picks near probed depths to calibrate wave speed
velocity – separately for each site. Calibration data were cre-
ated by matching marked trace locations to a corresponding
depth probe (Skrimfjella), or by a spatial join that identi-
fied interpreted traces and depth probes within 2 m of each
other (Ørskogfjellet). We had sufficient calibration point den-
sity to avoid bias in wave velocity as a major source of er-
ror (Rosa et al., 2009): 46 calibration points along 3.5 km
of interpretable traces at Skrimfjella, and 78 along 7.8 km
at Ørskogfjellet. We fitted site-specific linear regressions
of probed depth on picked travel time, with the intercept
fixed at zero, to estimate wave velocities. Notwithstanding
a few outlying points, our regressions showed good fits and
the resulting velocities are within the range reported for
peat (Parsekian et al., 2012): 0.0387 m ns−1, R2

= 0.874 at
Skrimfjella and 0.0427 m ns−1, R2

= 0.946 at Ørskogfjellet
(Fig. B1). Finally, we used these two wave velocities to con-
vert the travel times of all picks to calibrated peat depths. In
total, the GPR surveys produced 48 579 point measurements
of peat depth at Skrimfjella and 32 653 at Ørskogfjellet.
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Figure B1. Calibration of GPR wave velocity at Skrimfjella (a) and Ørskogfjellet (b) by regression of probed depth against wave travel time.
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Figure B2. Empirical semivariograms of peat depth point measurements at Skrimfjella (a) and Ørskogfjellet (b).

Appendix C

Table C1. Pairwise comparisons of the concordance correlation coefficient among models for Skrimfjella, based on 10-fold cross-validation.
The comparisons use estimated marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approximation
(emmeans package, v.1.11.1; Lenth et al., 2025 ) on mixed-effects models (lme4 package, v.1.1-36; Bates et al., 2015) to account for
the cross-validation fold structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric 0.02 0.05 114 0.44 0.999
DMK – RadiometricDMK 0.06 0.05 114 1.19 0.896
DMK – RadiometricTerrain −0.29 0.05 114 −5.84 < 0.001 ∗∗∗

DMK – RadiometricTerrainDMK −0.29 0.05 114 −5.81 < 0.001 ∗∗∗

DMK – Terrain −0.25 0.05 114 −5.03 < 0.001 ∗∗∗

DMK – TerrainDMK −0.26 0.05 114 −5.17 < 0.001 ∗∗∗

Radiometric – RadiometricDMK 0.04 0.05 114 0.75 0.989
Radiometric – RadiometricTerrain −0.31 0.05 114 −6.28 < 0.001 ∗∗∗

Radiometric – RadiometricTerrainDMK −0.31 0.05 114 −6.25 < 0.001 ∗∗∗

Radiometric – Terrain −0.27 0.05 114 −5.47 < 0.001 ∗∗∗

Radiometric – TerrainDMK −0.28 0.05 114 −5.62 < 0.001 ∗∗∗

RadiometricDMK – RadiometricTerrain −0.35 0.05 114 −7.03 < 0.001 ∗∗∗

RadiometricDMK – RadiometricTerrainDMK −0.35 0.05 114 −7.00 < 0.001 ∗∗∗

RadiometricDMK – Terrain −0.31 0.05 114 −6.22 < 0.001 ∗∗∗

RadiometricDMK – TerrainDMK −0.32 0.05 114 −6.37 < 0.001 ∗∗∗

RadiometricTerrain – RadiometricTerrainDMK 0.00 0.05 114 0.03 1
RadiometricTerrain – Terrain 0.04 0.05 114 0.81 0.983
RadiometricTerrain – TerrainDMK 0.03 0.05 114 0.67 0.994
RadiometricTerrainDMK – Terrain 0.04 0.05 114 0.79 0.986
RadiometricTerrainDMK – TerrainDMK 0.03 0.05 114 0.64 0.995
Terrain – TerrainDMK -0.01 0.05 114 −0.15 1
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Table C2. Pairwise comparisons of R2 among models for Skrimfjella, based on 10-fold cross-validation. The comparisons use estimated
marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approximation (emmeans package, v.1.11.1; Lenth et
al., 2025) on mixed-effects models (lme4 package, v.1.1-36; Bates et al., 2015) to account for the cross-validation fold structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric 0.04 0.08 108.23 0.55 0.998
DMK – RadiometricDMK 0.01 0.08 108.23 0.08 1.000
DMK – RadiometricTerrain −0.16 0.08 108.23 −2.07 0.378
DMK – RadiometricTerrainDMK −0.16 0.08 108.23 −2.11 0.357
DMK – Terrain −0.11 0.08 108.23 −1.48 0.755
DMK – TerrainDMK −0.10 0.08 108.23 −1.34 0.830
Radiometric – RadiometricDMK −0.04 0.06 105.01 −0.56 0.998
Radiometric – RadiometricTerrain −0.20 0.06 105.01 −3.16 0.033 ∗

Radiometric – RadiometricTerrainDMK −0.20 0.06 105.01 −3.20 0.029 ∗

Radiometric – Terrain −0.16 0.06 105.01 −2.45 0.190
Radiometric – TerrainDMK −0.15 0.06 105.01 −2.28 0.263
RadiometricDMK – RadiometricTerrain −0.17 0.06 105.01 −2.60 0.137
RadiometricDMK – RadiometricTerrainDMK −0.17 0.06 105.01 −2.64 0.124
RadiometricDMK – Terrain −0.12 0.06 105.01 −1.89 0.494
RadiometricDMK – TerrainDMK −0.11 0.06 105.01 −1.72 0.605
RadiometricTerrain – RadiometricTerrainDMK 0.00 0.06 105.01 −0.04 1.000
RadiometricTerrain – Terrain 0.05 0.06 105.01 0.71 0.992
RadiometricTerrain – TerrainDMK 0.06 0.06 105.01 0.88 0.975
RadiometricTerrainDMK – Terrain 0.05 0.06 105.01 0.75 0.989
RadiometricTerrainDMK – TerrainDMK 0.06 0.06 105.01 0.92 0.968
Terrain – TerrainDMK 0.01 0.06 105.01 0.17 1.000

Table C3. Pairwise comparisons of mean absolute error among models for Skrimfjella, based on 10-fold cross-validation. The comparisons
use estimated marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approximation (emmeans package,
v.1.11.1; Lenth et al., 2025) on mixed-effects models (lme4 package, v.1.1-36; Bates et al., 2015) to account for the cross-validation fold
structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric −2.91 3.13 114 −0.93 0.967
DMK – RadiometricDMK −3.69 3.13 114 −1.18 0.902
DMK – RadiometricTerrain 8.10 3.13 114 2.58 0.140
DMK – RadiometricTerrainDMK 8.21 3.13 114 2.62 0.130
DMK – Terrain 6.81 3.13 114 2.17 0.319
DMK – TerrainDMK 7.33 3.13 114 2.34 0.235
Radiometric – RadiometricDMK −0.77 3.13 114 −0.25 1.000
Radiometric – RadiometricTerrain 11.02 3.13 114 3.51 0.011 ∗

Radiometric – RadiometricTerrainDMK 11.13 3.13 114 3.55 0.010 ∗

Radiometric – Terrain 9.72 3.13 114 3.10 0.038 ∗

Radiometric – TerrainDMK 10.24 3.13 114 3.27 0.024 ∗

RadiometricDMK – RadiometricTerrain 11.79 3.13 114 3.76 0.005 ∗∗

RadiometricDMK – RadiometricTerrainDMK 11.90 3.13 114 3.80 0.004 ∗∗

RadiometricDMK – Terrain 10.50 3.13 114 3.35 0.018 ∗

RadiometricDMK – TerrainDMK 11.01 3.13 114 3.51 0.011 ∗

RadiometricTerrain – RadiometricTerrainDMK 0.11 3.13 114 0.04 1.000
RadiometricTerrain – Terrain −1.29 3.13 114 −0.41 1.000
RadiometricTerrain – TerrainDMK −0.77 3.13 114 −0.25 1.000
RadiometricTerrainDMK – Terrain −1.40 3.13 114 −0.45 0.999
RadiometricTerrainDMK – TerrainDMK −0.88 3.13 114 −0.28 1.000
Terrain – TerrainDMK 0.52 3.13 114 0.17 1.000
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Table C4. Pairwise comparisons of the concordance correlation coefficient among models for Ørskogfjellet, based on 10-fold cross-
validation. The comparisons use estimated marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approx-
imation (emmeans package, v.1.11.1; Lenth et al., 2025) on mixed-effects models (lme4 package, v.1.1-36; Bates et al., 2015) to account
for the cross-validation fold structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric 0.05 0.08 54 0.61 0.996
DMK – RadiometricDMK 0.07 0.08 54 0.84 0.979
DMK – RadiometricTerrain −0.14 0.08 54 −1.79 0.559
DMK – RadiometricTerrainDMK −0.16 0.08 54 −1.95 0.458
DMK – Terrain −0.19 0.08 54 −2.33 0.248
DMK – TerrainDMK −0.22 0.08 54 −2.67 0.127
Radiometric – RadiometricDMK 0.02 0.08 54 0.24 1.000
Radiometric – RadiometricTerrain −0.19 0.08 54 −2.40 0.220
Radiometric – RadiometricTerrainDMK −0.21 0.08 54 −2.55 0.161
Radiometric – Terrain −0.24 0.08 54 −2.94 0.068
Radiometric – TerrainDMK −0.26 0.08 54 −3.27 0.029 ∗

RadiometricDMK – RadiometricTerrain −0.21 0.08 54 −2.63 0.136
RadiometricDMK - RadiometricTerrainDMK −0.23 0.08 54 −2.79 0.096
RadiometricDMK – Terrain −0.26 0.08 54 −3.17 0.037 ∗

RadiometricDMK – TerrainDMK −0.28 0.08 54 −3.51 0.015 ∗

RadiometricTerrain – RadiometricTerrainDMK −0.01 0.08 54 −0.16 1.000
RadiometricTerrain – Terrain −0.04 0.08 54 −0.54 0.998
RadiometricTerrain – TerrainDMK −0.07 0.08 54 −0.88 0.975
RadiometricTerrainDMK – Terrain −0.03 0.08 54 −0.38 1.000
RadiometricTerrainDMK – TerrainDMK −0.06 0.08 54 −0.72 0.991
Terrain – TerrainDMK −0.03 0.08 54 −0.33 1.000

Table C5. Pairwise comparisons of R2 among models for Ørskogfjellet, based on 10-fold cross-validation. The comparisons use estimated
marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approximation (emmeans package, v.1.11.1; Lenth et
al., 2025) on mixed-effects models (lme4 package, v.1.1-36; Bates et al., 2015) to account for the cross-validation fold structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric 0.08 0.06 54 1.36 0.818
DMK – RadiometricDMK 0.08 0.06 54 1.35 0.823
DMK – RadiometricTerrain −0.10 0.06 54 −1.72 0.607
DMK – RadiometricTerrainDMK −0.11 0.06 54 −1.91 0.485
DMK – Terrain −0.15 0.06 54 −2.62 0.14
DMK – TerrainDMK −0.19 0.06 54 −3.29 0.028 ∗

Radiometric – RadiometricDMK 0.00 0.06 54 −0.01 1
Radiometric – RadiometricTerrain −0.18 0.06 54 −3.08 0.048 ∗

Radiometric – RadiometricTerrainDMK −0.19 0.06 54 −3.27 0.029 ∗

Radiometric – Terrain −0.24 0.06 54 −3.98 0.004 ∗∗

Radiometric – TerrainDMK −0.28 0.06 54 −4.65 < 0.001 ∗∗∗

RadiometricDMK – RadiometricTerrain −0.18 0.06 54 −3.07 0.049 ∗

RadiometricDMK – RadiometricTerrainDMK −0.19 0.06 54 −3.26 0.03 ∗

RadiometricDMK – Terrain −0.24 0.06 54 −3.97 0.004 ∗∗

RadiometricDMK – TerrainDMK −0.27 0.06 54 −4.64 < 0.001 ∗∗∗

RadiometricTerrain – RadiometricTerrainDMK −0.01 0.06 54 −0.19 1
RadiometricTerrain – Terrain −0.05 0.06 54 −0.90 0.971
RadiometricTerrain – TerrainDMK −0.09 0.06 54 −1.57 0.702
RadiometricTerrainDMK – Terrain −0.04 0.06 54 −0.71 0.991
RadiometricTerrainDMK – TerrainDMK −0.08 0.06 54 −1.38 0.809
Terrain – TerrainDMK −0.04 0.06 54 −0.67 0.994
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Table C6. Pairwise comparisons of mean absolute error among models for Ørskogfjellet, based on 10-fold cross-validation. The comparisons
use estimated marginal means with Tukey HSD correction and Kenward–Roger degrees of freedom approximation (emmeans package;
Lenth et al., 2025) on mixed-effects models (lme4 package; Bates et al., 2015) to account for the cross-validation fold structure.

Comparison Estimate Std. error Df Statistic Adj. p value Significance

DMK – Radiometric −6.93 8.69 54 −0.80 0.984
DMK – RadiometricDMK −7.63 8.69 54 −0.88 0.974
DMK – RadiometricTerrain 14.31 8.69 54 1.65 0.653
DMK – RadiometricTerrainDMK 15.83 8.69 54 1.82 0.539
DMK – Terrain 17.71 8.69 54 2.04 0.403
DMK – TerrainDMK 20.55 8.69 54 2.37 0.233
Radiometric – RadiometricDMK −0.70 8.69 54 −0.08 1.000
Radiometric – RadiometricTerrain 21.24 8.69 54 2.45 0.200
Radiometric – RadiometricTerrainDMK 22.76 8.69 54 2.62 0.140
Radiometric – Terrain 24.64 8.69 54 2.84 0.086
Radiometric – TerrainDMK 27.48 8.69 54 3.16 0.039 ∗

RadiometricDMK – RadiometricTerrain 21.95 8.69 54 2.53 0.170
RadiometricDMK – RadiometricTerrainDMK 23.47 8.69 54 2.70 0.118
RadiometricDMK – Terrain 25.35 8.69 54 2.92 0.071
RadiometricDMK – TerrainDMK 28.19 8.69 54 3.24 0.031 ∗

RadiometricTerrain – RadiometricTerrainDMK 1.52 8.69 54 0.17 1.000
RadiometricTerrain – Terrain 3.40 8.69 54 0.39 1.000
RadiometricTerrain – TerrainDMK 6.24 8.69 54 0.72 0.991
RadiometricTerrainDMK – Terrain 1.88 8.69 54 0.22 1.000
RadiometricTerrainDMK – TerrainDMK 4.72 8.69 54 0.54 0.998
Terrain – TerrainDMK 2.84 8.69 54 0.33 1.000

Code and data availability. The R code used in this
study is available at https://github.com/julienvollering/
DSMdepth (last access: 29 September 2025). The
depth measurements we used are archived at
https://doi.org/10.6073/pasta/6ce440152f693f2156bf5b692a2e7917
(Vollering et al., 2025) and follow data and metadata standards.
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