Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-681-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying hydrological impacts of compacted sandy subsoils using soil water flow simulations: the importance of vegetation parameterization
Jayson Gabriel Pinza
CORRESPONDING AUTHOR
ECOSPHERE Research Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven-Heverlee, Belgium
Ona-Abeni Devos Stoffels
ECOSPHERE Research Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
Robrecht Debbaut
ECOSPHERE Research Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
Jan Staes
ECOSPHERE Research Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
Jan Vanderborght
Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven-Heverlee, Belgium
Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
Patrick Willems
Urban and River Hydrology and Hydraulics Section, Department of Civil Engineering, KU Leuven, 3001 Leuven-Heverlee, Belgium
Sarah Garré
Flanders Research Institute for Agricultural, Fisheries and Food Research (ILVO), 9090 Melle, Belgium
Related authors
No articles found.
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025, https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Short summary
Understanding the electromagnetic properties of plant roots is useful to quantify plant properties and monitor plant physiological responses to changing environmental factors. We investigated the electrical properties of the primary roots of Brachypodium and maize plants during the uptake of fresh and saline water using spectral induced polarization. Our results indicate that salinity tolerance varies with the species and that Maize is more tolerant to salinity than Brachypodium.
Marit G. A. Hendrickx, Jan Vanderborght, Pieter Janssens, Sander Bombeke, Evi Matthyssen, Anne Waverijn, and Jan Diels
SOIL, 11, 435–456, https://doi.org/10.5194/soil-11-435-2025, https://doi.org/10.5194/soil-11-435-2025, 2025
Short summary
Short summary
We developed a method to estimate errors in soil moisture measurements using limited sensors and infrequent sampling. By analyzing data from 93 cropping cycles in agricultural fields in Belgium, we identified both systematic and random errors for our sensor setup. This approach reduces the need for extensive sensor networks and is applicable to agricultural and environmental monitoring and ensures more reliable soil moisture data, enhancing water management and improving model predictions.
Łukasz Gruss, Patrick Willems, Paweł Tomczyk, Jaroslav Pollert Jr., Jaroslav Pollert Sr., Christoph Märtner, Stanisław Czaban, and Mirosław Wiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-860, https://doi.org/10.5194/egusphere-2025-860, 2025
Short summary
Short summary
A new extension of the generalized extreme value distribution, namely the dual gamma generalized extreme value distribution developed by Nascimento, Bourguignony, and Leão (2016), displays superior performance in fitting most samples and is sensitive to trends, especially under non-stationary conditions such as climate change.
Daniel Leitner, Andrea Schnepf, and Jan Vanderborght
Hydrol. Earth Syst. Sci., 29, 1759–1782, https://doi.org/10.5194/hess-29-1759-2025, https://doi.org/10.5194/hess-29-1759-2025, 2025
Short summary
Short summary
Root water uptake strongly affects plant development and soil water balance. We use novel upscaling methods to develop land surface and crop models from detailed mechanistic models. We examine the mathematics behind this upscaling, pinpointing where errors occur. By simulating different crops and soils, we found that the accuracy loss varies based on root architecture and soil type. Our findings offer insights into balancing model complexity and accuracy for better predictions in agriculture.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Roelof Versteeg, and Sarah Garré
SOIL, 11, 67–84, https://doi.org/10.5194/soil-11-67-2025, https://doi.org/10.5194/soil-11-67-2025, 2025
Short summary
Short summary
This work implemented automated electrical resistivity tomography (ERT) for belowground field phenotyping alongside conventional field breeding techniques, thereby closing the phenotyping gap. We show that ERT is not only capable of measuring differences between crops but also has sufficient precision to capture the differences between genotypes of the same crop. We automatically derive indicators, which can be translated to static and dynamic plant traits, directly useful for breeders.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023, https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analysed topsoil hydraulic conductivities at supply tensions between 0 and 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation and at tensions >20 mm. Climate factors were better correlated with near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree to soil properties.
Guillaume Blanchy, Lukas Albrecht, John Koestel, and Sarah Garré
SOIL, 9, 155–168, https://doi.org/10.5194/soil-9-155-2023, https://doi.org/10.5194/soil-9-155-2023, 2023
Short summary
Short summary
Adapting agricultural practices to future climatic conditions requires us to synthesize the effects of management practices on soil properties with respect to local soil and climate. We showcase different automated text-processing methods to identify topics, extract metadata for building a database and summarize findings from publication abstracts. While human intervention remains essential, these methods show great potential to support evidence synthesis from large numbers of publications.
Guillaume Blanchy, Gilberto Bragato, Claudia Di Bene, Nicholas Jarvis, Mats Larsbo, Katharina Meurer, and Sarah Garré
SOIL, 9, 1–20, https://doi.org/10.5194/soil-9-1-2023, https://doi.org/10.5194/soil-9-1-2023, 2023
Short summary
Short summary
European agriculture is vulnerable to weather extremes. Nevertheless, by choosing well how to manage their land, farmers can protect themselves against drought and peak rains. More than a thousand observations across Europe show that it is important to keep the soil covered with living plants, even in winter. A focus on a general reduction of traffic on agricultural land is more important than reducing tillage. Organic material needs to remain or be added on the field as much as possible.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Cited articles
Adekalu, K. O., Okunade, D. A., and Osunbitan, J. A.: Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils, Geoderma, 137, 226–230, https://doi.org/10.1016/j.geoderma.2006.08.012, 2006.
Agrawal, R. P.: Water and nutrient management in sandy soils by compaction, Soil Tillage Res., 19, 121–130, https://doi.org/10.1016/0167-1987(91)90081-8, 1991.
Alakukku, L.: Soil Compaction (Chapter 28), in: Sustainable Agriculture, Baltic University Press, 217, ISBN 978-91-86189-10-5, 2012.
Alaoui, A., Rogger, M., Peth, S., and Blöschl, G.: Does soil compaction increase floods? A review, J. Hydrol., 557, 631–642, https://doi.org/10.1016/j.jhydrol.2017.12.052, 2018.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (Eds.): Crop evapotranspiration: guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, 300 pp., ISBN 92-5-104219-5, 1998.
Allmaras, R.: Impaired internal drainage and Aphanomyces euteiches root rot of pea caused by soil compaction in a fine-textured soil, Soil Tillage Res., 70, 41–52, https://doi.org/10.1016/S0167-1987(02)00117-4, 2003.
Andersen, M. N., Munkholm, L. J., and Nielsen, A. L.: Soil compaction limits root development, radiation-use efficiency and yield of three winter wheat (Triticum aestivum L.) cultivars, Acta Agric. Scand. Sect. B – Soil Plant Sci., 63, 409–419, https://doi.org/10.1080/09064710.2013.789125, 2013.
Assaeed, A. M., McGowan, M., Hebblethwaite, P. D., and Brereton, J. C.: Effect of soil compaction on growth, yield and light interception of selected crops, Ann. Appl. Biol., 117, 653–666, https://doi.org/10.1111/j.1744-7348.1990.tb04831.x, 1990.
Batey, T.: Soil compaction and soil management – a review, Soil Use Manag., 25, 335–345, https://doi.org/10.1111/j.1475-2743.2009.00236.x, 2009.
Bengough, A. G., McKenzie, B. M., Hallett, P. D., and Valentine, T. A.: Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits, J. Exp. Bot., 62, 59–68, https://doi.org/10.1093/jxb/erq350, 2011.
Bertolino, A. V. F. A., Fernandes, N. F., Miranda, J. P. L., Souza, A. P., Lopes, M. R. S., and Palmieri, F.: Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau, J. Hydrol., 393, 94–104, https://doi.org/10.1016/j.jhydrol.2010.07.038, 2010.
Bogemans, F.: Quaternary geological overview map of Flanders 1/200,000, Databank of the Subsurface of Flanders Support Center (Ondersteunend Centrum Databank Ondergrond Vlaanderen), https://www.dov.vlaanderen.be/dataset/cfc205eb-8adc-435e-baff-d7ebfd27f6b4 (last access: 6 August 2025), 2005.
Byrd, E. J., Kolka, R. K., Warner, R. C., and Ringe, J. M.: Soil Water Percolation and Erosion on Uncompacted Surface Mine Soil in Eastern Kentucky, J. Am. Soc. Min. Reclam., 2002, 1049–1059, https://doi.org/10.21000/JASMR02011049, 2002.
Christensen, J. H. and Christensen, O. B.: Severe summertime flooding in Europe, Nature, 421, 805–806, https://doi.org/10.1038/421805a, 2003.
Cotrina Cabello, G. G., Ruiz Rodriguez, A., Husnain Gondal, A., Areche, F. O., Flores, D. D. C., Astete, J. A. Q., Camayo-Lapa, B. F., Yapias, R. J. M., Jabbar, A., Yovera Saldarriaga, J., Salas-Contreras, W. H., and Cruz Nieto, D. D.: Plant adaptability to climate change and drought stress for crop growth and production, CABI Rev., cabireviews.2023.0004, https://doi.org/10.1079/cabireviews.2023.0004, 2023.
De Holanda, S. F., Vargas, L. K., and Granada, C. E.: Challenges for sustainable production in sandy soils: A review, Environ. Dev. Sustain., https://doi.org/10.1007/s10668-023-03895-6, 2023.
Dettmann, U., Bechtold, M., Frahm, E., and Tiemeyer, B.: On the applicability of unimodal and bimodal van Genuchten–Mualem based models to peat and other organic soils under evaporation conditions, J. Hydrol., 515, 103–115, https://doi.org/10.1016/j.jhydrol.2014.04.047, 2014.
Dexter, A. R.: Advances in characterization of soil structure, Soil Tillage Res., 11, 199–238, https://doi.org/10.1016/0167-1987(88)90002-5, 1988.
Dondeyne, S., Vanierschot, L., Langohr, R., Ranst, E. V., and Deckers, J.: De grote bodemgroepen van Vlaanderen: Kenmerken van de “Reference Soil Groups” volgens het internationale classificatiesysteem World Reference Base., KU Leuven & Universiteit Gent in opdracht van Vlaamse overheid, Departement Leefmilieu, Natuur en Energie, Afdeling Land en Bodembescherming, Ondergrond, Natuurlijke Rijkdommen, 2015.
Durand, J.-L., Gonzalez-Dugo, V., and Gastal, F.: How much do water deficits alter the nitrogen nutrition status of forage crops?, Nutr. Cycl. Agroecosystems, 88, 231–243, https://doi.org/10.1007/s10705-009-9330-3, 2010.
Epée Missé, P. T.: Effects of Compaction at Different Soil Depths on Water Balance As Simulated by Watermod, SSRN Electron. J., https://doi.org/10.2139/ssrn.3231893, 2015.
FAO and IIASA: Harmonized World Soil Database version 2.0, Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied Systems Analysis (IIASA), https://doi.org/10.4060/cc3823en, 2023.
Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of Field Water Use and Crop Yield, Centre for Agricultural Publishing and Documentation, ISBN 902200676X, ISBN 978-9022006764, 1978.
Fetter, C. W.: Applied Hydrogeology: MacMillan College Publishing Co, N.Y. NY, 691 pp., ISBN 0023364904, ISBN 9780023364907, 1994.
Fischer, G., Casierra-Posada, F., and Blanke, M.: Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review, Agron. Colomb., 41, e108351, https://doi.org/10.15446/agron.colomb.v41n2.108351, 2023.
Flemish Environment Agency: waterinfo.be, https://waterinfo.vlaanderen.be/ (last access: 10 March 2025) 2021.
Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., Poorter, H., Postma, J. A., Adams, T. S., Bagniewska-Zadworna, A., Bengough, A. G., Blancaflor, E. B., Brunner, I., Cornelissen, J. H. C., Garnier, E., Gessler, A., Hobbie, S. E., Meier, I. C., Mommer, L., Picon-Cochard, C., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N. A., Stokes, A., Sun, T., Valverde-Barrantes, O. J., Weemstra, M., Weigelt, A., Wurzburger, N., York, L. M., Batterman, S. A., Gomes De Moraes, M., Janeček, Š., Lambers, H., Salmon, V., Tharayil, N., and McCormack, M. L.: A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements, New Phytol., 232, 973–1122, https://doi.org/10.1111/nph.17572, 2021.
Garcia, R. and Galang, M.: Unsaturated Soil Hydraulic Conductivity (Kh) and Soil Resistance under Different Land Uses of a Small Upstream Watershed in Mt. Banahaw de Lucban, Philippines, Philipp. J. Sci., 150, ISSN 0031-7683, 2021.
Glanville, K., Sheldon, F., Butler, D., and Capon, S.: Effects and significance of groundwater for vegetation: A systematic review, Sci. Total Environ., 875, 162577, https://doi.org/10.1016/j.scitotenv.2023.162577, 2023.
Gliński, J. and Lipiec, J.: Soil Physical Conditions and Plant Roots, 1st edn., CRC Press, https://doi.org/10.1201/9781351076708, 2018.
Gliński, J., Horabik, J., and Lipiec, J. (Eds.): Tillage Pan, in: Encyclopedia of Agrophysics, Springer Netherlands, Dordrecht, 909–909, https://doi.org/10.1007/978-90-481-3585-1_859, 2011.
Goldberg-Yehuda, N., Assouline, S., Mau, Y., and Nachshon, U.: Compaction effects on evaporation and salt precipitation in drying porous media, Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022, 2022.
Groh, J., Vanderborght, J., Pütz, T., and Vereecken, H.: How to Control the Lysimeter Bottom Boundary to Investigate the Effect of Climate Change on Soil Processes?, Vadose Zone J., 15, 1–15, https://doi.org/10.2136/vzj2015.08.0113, 2016.
Grzesiak, M. T.: Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings, Plant Root, 3, 10–16, https://doi.org/10.3117/plantroot.3.10, 2009.
Harrison, D. F., Cameron, K. C., and McLaren, R. G.: Effects of subsoil loosening on soil physical properties, plant root growth, and pasture yield, N. Z. J. Agric. Res., 37, 559–567, https://doi.org/10.1080/00288233.1994.9513095, 1994.
Hartmann, P., Zink, A., Fleige, H., and Horn, R.: Effect of compaction, tillage and climate change on soil water balance of Arable Luvisols in Northwest Germany, Soil Tillage Res., 124, 211–218, https://doi.org/10.1016/j.still.2012.06.004, 2012.
Hodnebrog, Ø., Marelle, L., Alterskjær, K., Wood, R. R., Ludwig, R., Fischer, E. M., Richardson, T. B., Forster, P. M., Sillmann, J., and Myhre, G.: Intensification of summer precipitation with shorter time-scales in Europe, Environ. Res. Lett., 14, 124050, https://doi.org/10.1088/1748-9326/ab549c, 2019.
Hoefer, G. and Hartge, K. H.: Subsoil Compaction: Cause, Impact, Detection, and Prevention, in: Soil Engineering, edited by: Dedousis, A. P. and Bartzanas, T., Springer Berlin Heidelberg, Berlin, Heidelberg, 121–145, https://doi.org/10.1007/978-3-642-03681-1_9, 2010.
Horsnell, T. K., Smettem, K. R. J., Reynolds, D. A., and Mattiske, E.: Composition and relative health of remnant vegetation fringing lakes along a salinity and waterlogging gradient, Wetl. Ecol. Manag., 17, 489–502, https://doi.org/10.1007/s11273-008-9126-2, 2009.
Hosseinzadehtalaei, P., Tabari, H., and Willems, P.: Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe, J. Hydrol., 590, 125249, https://doi.org/10.1016/j.jhydrol.2020.125249, 2020.
Houšková, B. and Montanarella, L.: The natural susceptibility of european soils to compaction, European Commission Joint Research Centre Institute for Environment and Sustainability, Luxembourg, 2008.
Huang, J. and Hartemink, A. E.: Soil and environmental issues in sandy soils, Earth-Sci. Rev., 208, 103295, https://doi.org/10.1016/j.earscirev.2020.103295, 2020.
Ishaq, M., Hassan, A., Saeed, M., Ibrahim, M., and Lal, R.: Subsoil compaction effects on crops in Punjab, Pakistan I. Soil physical properties and crop yield, Soil Tillage Res., https://doi.org/10.1016/S0167-1987(00)00189-6, 2001.
Jarvis, N. J.: A simple empirical model of root water uptake, J. Hydrol., 107, 57–72, https://doi.org/10.1016/0022-1694(89)90050-4, 1989.
Jiang, X., Liu, X., Wang, E., Li, X. G., Sun, R., and Shi, W.: Effects of tillage pan on soil water distribution in alfalfa-corn crop rotation systems using a dye tracer and geostatistical methods, Soil Tillage Res., 150, 68–77, https://doi.org/10.1016/j.still.2015.01.009, 2015.
Jones, R. J. A., Spoor, G., and Thomasson, A. J.: Vulnerability of subsoils in Europe to compaction: a preliminary analysis, Soil Tillage Res., 73, 131–143, https://doi.org/10.1016/S0167-1987(03)00106-5, 2003.
Keller, T., Colombi, T., Ruiz, S., Manalili, M. P., Rek, J., Stadelmann, V., Wunderli, H., Breitenstein, D., Reiser, R., Oberholzer, H., Schymanski, S., Romero-Ruiz, A., Linde, N., Weisskopf, P., Walter, A., and Or, D.: Long-Term Soil Structure Observatory for Monitoring Post-Compaction Evolution of Soil Structure, Vadose Zone J., 16, 1–16, https://doi.org/10.2136/vzj2016.11.0118, 2017.
Kristoffersen, A. Ø. and Riley, H.: Effects of Soil Compaction and Moisture Regime on the Root and Shoot Growth and Phosphorus Uptake of Barley Plants Growing on Soils with Varying Phosphorus Status, Nutr. Cycl. Agroecosystems, 72, 135–146, https://doi.org/10.1007/s10705-005-0240-8, 2005.
Kunrath, T. R., De Berranger, C., Charrier, X., Gastal, F., De Faccio Carvalho, P. C., Lemaire, G., Emile, J.-C., and Durand, J.-L.: How much do sod-based rotations reduce nitrate leaching in a cereal cropping system?, Agric. Water Manag., 150, 46–56, https://doi.org/10.1016/j.agwat.2014.11.015, 2015.
Laker, M. C.: Soil Compaction: Effects and Amelioration, South African Sugar Technologists' Association, ISSN 1028-3781, 2001.
Laker, M. C. and Nortjé, G. P.: Review of existing knowledge on subsurface soil compaction in South Africa, in: Advances in Agronomy, vol. 162, Elsevier, 143–197, https://doi.org/10.1016/bs.agron.2020.02.003, 2020.
Lambrechts, T., Lequeue, G., Lobet, G., Godin, B., Bielders, C. L., and Lutts, S.: Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization, Plant Soil, 376, 229–244, https://doi.org/10.1007/s11104-013-1975-7, 2014.
Li, Y., Ye, W., Wang, M., and Yan, X.: Climate change and drought: a risk assessment of crop-yield impacts, Clim. Res., 39, 31–46, https://doi.org/10.3354/cr00797, 2009.
Lipiec, J. and Hatano, R.: Quantification of compaction effects on soil physical properties and crop growth, Geoderma, 116, 107–136, https://doi.org/10.1016/S0016-7061(03)00097-1, 2003.
Mertens, J., Raes, D., and Feyen, J.: Incorporating rainfall intensity into daily rainfall records for simulating runoff and infiltration into soil profiles, Hydrol. Process., 16, 731–739, https://doi.org/10.1002/hyp.1005, 2002.
Microsoft: Bing Virtual Earth, http://ecn.t3.tiles.virtualearth.net/tiles/a{q}.jpeg?g=1 (last access: 29 August 2024), 2012.
Moreno, F., Murer, E. J., Stenitzer, E., Fernández, J. E., and Girón, I. F.: Simulation of the impact of subsoil compaction on soil water balance and crop yield of irrigated maize on a loamy sand soil in SW Spain, Soil Tillage Res., 73, 31–41, https://doi.org/10.1016/S0167-1987(03)00097-7, 2003.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nawaz, M. F., Bourrié, G., and Trolard, F.: Soil compaction impact and modelling. A review, Agron. Sustain. Dev., https://doi.org/10.1007/s13593-011-0071-8, 2013.
Negev, I., Shechter, T., Shtrasler, L., Rozenbach, H., and Livne, A.: The Effect of Soil Tillage Equipment on the Recharge Capacity of Infiltration Ponds, Water, 12, 541, https://doi.org/10.3390/w12020541, 2020.
Newman, E. I.: A Method of Estimating the Total Length of Root in a Sample, J. Appl. Ecol., 3, 139, https://doi.org/10.2307/2401670, 1966.
Nosalewicz, A. and Lipiec, J.: The effect of compacted soil layers on vertical root distribution and water uptake by wheat, Plant Soil, 375, 229–240, https://doi.org/10.1007/s11104-013-1961-0, 2014.
Odili, F., Bhushan, S., Hatterman-Valenti, H., Magallanes López, A. M., Green, A., Simsek, S., Vaddevolu, U. B. P., and Simsek, H.: Water table depth effect on growth and yield parameters of hard red spring wheat (Triticum aestivum L.): a lysimeter study, Appl. Water Sci., 13, 65, https://doi.org/10.1007/s13201-023-01868-8, 2023.
Oldeman, L. R., Hakkeling, R. u, and Sombroek, W. G.: World map of the status of human-induced soil degradation: An explanatory note. Global Assessment of Soil Degradation (GLASOD), International Soil Reference and Information Centre, Wageningen, the Netherlands, 27 pp., ISBN 9789066720466, 1991.
Owuor, S. O., Butterbach-Bahl, K., Guzha, A. C., Rufino, M. C., Pelster, D. E., Díaz-Pinés, E., and Breuer, L.: Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments, Ecol. Process., 5, 16, https://doi.org/10.1186/s13717-016-0060-6, 2016.
Passioura, J. B.: “Soil conditions and plant growth”, Plant Cell Environ., 25, 311–318, https://doi.org/10.1046/j.0016-8025.2001.00802.x, 2002.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peters, A., Durner, W., and Iden, S. C.: Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential, Agric. Water Manag., 185, 126–136, https://doi.org/10.1016/j.agwat.2017.02.010, 2017.
Pinza, J. G., Devos Stoffels, O. A., Debbaut, R., Staes, J., Vanderborght, J., Willems, P., and Garré, S.: Field and model data sets, Zenodo [data set], https://doi.org/10.5281/zenodo.16940365, 2025.
Polge De Combret-Champart, L., Guilpart, N., Mérot, A., Capillon, A., and Gary, C.: Determinants of the degradation of soil structure in vineyards with a view to conversion to organic farming, Soil Use Manag., 29, 557–566, https://doi.org/10.1111/sum.12071, 2013.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., and Villar, R.: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis, New Phytol., 182, 565–588, https://doi.org/10.1111/j.1469-8137.2009.02830.x, 2009.
Priori, S., Pellegrini, S., Vignozzi, N., and Costantini, E. A. C.: Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops: Problems and Solutions, Agronomy, 11, 68, https://doi.org/10.3390/agronomy11010068, 2020.
Pumphrey, F. V., Klepper, B. L., Rickman, R. W., and Hane, D. C.: Sandy soil and soil compaction, [Corvallis, Or.]: Agricultural Experiment Station, Oregon State University, http://hdl.handle.net/1957/24727 (last access: 13 August 2024), 1980.
Radatz, A. M., Lowery, B., Bland, W. L., and Hartemink, A. E.: Groundwater recharge under compacted agriculturalsoils, pineand prairie in Central Wisconsin, USA, Agrociencia, 16, 235–240, https://doi.org/10.31285/AGRO.16.675, 2012.
Richards, L. A.: Capillary conduction of liquids through porous mediums, Physics, 1, 318–333, https://doi.org/10.1063/1.1745010, 1931.
Ridolfi, L., D'Odorico, P., and Laio, F.: Effect of vegetation–water table feedbacks on the stability and resilience of plant ecosystems, Water Resour. Res., 42, 2005WR004444, https://doi.org/10.1029/2005WR004444, 2006.
Ritchie, J. T.: Model for predicting evaporation from a row crop with incomplete cover, Water Resour. Res., 8, 1204–1213, https://doi.org/10.1029/WR008i005p01204, 1972.
Romero-Ruiz, A., Linde, N., Baron, L., Breitenstein, D., Keller, T., and Or, D.: Lasting Effects of Soil Compaction on Soil Water Regime Confirmed by Geoelectrical Monitoring, Water Resour. Res., 58, e2021WR030696, https://doi.org/10.1029/2021WR030696, 2022.
Saqib, M., Akhtar, J., and Qureshi, R. H.: Pot study on wheat growth in saline and waterlogged compacted soil, Soil Tillage Res., 77, 169–177, https://doi.org/10.1016/j.still.2003.12.004, 2004.
Scanlan, C. A., Holmes, K. W., and Bell, R. W.: Sand and Gravel Subsoils, in: Subsoil Constraints for Crop Production, edited by: Oliveira, T. S. D. and Bell, R. W., Springer International Publishing, Cham, 179–198, https://doi.org/10.1007/978-3-031-00317-2_8, 2022.
Schaap, M. G., Nemes, A., and Van Genuchten, M. Th.: Comparison of Models for Indirect Estimation of Water Retention and Available Water in Surface Soils, Vadose Zone J., 3, 1455–1463, https://doi.org/10.2136/vzj2004.1455, 2004.
Shah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., and Souliyanonh, B.: Soil compaction effects on soil health and cropproductivity: an overview, Environ. Sci. Pollut. Res., 24, 10056–10067, https://doi.org/10.1007/s11356-017-8421-y, 2017.
Shaheb, M. R., Venkatesh, R., and Shearer, S. A.: A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production, J. Biosyst. Eng., 46, 417–439, https://doi.org/10.1007/s42853-021-00117-7, 2021.
Shanker, A. K., Maheswari, M., Yadav, S. K., Desai, S., Bhanu, D., Attal, N. B., and Venkateswarlu, B.: Drought stress responses in crops, Funct. Integr. Genomics, 14, 11–22, https://doi.org/10.1007/s10142-013-0356-x, 2014.
Silva, S. R. D., Barros, N. F. D., Costa, L. M. D., and Leite, F. P.: Soil compaction and eucalyptus growth in response to forwarder traffic intensity and load, Rev. Bras. Ciênc. Solo, 32, 921–932, https://doi.org/10.1590/S0100-06832008000300002, 2008.
Šimůnek, J. and Weihermüller, L.: Using HYDRUS-1D to Simulate Infiltration, PC-Prog. Ltd, 8, https://www.pc-progress.com/Downloads/Public_Lib_H1D/Using_HYDRUS-1D_to_Simulate_Infiltration.pdf (last access: 17 May 2024), 2018.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and van Genuchten, M. T.: The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, https://www.pc-progress.com/Downloads/Pgm_hydrus1D/HYDRUS1D-4.08.pdf (last access: 10 March 2025), 2008.
Šimůnek, J., Van Genuchten, M. T., and Šejna, M.: HYDRUS: Model Use, Calibration, and Validation, Trans. ASABE, 55, 1263–1276, https://doi.org/10.13031/2013.42239, 2012.
Šimůnek, J., Van Genuchten, M. T., and Šejna, M.: Recent Developments and Applications of the HYDRUS Computer Software Packages, Vadose Zone J., 15, 1–25, https://doi.org/10.2136/vzj2016.04.0033, 2016.
Soil Science Society of America: Glossary of Soil Science Terms, ASA-CSSA-SSSA, ISBN 978-0-89118-851-3, 2008.
Spoor, G., Tijink, F. G. J., and Weisskopf, P.: Subsoil compaction: risk, avoidance, identification and alleviation, Soil Tillage Res., 73, 175–182, https://doi.org/10.1016/S0167-1987(03)00109-0, 2003.
Stenitzer, E. and Murer, E.: Impact of soil compaction upon soil water balance and maize yield estimated by the SIMWASER model, Soil Tillage Res., 73, 43–56, https://doi.org/10.1016/S0167-1987(03)00098-9, 2003.
Tarigan, S. D., Stiegler, C., Wiegand, K., Knohl, A., and Murtilaksono, K.: Relative contribution of evapotranspiration and soil compaction to the fluctuation of catchment discharge: case study from a plantation landscape, Hydrol. Sci. J., 65, 1239–1248, https://doi.org/10.1080/02626667.2020.1739287, 2020.
Tennant, D.: A Test of a Modified Line Intersect Method of Estimating Root Length, J. Ecol., 63, 995, https://doi.org/10.2307/2258617, 1975.
Tian, L., Zhang, Y., Chen, P., Zhang, F., Li, J., Yan, F., Dong, Y., and Feng, B.: How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis, Front. Plant Sci., 12, 634898, https://doi.org/10.3389/fpls.2021.634898, 2021.
Toreti, A.: Gridded Agro-Meteorological Data in Europe (2024.02), European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/jrc-marsop4-7-weather_obs_grid_2019 (last access: 11 March 2025), 2014.
Umaru, M. A., Adam, P., Zaharah, S. S., and Daljit, S. K.: Impact of Soil Compaction on Soil Physical Properties and Physiological Performance of Sweet Potato (Ipomea batatas L.)., Malays. J. Soil Sci., 25, 15–27, ISSN 1394-7990, 2021.
van den Akker, J. J. H. V. D. and Schjønning, P.: Subsoil compaction and ways to prevent it, in: Managing Soil Quality: Challenges in Modern Agriculture, CABI Publishing, UK 163–184, https://doi.org/10.1079/9780851996714.0163, 2003.
Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Van Schaeybroeck, B., Mendoza Paz, S., and Willems, P.: Coherent Integration of climate projections into Climate ADaptation plAnning tools for BElgium (Valorisation Project), RMI & KU Leuven for Belgian Science Policy Office, Brussels, SP3076, https://doi.org/10.1079/9780851996714.0163, 2021.
Vandamme, J.: The Soils of Belgium, their formation and classification, their use and suitability for crops, https://doi.org/10.18920/pedologist.22.2_144, 30 December 1978.
Vanderhasselt, A., Steinwidder, L., D'Hose, T., and Cornelis, W.: Opening up the subsoil: Subsoiling and bio-subsoilers to remediate subsoil compaction in three fodder crop rotations on a sandy loam soil, Soil Tillage Res., 237, 105956, https://doi.org/10.1016/j.still.2023.105956, 2024.
Voter, C. B. and Loheide, S. P.: Urban Residential Surface and Subsurface Hydrology: Synergistic Effects of Low-Impact Features at the Parcel Scale, Water Resour. Res., 54, 8216–8233, https://doi.org/10.1029/2018WR022534, 2018.
Wang, M., He, D., Shen, F., Huang, J., Zhang, R., Liu, W., Zhu, M., Zhou, L., Wang, L., and Zhou, Q.: Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings, Environ. Sci. Pollut. Res., 26, 22835–22845, https://doi.org/10.1007/s11356-019-05606-z, 2019.
Willems, P. and Vrac, M.: Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change, J. Hydrol., 402, 193–205, https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.
Xu, D. and Mermoud, A.: Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices, Agric. Water Manag., 63, 139–151, https://doi.org/10.1016/S0378-3774(03)00180-X, 2003.
Yang, P., Dong, W., Heinen, M., Qin, W., and Oenema, O.: Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis, Land, 11, 645, https://doi.org/10.3390/land11050645, 2022.
Yang, R., Wang, C., Yang, Y., Harrison, M. T., Zhou, M., and Liu, K.: Implications of soil waterlogging for crop quality: A meta-analysis, Eur. J. Agron., 161, 127395, https://doi.org/10.1016/j.eja.2024.127395, 2024.
Zhang, S., Simelton, E., Lövdahl, L., Grip, H., and Chen, D.: Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China, Field Crops Res., 100, 311–319, https://doi.org/10.1016/j.fcr.2006.08.006, 2007.
Zhao, Y., Peth, S., Krümmelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, C., and Peng, X.: Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland, Ecol. Model., 205, 241–254, https://doi.org/10.1016/j.ecolmodel.2007.02.019, 2007.
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
We can use hydrological models to estimate how water is allocated in soils with compaction....