Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-639-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-639-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Overcoming barriers in long-term, continuous monitoring of soil CO2 flux: a low-cost sensor system
Thi Thuc Nguyen
Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev, Be'er Sheva, 840071, Israel
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
Nadav Bekin
Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev, Be'er Sheva, 840071, Israel
French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
Ariel Altman
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
Martin Maier
Department of Crop Sciences, Chair of Soil Physics, University of Göttingen, Grisebachstraße 6, 37077, Göttingen, Germany
Nurit Agam
French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
Related authors
No articles found.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Nadav Bekin and Nurit Agam
Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, https://doi.org/10.5194/bg-20-3791-2023, 2023
Short summary
Short summary
The mechanisms of soil CO2 flux in dry desert soils are not fully understood. Yet studies conducted in desert ecosystems rarely discuss potential errors related to using the commonly used flux chambers in dry and bare soils. In our study, the conventional deployment practice of the chambers underestimated the instantaneous CO2 flux by up to 50 % and the total daily CO2 uptake by 35 %. This suggests that desert soils are a larger carbon sink than previously reported.
Elad Levintal, Yonatan Ganot, Gail Taylor, Peter Freer-Smith, Kosana Suvocarev, and Helen E. Dahlke
SOIL, 8, 85–97, https://doi.org/10.5194/soil-8-85-2022, https://doi.org/10.5194/soil-8-85-2022, 2022
Short summary
Short summary
Do-it-yourself hardware is a new approach for improving measurement resolution in research. Here we present a new low-cost, wireless underground sensor network for soil monitoring. All data logging, power, and communication component cost is USD 150, much cheaper than other available commercial solutions. We provide the complete building guide to reduce any technical barriers, which we hope will allow easier reproducibility and open new environmental monitoring applications.
Cited articles
Altman, A.: OpenDigiEnvLab/soil-CO2-sensor-system: Soil CO2 sensor system (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.17152482, 2025.
Andrews, H. M., Krichels, A. H., Homyak, P. M., Piper, S., Aronson, E. L., Botthoff, J., Greene, A. C., and Jenerette, G. D.: Wetting-induced soil CO2 emission pulses are driven by interactions among soil temperature, carbon, and nitrogen limitation in the Colorado Desert, Glob. Change Biol., 29, 3205–3220, https://doi.org/10.1111/gcb.16669, 2023.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631, 1988.
Barnard, R. L., Blazewicz, S. J., and Firestone, M. K.: Rewetting of soil: Revisiting the origin of soil CO2 emissions, Soil Biol. Biochem., 147, https://doi.org/10.1016/j.soilbio.2020.107819, 2020.
Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., and Gålfalk, M.: Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers, Biogeosciences, 12, 3849–3859, https://doi.org/10.5194/bg-12-3849-2015, 2015.
Bekin, N. and Agam, N.: Rethinking the deployment of static chambers for CO2 flux measurement in dry desert soils, Biogeosciences, 20, 3791–3802, https://doi.org/10.5194/bg-20-3791-2023, 2023.
Belnap, J., Weber, B., and Büdel, B.: Biological soil crusts as an organizing principle in drylands, Springer International Publishing, 3–13, https://doi.org/10.1007/978-3-319-30214-0, 2016.
Blackstock, J. M., Covington, M. D., Perne, M., and Myre, J. M.: Monitoring atmospheric, soil, and dissolved CO2 using a low-cost, Arduino monitoring platform (CO2-LAMP): Theory, fabrication, and operation, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00313, 2019.
Bond-Lamberty, B.: New techniques and data for understanding the global soil respiration flux, Earth's Future, 6, 1176–1180, https://doi.org/10.1029/2018EF000866, 2018.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bond-Lamberty, B., Christianson, D. S., Malhotra, A., Pennington, S. C., Sihi, D., AghaKouchak, A., Anjileli, H., Altaf Arain, M., Armesto, J. J., Ashraf, S., Ataka, M., Baldocchi, D., Andrew Black, T., Buchmann, N., Carbone, M. S., Chang, S. C., Crill, P., Curtis, P. S., Davidson, E. A., Desai, A. R., Drake, J. E., El-Madany, T. S., Gavazzi, M., Görres, C.-M., Gough, C. M., Goulden, M., Gregg, J., Gutiérrez del Arroyo, O., He, J.-S., Hirano, T., Hopple, A., Hughes, H., Järveoja, J., Jassal, R., Jian, J., Kan, H., Kaye, J., Kominami, Y., Liang, N., Lipson, D., Macdonald, C. A., Maseyk, K., Mathes, K., Mauritz, M., Mayes, M. A., McNulty, S., Miao, G., Migliavacca, M., Miller, S., Miniat, C. F., Nietz, J. G., Nilsson, M. B., Noormets, A., Norouzi, H., O’Connell, C. S., Osborne, B., Oyonarte, C., Pang, Z., Peichl, M., Pendall, E., Perez-Quezada, J. F., Phillips, C. L., Phillips, R. P., Raich, J. W., Renchon, A. A., Ruehr, N. K., Sánchez-Cañete, E. P., Saunders, M., Savage, K. E., Schrumpf, M., Scott, R. L., Seibt, U., Silver, W. L., Sun, W., Szutu, D., Takagi, K., Takagi, M., Teramoto, M., Tjoelker, M. G., Trumbore, S., Ueyama, M., Vargas, R., Varner, R. K., Verfaillie, J., Vogel, C., Wang, J., Winston, G., Wood, T. E., Wu, J., Wutzler, T., Zeng, J., Zha, T., Zhang, Q., and Zou, J.: COSORE: A community database for continuous soil respiration and other soil-atmosphere greenhouse gas flux data, Glob. Change Biol., 26, 7268–7283, https://doi.org/10.1111/gcb.15353, 2020.
Bond-Lamberty, B., Ballantyne, A., Berryman, E., Fluet-Chouinard, E., Jian, J., Morris, K. A., Rey, A., and Vargas, R.: Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration, J. Geophys. Res. Biogeosci., 29, https://doi.org/10.1029/2023JG007637, 2024.
Bouma, J.: How Alexander von Humboldt's life story can inspire innovative soil research in developing countries, SOIL, 3, 153–159, https://doi.org/10.5194/soil-3-153-2017, 2017.
Brändle, J. and Kunert, N.: A new automated stem CO2 efflux chamber based on industrial ultra-low-cost sensors, Tree Physiololy, 39, 1975–1983, https://doi.org/10.1093/treephys/tpz104, 2019.
Buckingham, E.: Contributions to our knowledge of the aeration of soils, U.S. Dept. of Agriculture, Bureau of Soils, Washington, D.C., 1904.
Campbell, G. S.: Soil physics with BASIC: transport models for soil-plant systems, Elsevier, https://shop.elsevier.com/books/soil-physics-with-basic/campbell/978-0-444-42557-7, 1985.
Carbone, M. S., Seyednasrollah, B., Rademacher, T. T., Basler, D., Le Moine, J. M., Beals, S., Beasley, J., Greene, A., Kelroy, J. and Richardson, A. D.: Flux Puppy–An open-source software application and portable system design for low-cost manual measurements of CO2 and H2O fluxes, Agric. For. Meteorol., 274, 1–6, https://doi.org/10.1016/j.agrformet.2019.04.012, 2019.
Chamizo, S., Rodríguez-Caballero, E., Sánchez-Cañete, E. P., Domingo, F., and Cantón, Y.: Temporal dynamics of dryland soil CO2 efflux using high-frequency measurements: Patterns and dominant drivers among biocrust types, vegetation and bare soil, Geoderma, 405, https://doi.org/10.1016/j.geoderma.2021.115404, 2022.
Chan, K., Schillereff, D. N., Baas, A. C. W., Chadwick, M. A., Main, B., Mulligan, M., O'Shea, F. T., Pearce, R., Smith, T. E. L., van Soesbergen, A., Tebbs, E., and Thompson, J.: Low-cost electronic sensors for environmental research: Pitfalls and opportunities, Prog. Phys. Geogr., 45, 305–338, https://doi.org/10.1177/0309133320956567, 2021.
Christiansen, J. R., Outhwaite, J., and Smukler, S. M.: Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography, Agric. For. Meteorol., 211, 48–57, https://doi.org/10.1016/j.agrformet.2015.06.004, 2015.
Cueva, A., Volkmann, T. H. M., van Haren, J., Troch, P. A., and Meredith, L. K.: Reconciling negative soil CO2 fluxes: Insights from a large-scale experimental hillslope, Soil Syst., 3, 1–20, https://doi.org/10.3390/soilsystems3010010, 2019.
Currie, J. A.: Diffusion within soil microstructure a structural parameter for soils, J. Soil Sci., 16, 279–289, https://doi.org/10.1111/j.1365-2389.1965.tb01439.x, 1965.
Currie, J. A.: Movement of gases in soil respiration, Sorp. Transp. Process. Soils, 37, 152–171, 1970.
Curtis Monger, H., Kraimer, R. A., Khresat, S., Cole, D. R., Wang, X., and Wang, J.: Sequestration of inorganic carbon in soil and groundwater, Geology, 43, 375–378, https://doi.org/10.1130/G36449.1, 2015.
Davidson, E. A., Savage, K. V. L. V., Verchot, L. V., and Navarro, R.: Minimizing artifacts and biases in chamber-based measurements of soil respiration, Agric. For. Meteorol., 113, 21–37, https://doi.org/10.1016/S0168-1923(02)00100-4, 2002.
De Jong, E. and Schappert, H. J. V.: Calculation of soil respiration and activity from CO2 profiles in the soil, Soil Sci., 113, 328–333, https://doi.org/10.1097/00010694-197205000-00006, 1972.
Fan, J. and Jones, S. B.: Soil surface wetting effects on gradient-based estimates of soil carbon dioxide efflux, Vadose Zone J., 13, vzj2013-07, https://doi.org/10.2136/vzj2013.07.0124, 2014.
Fierer, N. and Schimel, J. P.: A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil, Soil Sci. Soc. Am. J., 67, 798–805, https://doi.org/10.2136/sssaj2003.7980, 2003.
Forbes, E., Benenati, V., Frey, S., Hirsch, M., Koech, G., Lewin, G., Mantas, J. N., and Caylor, K.: Fluxbots: A method for building, deploying, collecting and analyzing data from an array of inexpensive, autonomous soil carbon flux chambers, J. Geophys. Res. Biogeosci., 128, https://doi.org/10.1029/2023JG007451, 2023.
Gagnon, S., L’Hérault, E., Lemay, M., and Allard, M.: New low-cost automated system of closed chambers to measure greenhouse gas emissions from the tundra, Agric. For. Meteorol., 228, 29–41, https://doi.org/10.1016/j.agrformet.2016.06.012, 2016.
Gauch, H. G., Hwang, J. G., and Fick, G. W.: Model evaluation by comparison of model-based predictions and measured values, Agron. J., 95, 1442–1446, https://doi.org/10.2134/agronj2003.1442, 2003.
Gu, L., Massman, W. J., Leuning, R., Pallardy, S. G., Meyers, T., Hanson, P. J., Riggs, J. S., Hosman, K. P., and Yang, B.: The fundamental equation of eddy covariance and its application in flux measurements, Agric. For. Meteorol., 152, 135–148, https://doi.org/10.1016/j.agrformet.2011.09.014, 2012.
Hamerlynck, E. P., Scott, R. L., Sánchez-Cañete, E. P., and Barron-Gafford, G. A.: Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland, J. Geophys. Res. Biogeosci., 118, 1593–1603, https://doi.org/10.1002/2013JG002495, 2013.
Hassan, S., Mushinski, R. M., Amede, T., Bending, G. D., and Covington, J. A.: Integrated probe system for measuring soil carbon dioxide concentrations, Sensors, 23, https://doi.org/10.3390/s23052580, 2023.
Heger, A., Kleinschmidt, V., Gröngröft, A., Kutzbach, L., and Eschenbach, A.: Application of a low-cost NDIR sensor module for continuous measurements of in situ soil CO2 concentration, J. Plant Nutr. Soil Sci., 183, 557–561, https://doi.org/10.1002/jpln.201900493, 2020.
Helm, J., Hartmann, H., Göbel, M., Hilman, B., Herrera Ramírez, D., and Muhr, J.: Low-cost chamber design for simultaneous CO2 and O2 flux measurements between tree stems and the atmosphere, Tree Physiology, 41, 1767–1780, https://doi.org/10.1093/treephys/tpab022, 2021.
Hirano, T., Kim, H., and Tanaka, Y.: Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest, J. Geophys. Res. Atmos., 108, https://doi.org/10.1029/2003JD003766, 2003.
Horvatic, D., Stanley, H. E., and Podobnik, B.: Detrended cross-correlation analysis for non-stationary time series with periodic trends, EPL, 94, https://doi.org/10.1209/0295-5075/94/18007, 2011.
Jacoby, W. G.: Loess: a nonparametric, graphical tool for depicting relationships between variables, Electoral Studies, 19, 577–613, https://doi.org/10.1016/S0261-3794(99)00028-1, 2000.
Jian, J., Vargas, R., Anderson-Teixeira, K., Stell, E., Herrmann, V., Horn, M., Kholod, N., Manzon, J., Marchesi, R., Paredes, D., and Bond-Lamberty, B.: A restructured and updated global soil respiration database (SRDB-V5), Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, 2021.
Jiang, P., Chen, X., Missik, J. E. C., Gao, Z., Liu, H., and Verbeke, B. A.: Encoding diel hysteresis and the Birch effect in dryland soil respiration models through knowledge-guided deep learning, Front. Environ. Sci., 10, https://doi.org/10.3389/fenvs.2022.1035540, 2022.
Jones, H. G.: Plants and microclimate: a quantitative approach to environmental plant physiology, Cambridge university press, https://doi.org/10.1017/CBO9780511845727, 2013.
Kim, D.-G., Bond-Lamberty, B., Ryu, Y., Seo, B., and Papale, D.: Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries, Biogeosciences, 19, 1435–1450, https://doi.org/10.5194/bg-19-1435-2022, 2022.
Kim, D.-G., Vargas, R., Bond-Lamberty, B., and Turetsky, M. R.: Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research, Biogeosciences, 9, 2459–2483, https://doi.org/10.5194/bg-9-2459-2012, 2012.
Klosterhalfen, A., Herbst, M., Weihermüller, L., Graf, A., Schmidt, M., Stadler, A., Schneider, K., Subke, J. A., Huisman, J. A., and Vereecken, H.: Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands, Ecol. Model., 363, 137–156, https://doi.org/10.1016/j.ecolmodel.2017.07.028, 2017.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lai, S.-H., Tiedje, J. M., and Erickson, A. E.: In situ measurement of gas diffusion coefficient in soils, Soil Sci. Soc. Am. J., 40, 3–6, https://doi.org/10.2136/sssaj1976.03615995004000010006x, 1976.
Levintal, E., Kang, K. L., Larson, L., Winkelman, E., Nackley, L., Weisbrod, N., Selker, J. S., and Udell, C. J.: eGreenhouse: Robotically positioned, low-cost, open-source CO2 analyzer and sensor device for greenhouse applications, HardwareX, 9, e00193, Zenodo, https://doi.org/10.1016/j.ohx.2021.e00193, 2021a.
Levintal, E., Suvočarev, K., Taylor, G., and Dahlke, E. H.: Embrace open-source sensors for local climate studies, Nature, 599, 32–32, https://doi.org/10.1038/d41586-021-02981-x, 2021b.
Lundegårdh, H.: Carbon dioxide evolution of soil and crop growth, Soil Sci., 23, 417–453, https://doi.org/10.1097/00010694-192706000-00001, 1927.
Maier, M. and Schack-Kirchner, H.: Using the gradient method to determine soil gas flux: A review, Agric. For. Meteorol., 192, 78–95, https://doi.org/10.1016/j.agrformet.2014.03.006, 2014.
Marshall, T. J.: The diffusion of gases through porous media, J. Soil Sci., 10, 79–82, https://doi.org/10.1111/j.1365-2389.1959.tb00667.x, 1959.
Massman, W. J. and Lee, X.: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges, Agric. For. Meteorol., 113, 121–144, https://doi.org/10.1016/S0168-1923(02)00105-3, 2002.
Millington, R. J.: Gas diffusion in porous media, Science, 130, 100–102, https://doi.org/10.1126/science.130.3367.100.b, 1959.
Millington, R. J. and Quirk, J. P.: Permeability of porous solids, Transactions of the Faraday Society, 57, 1200–1207, https://doi.org/10.1039/TF9615701200, 1961.
Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T., and Rolston, D. E.: Predicting the gas diffusion coefficient in repacked soil water-induced linear reduction model, Soil Sci. Soc. Am. J., 64, 1588–1594, https://doi.org/10.2136/sssaj2000.6451588x, 2000.
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and Erasmi, S.: Greenhouse gas emissions from soils – A review, Geochemistry, 76, 327–352, https://doi.org/10.1016/j.chemer.2016.04.002, 2016.
Osterholt, L., Kolbe, S., and Maier, M.: A differential CO2 profile probe approach for field measurements of soil gas transport and soil respiration, J. Plant Nutr. Soil Sci., 185, 282–296, https://doi.org/10.1002/jpln.202100155, 2022.
Penman, H. L.: Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids, J. Agric. Sci., 30, 437–462, https://doi.org/10.1017/S0021859600048164, 1940.
Pingintha, N., Leclerc, M., Beasley, J., Zhang, G., and Senthong, C.: Assessment of the soil CO2 gradient method for soil CO2 efflux measurements: comparison of six models in the calculation of the relative gas diffusion coefficient, Tellus B, 62, 47–58, https://doi.org/10.1111/j.1600-0889.2009.00445.x, 2010.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Curiel Yuste, J., Grünzweig, J. M., Reth, S., Subke, J.-A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A., and Hari, P.: Comparison of different chamber techniques for measuring soil CO2 efflux, Agric. For. Meteorol., 123, 159–176, https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
Sadeghi, A. M., Kissel, D. E., and Cabrera, M. L.: Estimating molecular diffusion coefficients of urea in unsaturated soil, Soil Sci. Soc. Am. J., 53, 15–18, https://doi.org/10.2136/sssaj1989.03615995005300010003x, 1989.
Sagi, N., Zaguri, M., and Hawlena, D.: Soil CO2 influx in drylands: A conceptual framework and empirical examination, Soil Biol. Biochem., 156, https://doi.org/10.1016/j.soilbio.2021.108209, 2021.
Sánchez-Cañete, E. P., Scott, R. L., van Haren, J., and Barron-Gafford, G. A.: Improving the accuracy of the gradient method for determining soil carbon dioxide efflux, J. Geophys. Res. Biogeosci., 122, 50–64, https://doi.org/10.1002/2016JG003530, 2017.
Spohn, M. and Holzheu, S.: Temperature controls diel oscillation of the CO2 concentration in a desert soil, Biogeochemistry, 156, 279–292, https://doi.org/10.1007/s10533-021-00845-0, 2021.
Stell, E., Warner, D., Jian, J., Bond-Lamberty, B., and Vargas, R.: Spatial biases of information influence global estimates of soil respiration: How can we improve global predictions?, Glob. Change Biol., 27, 3923–3938, https://doi.org/10.1111/gcb.15666, 2021.
Tang, J. and Baldocchi, D. D.: Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components, Biogeochemistry, 73, 183–207, https://doi.org/10.1007/s10533-004-5889-6, 2005.
Tang, J., Baldocchi, D. D., Qi, Y., and Xu, L.: Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors, Agric. For. Meteorol., 118, 207–220, https://doi.org/10.1016/S0168-1923(03)00112-6, 2003.
Turcu, V. E., Jones, S. B., and Or, D.: Continuous soil carbon dioxide and oxygen measurements and estimation of gradient-based gaseous flux, Vadose Zone J., 4, 1161–1169, https://doi.org/10.2136/vzj2004.0164, 2005.
Vargas, R., Baldocchi, D. D., Allen, M. F., Bahn, M., Black, T. A., Collins, S. L., Yuste, J. C., Hirano, T., Jassal, R. S., Pumpanen, J., and Tang, J.: Looking deeper into the soil: Biophysical controls and seasonal lags of soil CO2 production and efflux, Ecol. Appl., 20, 1569–1582, https://doi.org/10.1890/09-0693.1, 2010.
Warner, D. L., Bond-Lamberty, B., Jian, J., Stell, E., and Vargas, R.: Spatial predictions and associated uncertainty of annual soil respiration at the global scale, Glob. Biogeochem. Cycles, 33, 1733–1745, https://doi.org/10.1029/2019GB006264, 2019.
Xiao, J., Chen, J., Davis, K. J., and Reichstein, M.: Advances in upscaling of eddy covariance measurements of carbon and water fluxes, J. Geophys. Res. Biogeosci., 117, https://doi.org/10.1029/2011JG001889, 2012.
Xu, M. and Shang, H.: Contribution of soil respiration to the global carbon equation, J. Plant Physiol., 203, 16–28, https://doi.org/10.1016/j.jplph.2016.08.007, 2016.
Yan, X., Guo, Q., Zhao, Y., Zhao, Y., and Lin, J.: Evaluation of five gas diffusion models used in the gradient method for estimating CO2 flux with changing soil properties, Sustainability, 13, 10874, https://doi.org/10.3390/su131910874, 2021.
Yang, X., Fan, J., and Jones, S. B.: Effect of soil texture on estimates of soil-column carbon dioxide flux comparing chamber and gradient method, Vadose Zone J., 17, 1–9, https://doi.org/10.2136/vzj2018.05.0112, 2018.
Yim, M. H., Joo, S. J., and Nakane, K.: Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods, Forest Ecology and Management, 170, 189–197, https://doi.org/10.1016/S0378-1127(01)00773-3, 2002.
Short summary
This study presents a new, low-cost sensor system for measuring soil CO2 gas continuously over long periods. Built using easy-to-get hardware components, the system costs USD 700. It was tested for six months in desert soil, proving to be reliable, easy to maintain, and capable of capturing important changes in soil CO2. The CO2 flux calculations from this system closely matched those from a standard measurement device, making it a practical tool for research requiring multiple sensor systems.
This study presents a new, low-cost sensor system for measuring soil CO2 gas continuously over...