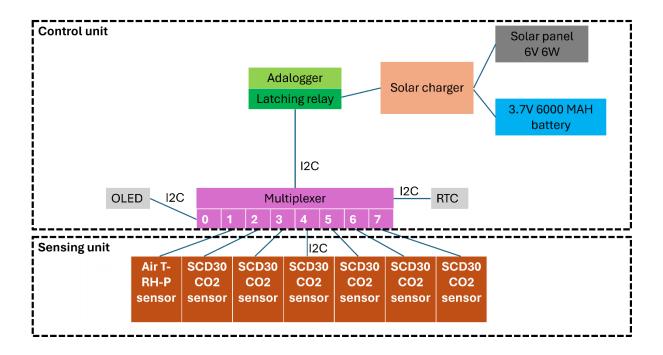
Supplement of SOIL, 11, 639–653, 2025 https://doi.org/10.5194/soil-11-639-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Overcoming barriers in long-term, continuous monitoring of soil \mbox{CO}_2 flux: a low-cost sensor system


Thi Thuc Nguyen et al.

Correspondence to: Elad Levintal (levintal@bgu.ac.il)

The copyright of individual parts of the supplement might differ from the article licence.

S1. Supplementary materials and methods

S1.1. Hardware

Figure S1: The schematic design of the low-cost sensor system with the control unit and the sensing unit.

S1.2. F_{GM} calculation

The low-cost CO₂ sensors are factory pre-calibrated at fixed pressure and temperature. To correct soil CO₂ concentration to in-situ environmental conditions according to ideal gas law (e.g., Chamizo et al., 2022) **Eq. S1** is applied.

$$C_v = C_{v0} \frac{P_c(273.2 + T_s)}{P_s(273.2 + T_c)}$$
 [S1]

where C_v [µmol mol⁻¹ or ppm] is the corrected soil CO₂ concentration, P_c [hPa] is the atmospheric pressure during factory calibration (Pc = 1013 hPa), P_s [hPa] is the air pressure in soil (assume $P_s =$ atmospheric pressure), T_c [°C] is the air temperature during factory calibration ($T_c = 25$ °C), and T_s is the soil temperature measured by the low-cost CO₂ sensors.

The CO₂ concentration or volume fraction (C_v [µmol mol⁻¹ or ppm]) is converted to mole density (C_z [µmol m⁻³]) by Eq. S2.

$$C_z = \frac{C_v * 1000}{22.41}$$
 [S2]

To correct D_a to in-situ environmental conditions before using it in **Eq. 2** (Johns, 2013), **Eq. S3** is applied:

$$D_a = D_{a0} \left(\frac{T_a}{T_0}\right)^{1.75} \left(\frac{P_0}{P_a}\right)$$
 [S3]

where T_a [K] is the in-situ air temperature, P_a [hPa] is the in-situ air pressure, and $D_{a\theta}$ [m² s⁻¹] is the reference value of D_a at T_θ (293.15 K) P_θ (1013 hPa) and is given as 1.47×10⁻⁵ m² s⁻¹.

Total soil porosity (Φ) equals the sum of the volumetric air content (ε) and the volumetric water content (θ). Soil porosity is calculated using **Eq. S4**.

$$\Phi = 1 - \frac{\rho_b}{\rho_m} = \varepsilon + \theta$$
 [S4]

where ρ_b [g cm⁻³] is the bulk density and ρ_m [g cm⁻³] is the particle density for the mineral soil $(\rho_m = 2.65 \text{ g cm}^{-3})$.

S2. Supplementary results

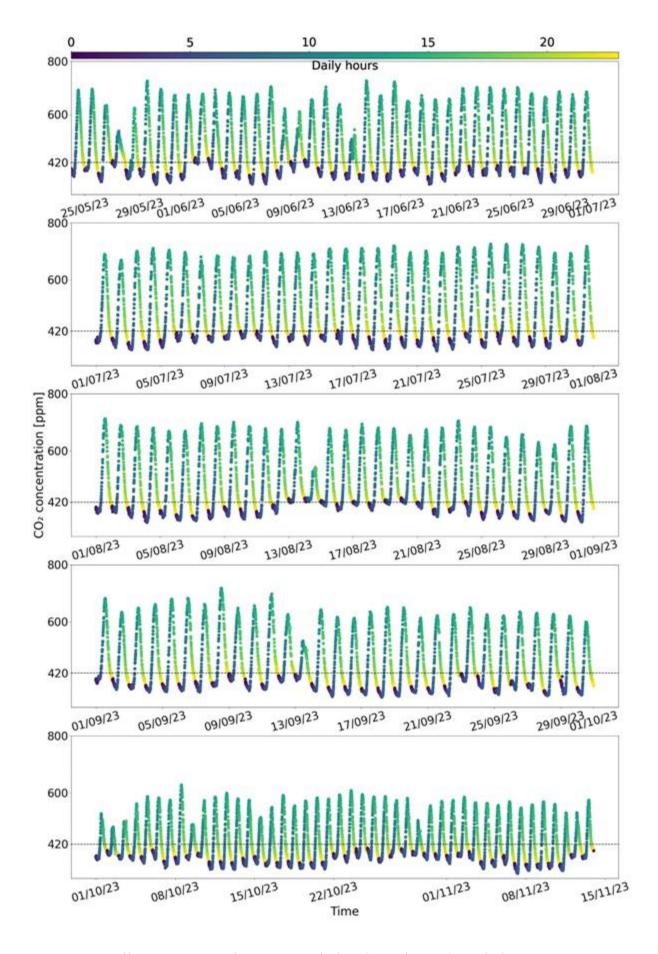
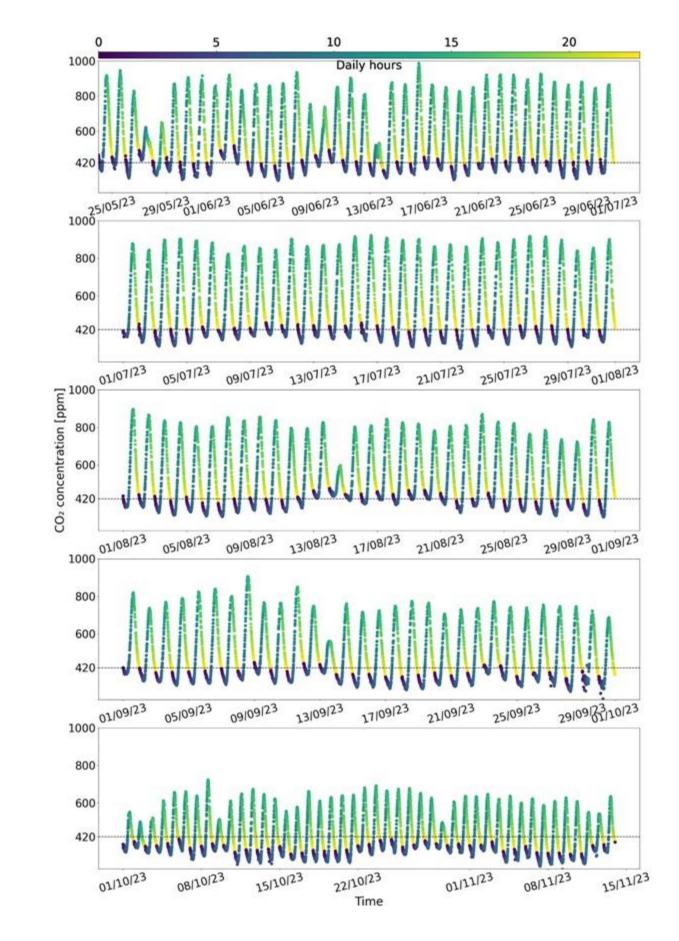
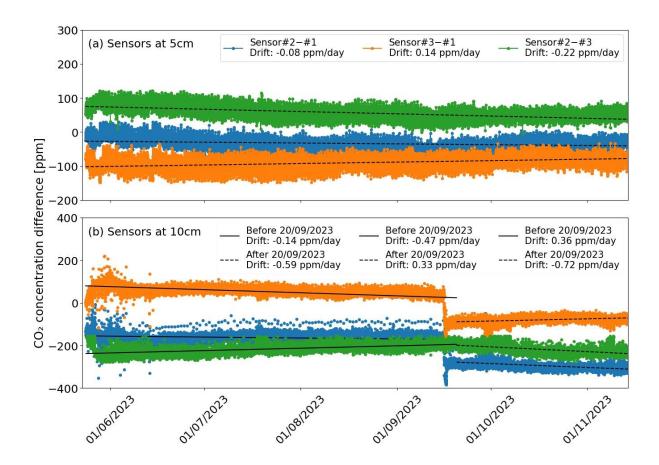
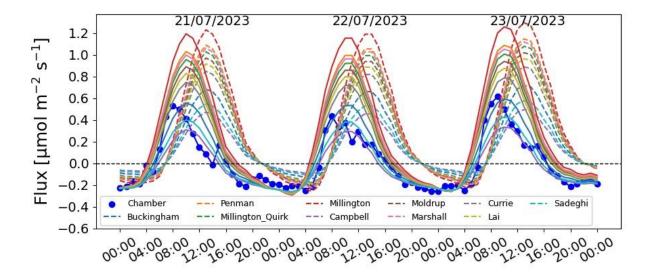


Figure S2. Soil CO₂ concentrations at 5 cm during the entire study period.

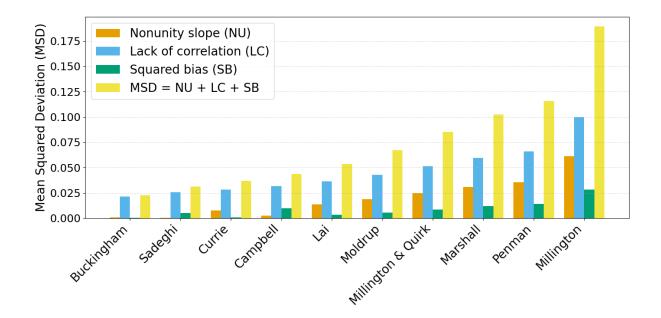

Figure S3. Soil CO₂ concentrations at 10 cm during the entire study period.

Figure S4. Pair-wise CO₂ concentration differences between three sensors at 5 cm (a) and three sensors at 10 cm (b). The drift rate for sensors at 10 cm was evaluated separately for two periods, before and after 20/09/2023, when the baseline of sensor#1_10cm drifted systematically from ~300 to ~200 ppm.

Figure S5. Diurnal cycles of measured chamber flux (blue scatters), calculated gradient fluxes using ten published diffusion models (dashed lines), and gradient flux shifted by 3-hour lag time (solid lines) during three representative days without precipitation 21-23/7/2023.

Figure S6. Components of mean squared deviation (MSD) for ten diffusion models. The three components are lack of correlation (LC), non-unity slope (NU), and squared bias (SB). Data for comparison is calculated gradient fluxes (F_{GM}) using ten diffusion coefficient models and chamber flux (F_{CM}) measured by LI-COR chamber and gas analyzer.