Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-435-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pooled error variance and covariance estimation of sparse in situ soil moisture sensor measurements in agricultural fields in Flanders
Marit G. A. Hendrickx
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3001, Belgium
Jan Vanderborght
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Agrosphere Institute IBG-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Pieter Janssens
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
Soil Service of Belgium, Leuven, 3001, Belgium
Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
Sander Bombeke
Proefstation voor de Groenteteelt, Sint-Katelijne-Waver, Sint-Katelijne-Waver, 2860, Belgium
Evi Matthyssen
Praktijkpunt Landbouw Vlaams-Brabant, Herent, 3020, Belgium
Anne Waverijn
Viaverda vzw, Kruishoutem, 9770, Belgium
Jan Diels
Department of Earth and Environmental Sciences, KU Leuven, Leuven, 3001, Belgium
KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3001, Belgium
Related authors
No articles found.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Daniel Leitner, Andrea Schnepf, and Jan Vanderborght
Hydrol. Earth Syst. Sci., 29, 1759–1782, https://doi.org/10.5194/hess-29-1759-2025, https://doi.org/10.5194/hess-29-1759-2025, 2025
Short summary
Short summary
Root water uptake strongly affects plant development and soil water balance. We use novel upscaling methods to develop land surface and crop models from detailed mechanistic models. We examine the mathematics behind this upscaling, pinpointing where errors occur. By simulating different crops and soils, we found that the accuracy loss varies based on root architecture and soil type. Our findings offer insights into balancing model complexity and accuracy for better predictions in agriculture.
Thuy Huu Nguyen, Thomas Gaiser, Jan Vanderborght, Andrea Schnepf, Felix Bauer, Anja Klotzsche, Lena Lärm, Hubert Hüging, and Frank Ewert
Biogeosciences, 21, 5495–5515, https://doi.org/10.5194/bg-21-5495-2024, https://doi.org/10.5194/bg-21-5495-2024, 2024
Short summary
Short summary
Leaf water potential was at certain thresholds, depending on soil type, water treatment, and weather conditions. In rainfed plots, the lower water availability in the stony soil resulted in fewer roots with a higher root tissue conductance than the silty soil. In the silty soil, higher stress in the rainfed soil led to more roots with a lower root tissue conductance than in the irrigated plot. Crop responses to water stress can be opposite, depending on soil water conditions that are compared.
Ioanna S. Panagea, Antonios Apostolakis, Antonio Berti, Jenny Bussell, Pavel Čermak, Jan Diels, Annemie Elsen, Helena Kusá, Ilaria Piccoli, Jean Poesen, Chris Stoate, Mia Tits, Zoltan Toth, and Guido Wyseure
SOIL, 8, 621–644, https://doi.org/10.5194/soil-8-621-2022, https://doi.org/10.5194/soil-8-621-2022, 2022
Short summary
Short summary
The potential to reverse the negative effects caused in topsoil by inversion tillage, using alternative agricultural practices, was evaluated. Reduced and no tillage, and additions of manure/compost, improved topsoil structure and OC content. Residue retention had a positive impact on structure. We concluded that the negative effects of inversion tillage can be mitigated by reducing tillage intensity or adding organic materials, optimally combined with non-inversion tillage.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Thuy Huu Nguyen, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert
Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, https://doi.org/10.5194/hess-24-4943-2020, 2020
Short summary
Short summary
The mechanistic Couvreur root water uptake (RWU) model that is based on plant hydraulics and links root system properties to RWU, water stress, and crop development can evaluate the impact of certain crop properties on crop performance in different environments and soils, while the Feddes RWU approach does not possess such flexibility. This study also shows the importance of modeling root development and how it responds to water deficiency to predict the impact of water stress on crop growth.
Cited articles
Albertson, J. D. and Montaldo, N.: Temporal dynamics of soil moisture variability: 1. Theoretical basis, Water Resour. Res., 39, 1274, https://doi.org/10.1029/2002WR001616, 2003.
Allen, R. G., Pereira, L. S., Raes, D., Smith, M.: Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements, in: Irrigation and Drainage Paper No. 56, FAO, Food & Agriculture Organization of the United Nations (FAO), ISBN 9251042195, 1998.
Ammann, L., Fenicia, F., and Reichert, P.: A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation, Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019, 2019.
Brocca, L., Melone, F., Moramarco, T., and Morbidelli, R.: Spatial-temporal variability of soil moisture and its estimation across scales, Water Resour. Res., 46, W02516, https://doi.org/10.1029/2009WR008016, 2010.
Chaney, N. W., Roundy, J. K., Herrera-Estrada, J. E., and Wood, E. F.: High-resolution modeling of the spatial heterogeneity of soil moisture: Applications in network design, Water Resour. Res., 51, 619–638, https://doi.org/10.1002/2013WR014964, 2015.
Crow, W. T. and Van Loon, E.: Impact of Incorrect Model Error Assumptions on the Sequential Assimilation of Remotely Sensed Surface Soil Moisture, J. Hydrometeorol., 7, 421–432, https://doi.org/10.1175/JHM499.1, 2006.
De Lannoy, G. J. M., Verhoest, N. E. C., Houser, P. R., Gish, T. J., and Van Meirvenne, M.: Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3), J. Hydrol., 331, 719–730, https://doi.org/10.1016/J.JHYDROL.2006.06.016, 2006.
Deming, W. E.: Statistical adjustment of data, Wiley, NY, Dover Publications edition 1985, ISBN 0-486-64685-8, 1943.
Engeland, K. and Gottschalk, L.: Bayesian estimation of parameters in a regional hydrological model, Hydrol. Earth Syst. Sci., 6, 883–898, https://doi.org/10.5194/hess-6-883-2002, 2002.
Evin, G., Kavetski, D., Thyer, M., and Kuczera, G.: Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration, Water Resour. Res., 49, 4518–4524, https://doi.org/10.1002/WRCR.20284, 2013.
Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., Jackson, T. J., Famiglietti, C., Ryu, D., Berg, A. A., Rodell, M., and Jackson, T. J.: Field observations of soil moisture variability across scales, Water Resour. Res., 44, W01423, https://doi.org/10.1029/2006WR005804, 2008.
Han, F., Hu, Z., Chen, N., Wang, Y., Jiang, J., and Zheng, Y.: Assimilating Low-Cost High-Frequency Sensor Data in Watershed Water Quality Modeling: A Bayesian Approach, Water Resour. Res., 59, e2022WR033673, https://doi.org/10.1029/2022WR033673, 2023.
Hawley, M. E., Jackson, T. J., and McCuen, R. H.: Surface soil moisture variation on small agricultural watersheds, J. Hydrol., 62, 179–200, https://doi.org/10.1016/0022-1694(83)90102-6, 1983.
Hendrickx, M. G. A., Diels, J., Janssens, P., Schlüter, S., and Vanderborght, J.: Temporal covariance of spatial soil moisture variations: A mechanistic error modeling approach, Vadose Zone J., e20295, https://doi.org/10.1002/VZJ2.20295, 2023.
Hendrickx, M., Diels, J., Vanderborght, J., Janssens, P., Bombeke, S., Matthyssen, E., and Waverijn, A.: In situ soil moisture measurement data for sensor calibration and pooled measurement error modeling, KU Leuven RDR [data set], https://doi.org/10.48804/M6WKTN, 2025.
Jirkù, V., Kodešová, R., Nikodem, A., Mühlhanselová, M., and Žigová, A.: Temporal variability of structure and hydraulic properties of topsoil of three soil types, Geoderma, 204–205, 43–58, https://doi.org/10.1016/J.GEODERMA.2013.03.024, 2013.
Lawrence, J. E. and Hornberger, G. M.: Soil moisture variability across climate zones, Geophys. Res. Lett., 34, L20402, https://doi.org/10.1029/2007GL031382, 2007.
Ludbrook, J.: Linear regression analysis for comparing two measurers or methods of measurement: But which regression?, Clin. Exp. Pharmacol. P., 37, 692–699, https://doi.org/10.1111/j.1440-1681.2010.05376.x, 2010.
Mane, S., Das, N., Singh, G., Cosh, M., and Dong, Y.: Advancements in dielectric soil moisture sensor Calibration: A comprehensive review of methods and techniques, Comput. Electron. Agr., 218, 108686, https://doi.org/10.1016/J.COMPAG.2024.108686, 2024.
Manns, H. R., Berg, A. A., Bullock, P. R., and Mcnairn, H.: Impact of soil surface characteristics on soil water content variability in agricultural fields, Hydrol. Process., 28, 4340–4351, https://doi.org/10.1002/hyp.10216, 2014.
Pan, F. and Peters-Lidard, C. D.: On the Relationship Between Mean and Variance of Soil Moisture Fields1, J. Am. Water Resour. As., 44, 235–242, https://doi.org/10.1111/J.1752-1688.2007.00150.X, 2008.
Pauwels, V. R. N. and De Lannoy, G. J. M.: Error covariance calculation for forecast bias estimation in hydrologic data assimilation, Adv. Water Resour., 86, 284–296, https://doi.org/10.1016/J.ADVWATRES.2015.05.013, 2015.
Pauwels, V. R. N., De Lannoy, G. J. M., Hendricks Franssen, H.-J., and Vereecken, H.: Simultaneous estimation of model state variables and observation and forecast biases using a two-stage hybrid Kalman filter, Hydrol. Earth Syst. Sci., 17, 3499–3521, https://doi.org/10.5194/hess-17-3499-2013, 2013.
Rahmati, M., Amelung, W., Brogi, C., Dari, J., Flammini, A., Bogena, H., Brocca, L., Chen, H., Groh, J., Koster, R. D., McColl, K. A., Montzka, C., Moradi, S., Rahi, A., Sharghi S., F., and Vereecken, H.: Soil Moisture Memory: State-Of-The-Art and the Way Forward, Rev. Geophys., 62, e2023RG000828, https://doi.org/10.1029/2023RG000828, 2024.
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale, Water Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012.
Rossini, P. R., Ciampitti, I. A., Hefley, T., and Patrignani, A.: A soil moisture-based framework for guiding the number and location of soil moisture sensors in agricultural fields, Vadose Zone J., 20, e20159, https://doi.org/10.1002/VZJ2.20159, 2021.
Samadi, S., Tufford, D. L., and Carbone, G. J.: Estimating hydrologic model uncertainty in the presence of complex residual error structures, Stoch. Env. Res. Risk A., 32, 1259–1281, https://doi.org/10.1007/s00477-017-1489-6, 2018.
Scharnagl, B., Iden, S. C., Durner, W., Vereecken, H., and Herbst, M.: Inverse modelling of in situ soil water dynamics: accounting for heteroscedastic, autocorrelated, and non-Gaussian distributed residuals, Hydrol. Earth Syst. Sci. Discuss., 12, 2155–2199, https://doi.org/10.5194/hessd-12-2155-2015, 2015.
Schelle, H., Durner, W., Schlüter, S., Vogel, H.-J., and Vanderborght, J.: Virtual Soils: Moisture Measurements and Their Interpretation by Inverse Modeling, Vadose Zone J., 12, vzj2012.0168, https://doi.org/10.2136/vzj2012.0168, 2013.
Schlüter, S., Vanderborght, J., and Vogel, H. J.: Hydraulic non-equilibrium during infiltration induced by structural connectivity, Adv. Water Resour., 44, 101–112, https://doi.org/10.1016/J.ADVWATRES.2012.05.002, 2012.
Schlüter, S., Vogel, H.-J., Ippisch, O., and Vanderborght, J.: Combined Impact of Soil Heterogeneity and Vegetation Type on the Annual Water Balance at the Field Scale, Vadose Zone J., 12, 1–17, https://doi.org/10.2136/vzj2013.03.0053, 2013.
Šimùnek, J., Van Genuchten, M. T., and Šejna, M.: HYDRUS: Model Use, Calibration, and Validation, T. ASABE, 55, 1261–1274, 2012.
Steenpass, C., Vanderborght, J., Herbst, M., Šimùnek, J., and Vereecken, H.: Estimating Soil Hydraulic Properties from Infrared Measurements of Soil Surface Temperatures and TDR Data, Vadose Zone J., 9, 910–924, https://doi.org/10.2136/VZJ2009.0176, 2010.
TEROS 10: http://publications.metergroup.com/Manuals/20788_TEROS10_Manual_Web.pdf, last access: 21 May 2024.
Teuling, A. J. and Troch, P. A.: Improved understanding of soil moisture variability dynamics, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL021935, 2005.
Vachaud, G., De Silans, A. P., Balabanis, P., and Vauclin, M.: Temporal Stability of Spatially Measured Soil Water Probability Density Function, Soil Sci. Soc. Am. J., 49, 822–828, https://doi.org/10.2136/SSSAJ1985.03615995004900040006X, 1985.
Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J., and Vanderborght, J.: Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective, Geophys. Res. Lett., 34, L22402, https://doi.org/10.1029/2007GL031813, 2007.
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., and Vanderborght, J.: On the spatio-temporal dynamics of soil moisture at the field scale, J. Hydrol., 516, 76–96, https://doi.org/10.1016/J.JHYDROL.2013.11.061, 2014.
Vogel, H. J., Weller, U., and Ippisch, O.: Non-equilibrium in soil hydraulic modelling, J. Hydrol., 393, 20–28, https://doi.org/10.1016/J.JHYDROL.2010.03.018, 2010.
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation, Environ. Model. Softw., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.
Wang, C., Zuo, Q., and Zhang, R.: Estimating the necessary sampling size of surface soil moisture at different scales using a random combination method, J. Hydrol., 352, 309–321, https://doi.org/10.1016/J.JHYDROL.2008.01.011, 2008.
Western, A. W. and Blöschl, G.: On the spatial scaling of soil moisture, J. Hydrol., 217, 203–224, https://doi.org/10.1016/S0022-1694(98)00232-7, 1999.
Wikle, C. K. and Berliner, L. M.: A Bayesian tutorial for data assimilation, Physica D, 230, 1–16, https://doi.org/10.1016/J.PHYSD.2006.09.017, 2007.
Yang, J., Reichert, P., Abbaspour, K. C., and Yang, H.: Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference, J. Hydrol., 340, 167–182, https://doi.org/10.1016/J.JHYDROL.2007.04.006, 2007.
Short summary
We developed a method to estimate errors in soil moisture measurements using limited sensors and infrequent sampling. By analyzing data from 93 cropping cycles in agricultural fields in Belgium, we identified both systematic and random errors for our sensor setup. This approach reduces the need for extensive sensor networks and is applicable to agricultural and environmental monitoring and ensures more reliable soil moisture data, enhancing water management and improving model predictions.
We developed a method to estimate errors in soil moisture measurements using limited sensors and...
Special issue