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Abstract. Accurately quantifying errors in soil moisture measurements from in situ sensors at fixed locations
is essential for reliable state and parameter estimation in probabilistic soil hydrological modeling. This quan-
tification becomes particularly challenging when the number of sensors per field or measurement zone (MZ)
is limited. When direct calculation of errors from sensor data in a certain MZ is not feasible, we propose to
pool systematic and random errors of soil moisture measurements for a specific measurement setup and derive
a pooled error covariance matrix that applies to this setup across different fields and soil types. In this study,
a pooled error covariance matrix was derived using soil moisture sensor measurements from three TEROS 10
(Meter Group, Inc., USA) sensors per MZ and soil moisture sampling campaigns conducted over three grow-
ing seasons, covering 93 cropping cycles in agricultural fields with diverse soil textures in Belgium. The MZ
soil moisture estimated from a composite of nine soil samples with a small standard error (0.0038 m3 m−3) was
considered the “true” MZ soil moisture. Based on these measurement data, we established a pooled linear recal-
ibration of the TEROS 10 manufacturer’s sensor calibration function. Then, for each individual sensor as well as
for each MZ, we identified systematic offsets and temporally varying residual deviations between the calibrated
sensor data and sampling data. Sensor deviations from the “true” MZ soil moisture were defined as observational
errors and lump both measurement errors and representational errors. Since a systematic offset persists over time,
it contributes to the temporal covariance of sensor observational errors. Therefore, we estimated the temporal
covariance of observational errors of the individual and the MZ-averaged sensor measurements from the variance
of the systematic offsets across all sensors and MZ averages, while the random error variance was derived from
the variance of the pooled residual deviations. The total error variance was then obtained as the sum of these two
components. Due to spatial soil moisture correlation, the variance and temporal covariance of MZ-averaged sen-
sor observational errors could not be derived accurately from the individual sensor error variances and temporal
covariances, assuming that the individual observational errors of the three sensors in a MZ were not correlated
with each other. The pooled error covariance matrix of the MZ-averaged soil moisture measurements indicated
a significant autocorrelation of sensor observational errors of 0.518, as the systematic error standard deviation
(σα = 0.033 m3 m−3) was similar to the random error standard deviation (σε = 0.032 m3 m−3). To illustrate the
impact of error covariance in probabilistic soil hydrological modeling, a case study was presented incorporating
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the pooled error covariance matrix in a Bayesian inverse modeling framework. These results demonstrate that
the common assumption of uncorrelated random errors to determine parameter and model prediction uncertainty
is not valid when measurements from sparse in situ soil moisture sensors are used to parameterize soil hydrolog-
ical models. Further research is required to assess to what extent the error covariances found in this study can be
transferred to other areas and how they impact parameter estimation in soil hydrological modeling.

1 Introduction

Soil moisture measurements, such as measurements from in
situ soil moisture sensors and sampling, are at the core of soil
hydrological modeling, state and parameter estimation by
assimilation, model validation, and decision making. How-
ever, these soil moisture measurements are subject to mul-
tiple sources of uncertainty, introducing systematic and ran-
dom errors. Accurately quantifying these two types of errors
is important to assess the uncertainty of estimated parame-
ters and model predictions since the impact of random er-
rors on this uncertainty vanishes with an increasing number
of measurements, whereas that of the systematic errors does
not. However, this error quantification presents a significant
challenge.

Field-scale soil moisture patterns have a strong temporal
stability which can be explained by spatial patterns in soil
properties and topography (Brocca et al., 2010; Vachaud et
al., 1985). As such, soil moisture observations at individual
locations are characterized by time-stable statistical proper-
ties, and some locations have the time-invariant property to
represent the field mean (Vachaud et al., 1985), while other
locations consistently deviate from this mean. Several stud-
ies have investigated an optimal sampling or sensor network
design to represent true soil moisture mean and variability
in heterogeneous fields (Brocca et al., 2010; Chaney et al.,
2015; Rossini et al., 2021; Wang et al., 2008), but such an
optimal measurement design is not always feasible due to
practical and budgetary constraints.

In addition to field-scale variability, microscale variabil-
ity may also substantially impact soil moisture measurements
(Hawley et al., 1983), especially point measurements with a
small measurement volume. Microscale soil moisture vari-
ability may be due to variations in soil particle and pore size,
preferential flow (e.g., via biopores from burrowing animals),
plant roots, microtopography, soil texture heterogeneity (e.g.,
clayey or sandy patches), uneven soil compaction, and local-
ized irrigation practices (e.g., drip irrigation). As a result, soil
moisture measurements may vary strongly depending on the
location of the measurement (Schelle et al., 2013). When soil
sampling is used to quantify soil moisture in a measurement
zone (MZ) within a field, experimental errors can be min-
imized by collecting a composite sample from a sufficient
number of random locations within that MZ. While the mea-
surement volume of a composite soil sample is large enough
to average out microscale variability, a single sensor mea-

surement is not, and observational sensor measurement er-
rors may depend on the local positioning of the sensors.

Observational sensor measurement errors include both in-
herent measurement errors (i.e., instrumental error arising
from the measurement device, the measurement technique,
environmental influence, or signal processing) and represen-
tational errors (i.e., spatial misrepresentation of the area or
soil volume of interest). Quantifying such observational er-
rors is trivial when measurements from sufficient locations
are available. While experimental errors of subsequent soil
moisture samplings over time are generally considered un-
correlated, such measurements are often temporally sparse.
In contrast, using sensors allows for high temporal resolu-
tion, but typically only a few sensors are installed within
a field, often resulting in inadequate spatial coverage. This
can lead to a biased mean sensor measurement compared
to the true average soil moisture in the MZ, which trans-
lates to autocorrelated sensor measurement deviations, i.e.,
observational errors that are correlated over time. This au-
tocorrelation increases as the systematic error or bias be-
comes larger relative to the random error. Recently, Hen-
drickx et al. (2023) demonstrated that observational errors
of soil moisture sensor measurements, i.e., the deviations be-
tween individual sensors and the true average soil moisture,
are strongly correlated over time due to spatial variability and
patterns in soil water retention properties.

Information on the spatiotemporal behavior of soil mois-
ture measurements and their observational errors is espe-
cially important in the context of data assimilation and in-
verse modeling. Previous studies focused on spatial and tem-
poral correlation of soil moisture measurements, as the re-
quired spatial density of the measurement network and the
assimilation frequency depend on these properties, respec-
tively (De Lannoy et al., 2006). Temporal correlation of soil
water content (SWC) represents the persistence of SWC de-
viations from the long-term temporal mean – a concept that
is also referred to as “soil moisture memory” (Rahmati et
al., 2024). This is related to the temporal dynamics of the
meteorological forcings and to water flow in the soil, which
depends on soil hydraulic properties. In this study, we are
focusing on the temporal correlation of the observational er-
rors of soil moisture measurements, which we define as the
deviations of soil moisture measurements from the mean soil
moisture in the top 30 cm soil layer in a measurement zone
(MZ) of about 80 m2. This temporal correlation of errors is
equal to the ratio of the error covariance between two points
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in time to the total error variance and is related to the tempo-
ral stability of the spatial variability of soil moisture, rather
than the temporal correlation of the SWC itself. We will refer
to this temporal error correlation as error autocorrelation and
will discuss potential implications of spatial correlation of
the observational sensor errors on this error autocorrelation
quantification.

The error covariance matrix quantifies both the magni-
tude of the observational errors (error variance on the diag-
onal) and how these errors are correlated across time (the
off-diagonal elements are the error autocovariance), and it is
essential in data assimilation as it helps to manage uncer-
tainties and to correctly attribute weights to observational
errors. Taking both observation and forecast bias into ac-
count in data assimilation and estimating them in addition
to or even simultaneous with model state variables results in
improved estimation results, while neglecting error correla-
tions can lead to significant errors in both the state and bias
estimates, which in turn affects the overall model accuracy
(Crow and Van Loon, 2006; Pauwels et al., 2013; Pauwels
and De Lannoy, 2015).

The (log)likelihood function summarizes the errors be-
tween model simulations and corresponding observations
and incorporates uncertainties and error autocorrelations
through the error covariance matrix. It plays a central role
as an objective function in statistical modeling techniques,
i.e., Bayes classifiers, support vector machines, Bayesian in-
verse modeling (e.g., Vrugt, 2016), and Bayesian data as-
similation techniques such as an ensemble Kalman filter and
particle filter (Wikle and Berliner, 2007). When using sen-
sor measurements at fixed locations, autocorrelated observa-
tional errors need to be accounted for. Residual errors are of-
ten both heteroscedastic and autocorrelated in hydrological
modeling (Ammann et al., 2019; Evin et al., 2013; Samadi
et al., 2018; Yang et al., 2007). However, most studies as-
sume zero error covariance and, hence, often make incor-
rect assumptions on observational errors. For example, HY-
DRUS uses the Levenberg–Marquardt parameter estimation
approach, which assumes a diagonal error covariance matrix
(Šimùnek et al., 2012). Assuming zero error covariance is ac-
ceptable when an average of a large number of unbiased or
calibrated sensors is used (e.g., Steenpass et al. (2010), who
used TDR sensors at 36 locations) but not if only a few sen-
sors are available (e.g., Han et al., 2023). Alternatively, error
autocorrelation can be represented by autoregressive mod-
els, which have been assessed in several hydrological appli-
cations (Engeland and Gottschalk, 2002; Evin et al., 2013;
Scharnagl et al., 2015).

When soil moisture is observed and modeled at subfield or
field scale, limited methods exist to obtain a good estimate of
the true mean soil moisture, its observational errors, and error
autocorrelation. A MZ-specific error covariance matrix can-
not be derived accurately from a limited number of sensors
in a field. Hendrickx et al. (2023) recently proposed a mecha-
nistic error modeling approach to estimate soil moisture error

(co)variabilities based on the spatial variability of the water
retention curve. However, this method requires detailed soil
data from repeated sampling of undisturbed soil cores, which
is impractical. To the best of our knowledge, literature on this
topic is scarce; hence further research is needed to address
this gap.

We propose a pooled error modeling approach, which uni-
fies observational errors that are identified in multiple fields
with an identical measurement setup but with only a limited
number of sensors in each field. In this study, a pooled er-
ror covariance matrix is quantified based on a considerable
dataset of sensor and soil sample data from 93 cropping cy-
cles in agricultural fields in Flanders, Belgium (Sect. 2). This
pooled error covariance matrix could then be applied in data
assimilation or Bayesian inverse modeling across fields and
soil types given the specific measurement setup as illustrated
in Sect. 6, where parameters of an FAO-based soil water
balance model are estimated using DREAM(ZS). First, the
pooled sensor calibration is described in Sect. 3. This cali-
bration is applied to all sensor data prior to examining their
observational errors. Then, the error model is described in
Sect. 4 and is presented in two ways, i.e., using individual
sensor measurements and using MZ averages. The quantifi-
cation of the pooled errors is presented in Sect. 5.1–5.2, while
the consequences of spatial sensor correlation are discussed
in Sect. 5.3, and finally, the assumptions of the error model
(i.e., data linearity, error normality, error stationarity, spatial
consistency, and zero cross-correlation between soil samples
and sensor measurements) are discussed in depth in Sect. 5.4.

2 Study sites and data

Each year during three growing seasons (2021–2023), about
30 agricultural fields for vegetable production were equipped
with a sensor module (Fig. 1). In every field, soil moisture
samples were taken on a regular basis. All fields were located
in Flanders, the northern half of Belgium, had an area of 1
to 5 ha, were irrigated using various irrigation methods, and
included soil textures ranging from sand to silt loam. While
most of the fields were for commercial production purposes,
experimental fields at three research centers were included as
well.

Dielectric capacitance soil moisture sensors (TEROS 10,
Meter Group, Inc., USA) were used to measure daily volu-
metric SWCs in the fields. The sensors use an electromag-
netic field to measure the dielectric permittivity of the sur-
rounding medium within a measurement volume of 430 mL,
approximately corresponding to a cylinder with a diameter of
7.1 cm and a height of 10.9 cm. A sensor module (Agrisense
Pro, Io-Things, Belgium) consisted of three TEROS 10 sen-
sors connected to a data logger equipped with a communica-
tion module (Sigfox). The communication module enabled
the acquisition and transmission of sensor data to an online
server, ensuring real-time online data access. The sensors
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Figure 1. Illustration of the measurement setup in agricultural fields: the true SWC of the MZ is represented by a composite soil moisture
sample of nine individual gouge auger samples, while three fixed soil moisture sensors measured SWC at 15 cm depth. During three growing
seasons (2021–2023), measurement data were collected of 93 cropping cycles.

were installed horizontally at 15 cm depth in a straight line
with 2 m distance between each consecutive sensor within
the MZ specified by the farmer. Since the sensors were con-
nected to a data logger of Io-Things, the calibration equa-
tion for third-party loggers (Eq. 1) was applied to convert the
raw sensor output in millivolts to volumetric SWC (m3 m−3),
rather than the manufacturer’s calibration equation designed
for METER loggers (TEROS 10, 2024).

θsensor,nocal = −2.154 + 3.898× 10−3
× SmV− 2.278

× 10−6
× S2

mV+ 4.824× 10−10
× S3

mV, (1)

where SmV is the raw sensor output (mV), and θsensor,nocal
is the volumetric SWC (m3 m−3) derived from sensor mea-
surements that were not calibrated against soil moisture mea-
surements in the fields. A list of symbols used in this paper
is provided in Table 1.

At the beginning of the growing season, undisturbed
Kopecky ring samples (V : 100 cm3, h: 51 mm) were taken
from the 10–15 cm depth to determine bulk density. Three
ring samples were collected per MZ. Soil moisture samples
(from 2 to 30 cm depth) were taken regularly (every 2–4
weeks) with a gouge auger at all sites during the growing
period, and soil moisture was quantified using the gravimet-
ric method. The volumetric SWC was then calculated based
on the gravimetric SWC and bulk density (Eq. 2).

θv,samp = θg,samp
ρb

ρw
, (2)

where θv,samp is the volumetric SWC (m3 m−3), θg,samp is
the gravimetric SWC (kg kg−1) of the gouge samples, ρb is

the dry bulk density (kg m−3), and ρw is the mass density of
water (kg m−3). At all sites, multiple soil moisture samples
(nine in commercial fields, six in experimental fields) were
collected within a radius of 5 m around the sensors (Fig. 1).
These samples were generally combined into a composite
sample, while at some of the sites, each sample was analyzed
individually to obtain an accurate estimate of the soil mois-
ture sample errors (Sect. 4.1).

During data preprocessing, only daily sensor measure-
ments where data from all three sensors were available were
retained for error quantification. For fields where two crop-
ping cycles were monitored within the same year, the data
were split into two separate cropping cycles as the sensors
were removed and reinstalled. Then, cropping cycles that had
fewer than two soil moisture sampling events conducted in
parallel with the sensor data were excluded from the analy-
sis to ensure the reliability and accuracy of the error quan-
tification. These preprocessing steps resulted in 93 cropping
cycles that were retained for analysis (Fig. 1).

3 Pooled sensor calibration

In addition to the manufacturer’s calibration equation, a
pooled linear recalibration was established to relate the point
measurements at 15 cm depth by the TEROS 10 sensors
with soil moisture samples measuring the whole upper 30 cm
layer, so as to obtain sensor measurement data that are repre-
sentative of this upper soil layer. The composite soil moisture
samples of the 30 cm layer are plotted against their corre-
sponding mean sensor measurements at 15 cm depth from the
same MZ and time points for all study sites in 2021, 2022,
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Table 1. List of symbols and their description.

AR Autocorrelation, i.e., temporal correlation, of observational errors

MZ Measurement zone, i.e., a subplot within a field where measurements are taken

SmV Raw sensor output (mV)

spooled Pooled standard deviation of individual soil moisture samples

SWC Soil water content (m3 m−3)

α Systematic error of an individual sensor

α Systematic error of an MZ-averaged sensor measurement

β Temporally variable process-related deviations between sensor measurements and the true soil
moisture that are correlated between sensors

ε Random error of an individual sensor

ε Random error of an MZ-averaged sensor measurement

εnc Non-correlated random error of individual sensor measurements

θg,samp Gravimetric SWC (kg kg−1) of a soil gouge sample

θsensor Calibrated sensor measurement (m3 m−3) representing the volumetric SWC in the 0–30 cm
soil layer

θsensor,nocal Volumetric SWC (m3 m−3) derived from sensor measurements calibrated with the
manufacturer’s calibration equation, but not calibrated against soil moisture measurements in
the fields

θv,samp Volumetric SWC (m3 m−3) of a soil gouge sample

ρb Dry bulk density (kg m−3)

ρα Temporally stable spatial sensor correlation, i.e., correlation between systematic errors of
individual sensors

ρε Temporally variable spatial sensor correlation, i.e., correlation between the “random” errors of
individual sensors

σ 2
samp Pooled error variance of composite soil moisture samples

σ 2
tot Pooled total error variance of an individual sensor

σ 2
tot Pooled total error variance of the MZ-averaged sensor measurements

σ 2
α Pooled systematic error variance of an individual sensor

σ 2
α

Pooled systematic error variance of the MZ-averaged sensor measurements, i.e., pooled error
covariance

σ 2
ε Pooled random error variance of an individual sensor

σ 2
ε

Pooled random error variance of the MZ-averaged sensor measurements

and 2023 (Fig. 2). A bias (ME) of −0.043 m3 m−3 and an
RMSE of 0.058 m3 m−3 were observed, indicating a signifi-
cant underestimation of SWC in the upper 30 cm layer of the
MZ by the three sensors at 15 cm depth.

The calibration curve was fitted using an orthogonal Dem-
ing regression, as both the sensor measurements and soil
moisture samples are subject to measurement uncertainty
(Deming, 1943; Ludbrook, 2010). In this regression method,

the squares of the perpendicular distances of the calibration
points from the regression line are minimized. The prereq-
uisites for this regression method include identical scales of
the x and y variables, similar error variances of the x and y
variables, and a correlation coefficient close to 1, all of which
were satisfied for our measurement dataset. The data covered
a wide range of SWCs and were strongly correlated with a
Pearson correlation of 0.83. The resulting calibration curve
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Figure 2. Mean soil moisture samples, θv,samp (m3 m−3), in func-
tion of mean non-calibrated soil moisture sensor measurements,
θsensor,nocal (m3 m−3), with the pooled sensor calibration curve to
obtain sensor measurement data that are representative of the top
30 cm soil layer, as represented by soil moisture samples. The ob-
servations are color-coded based on Belgian soil texture class (Z:
sand, S: loamy sand, P: light sandy loam, L: heavy sandy loam, A:
silt loam).

(Eq. 3) had an R2 of 0.67 and an RMSE of 0.043 m3 m−3

(Fig. 2). The (perpendicular) residual plot shows randomly
scattered residuals and a constant variance, suggesting ho-
moscedasticity (Fig. A1).

θsensor =−0.006 + 1.26× θsensor,nocal, (3)

where θsensor (m3 m−3) is the calibrated sensor measurement
representing the volumetric SWC in the 0–30 cm soil layer,
and θsensor,nocal (m3 m−3) is the volumetric SWC that is mea-
sured by the non-calibrated sensors at 15 cm depth by apply-
ing Eq. (1). The pooled sensor calibration was applied to all
sensor data before examining the observational errors.

A lab-based calibration of the TEROS 10 sensor can be
found in Sect. S1 in the Supplement, but it was not applied
in this study. However, the similarity between the lab-based
sensor calibration (θ =−0.013 +1.16×θsensor,nocal) and the
field-based pooled sensor calibration (Eq. 3) suggests that
this pooled calibration has a broader applicability, e.g., on
different fields and in different contexts, and that the calibra-
tion mainly corrects for soil moisture measurement inaccu-
racy rather than the discrepancy between representative mea-
surement volumes of the soil sample (0–30 cm depth) and
the sensor (soil volume of 430 mL at 15 cm depth). Mane et
al. (2024) state that pooled (“generalized”) sensor calibra-
tions, i.e., using measurements from multiple sites across a
large region, are a viable alternative to field- or soil-specific
sensor calibrations, but note that the accuracy is lower.

4 Pooled error model approach

4.1 Soil moisture sample variance

The pooled variance of composite soil moisture samples
(σ 2

samp) can be determined based on sampling events during
which multiple soil moisture samples, i.e., multiple punc-
tures with the gouge auger from the same MZ, are analyzed
individually. First, the sample standard deviation s (for in-
dividual samples) can be quantified for each multi-sampling
event in each MZ. Then, the pooled standard deviation can
be computed to obtain a weighted average of all standard
deviations by using Eq. (4), to represent the standard devi-
ation of individual soil moisture samples, assuming that the
standard deviation of individual soil samples is spatially and
temporally constant. However, it is known that the true soil
moisture variability is likely dependent on the spatial vari-
ability of soil properties and SWC itself (e.g., Hendrickx et
al., 2023), which is not accounted for here.

spooled =

√
(n1− 1)s2

1 + (n2− 1)s2
2 + . . .+ (np − 1)s2

p

n1+ n2+ . . .+ np − p
, (4)

where spooled is the pooled standard deviation, p is the num-
ber of sampling events, and si and ni are the sample standard
deviation and sample size of the ith sampling event, respec-
tively. Finally, the standard error of a composite sample con-
sisting of n individual samples can be computed by dividing
the pooled standard deviation by the square root of n, result-
ing in the pooled variance of composite soil moisture samples
as given by Eq. (5).

σ 2
samp =

s2
pooled

n
, (5)

where n is the number of individual samples in the composite
soil sample.

Since soil moisture sample errors are assumed to be
mainly attributed to spatial variability of soil moisture, as-
suming that sample measurement errors (such as handling er-
rors or incomplete oven drying) are minimal, a multi-sample
analysis is recommended to obtain a more accurate estimate
of the soil moisture sample errors for a specific field or MZ.
Additionally, the pooled error model approach assumes zero
cross-correlation between the errors of the soil moisture sam-
ples and the observational errors of sensor measurements.

4.2 Sensor error model

4.2.1 Individual sensor measurements

When repeated measurements from a sufficiently large num-
ber of sensors are available in a MZ, the error covariance can
be quantified based on the soil moisture measurements di-
rectly. However, Western and Blöschl (1999) stated that bias
is introduced in spatial statistical properties of soil moisture
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such as covariance and correlation length as the spatial cov-
erage (“extent”) of soil moisture measurements decreases.
Hence, when a small set of sensors have limited spatial cover-
age, the variability in the MZ cannot be accurately described
by these sensors, which results in an underestimation of the
(co)variability, and the mean sensor measurement may be bi-
ased compared to the true mean SWC due to local differ-
ences. In this case, a direct calculation may not provide accu-
rate estimates of true SWC error variability and autocorrela-
tion. The limited number of sensors also directly translates to
wide confidence intervals on the covariance estimate due to
the limited degrees of freedom (e.g., d.f.= 2). Alternatively,
a pooled error model approach is proposed that uses higher
degrees of freedom by combining information from multi-
ple measurement sites and is based on a commonly used er-
ror model formulation with an additive systematic error term
(bias) and a random error term (Eq. 6).

θsensor,i,k = θ i +αk + εi,k, (6)

where θsensor,i,k is the calibrated SWC measured at time i by
sensor k (using Eq. 3), θ i is the “true” mean SWC derived
from the soil sample measurements at time i, αk ∼ N (0,σ 2

α )
is a systematic error or bias specific to sensor k, and εi,k ∼
N (0,σ 2

ε ) is a random error (Fig. 3a). It is important to note
that, in order to compute a pooled (co)variance, the model as-
sumes that the (co)variances are equal over time and across
different MZs, reflecting temporal and spatial consistency.
The systematic error is the time-invariant component of the
deviation of the sensor measurement θsensor,i,k from the true
SWC from the sampling, while the random error is the time-
variant component. No multiplicative systematic error is con-
sidered here, as this has already been addressed by applying
the pooled sensor calibration (Eq. 3). When there is only a
small number and a limited range of composite soil moisture
samples available over time in each MZ, a sensor- or MZ-
specific slope cannot be derived.

The systematic error (α) of a sensor in a MZ corresponds
to its sensor-specific intercept of the relation between the
sensor measurement and the “true” SWC derived from the
soil samples (θ̂i,k = θ i +αk), as illustrated in Fig. 3a. The
pooled systematic error variance (σ 2

α ) can be calculated from
the sensor-specific intercepts of all sensors that are installed
in all fields (Eq. 7).

σ 2
α = var (α)=

1
S− 1

∑S

k=1
α2
k , (7)

where S is the number of sensor-specific intercepts.
Then, the pooled random error variance (σ 2

ε ) is defined as
the variance of the sensor measurement deviations, ε, with
respect to their sensor-specific curve (θ̂i,k = θ i +αk), as il-
lustrated in Fig. 3a, using Eq. (8).

σ 2
ε =

∑S
k=1

∑Nk
i=1

(
θsensor,i,k − θ̂i,k

)2

∑S
k=1Nk − S

, (8)

Figure 3. Observational errors of (a) individual sensor measure-
ments and (b) MZ-averaged sensor measurements with their error
variances. The three sensors in (a) correspond to MZ 1 in (b).

where S is the number of sensor-specific intercepts and Nk
is the number of data points measured by sensor k, while
θsensor,i,k is the calibrated SWC measured by sensor k at time
i, and θ̂i,k is the expected SWC measured by sensor k at time
i based on their sensor-specific curve.

Finally, the total error variance, σ 2
tot, of soil moisture mea-

surements by an individual sensor is defined as the sum of
the pooled systematic and random error (Eq. 9).

σ 2
tot = σ

2
α + σ

2
ε . (9)

According to the error model in Eq. (6), the autocovariance
of the observational errors is equal to the systematic error
variance, σ 2

α , as derived in Appendix B. The autocorrelation
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(AR) between observational errors at two moments is quan-
tified as the ratio of the autocovariance and the total error
variance (Eq. 10), assuming that the standard deviations of
the errors are constant over time and that error autocorrela-
tion is equal for any pair of measurements.

AR=
σ 2
α

σ 2
tot
. (10)

In this error model, the pooled error variance, covariance,
and autocorrelation are assumed to be constant in time and
equal for all sensors in all fields. As they are pooled over dif-
ferent fields with different soil types, they are expected to be
applicable to all fields in the area of Flanders without signif-
icant topography or heavy soils and with a specific measure-
ment setup. Hence, we assume that there are no variations in
error variance, covariance, and autocorrelation between dif-
ferent fields (e.g., due to varying soil properties and soil het-
erogeneity between different fields), nor are there variations
due to varying soil moisture states. This is a strong assump-
tion that will be further discussed in Sect. 5.4. Using a di-
rect calculation method, a sufficient number of sensors (n) is
required to accurately represent field and state-dependent er-
ror variances and covariances. The pooled approach, on the
other hand, offers the advantage of not being constrained by
the number of sensors in a single field, making it suitable for
scenarios where sensor deployment is limited.

4.2.2 Averaged sensor measurements

An analogous error model can be formulated for the aver-
age of the soil moisture sensor measurements in a MZ with
multiple sensors (Eq. 11).

θ sensor,i,f = θ i +αf + εi,f , (11)

where θ sensor,i,f is the average SWC measured at time i by
the sensors in field f , θ i is the “true” mean SWC in the MZ
derived from the soil sample measurements, αf ∼N (0, σ 2

α )
is a systematic error, and εi,f ∼N (0,σ 2

ε ) is a random error
(Fig. 3b).

Now, the systematic error (α) of a MZ corresponds to its
MZ-specific intercept, which is the average of the intercepts
of the individual sensors in that MZ. The variance of all MZ-
specific intercepts corresponds to the pooled systematic error
variance, or error covariance (σ 2

α ; Eq. 12). This pooled sys-
tematic error variance is illustrated in Fig. 3b.

σ 2
α = var (α)=

1
F − 1

∑F

f=1
α2
f , (12)

where F is the number of fields.
The pooled random error variance (σ 2

ε ) is defined as the
variance of the deviations of the average sensor measure-
ments, ε, with respect to their MZ-specific curve (θ̂i,f =

θ i +αf ) using Eq. (13).

σ 2
ε =

∑F
f=1

∑Nf
i=1

(
θ sensor,i,f − θ̂i,f

)2

∑F
f=1Nf − F

, (13)

where F is the number of fields, and Nf is the number of
data points in field f .

The total error variance of the averaged soil moisture mea-
surement, σ 2

tot, is defined as the sum of the pooled systematic
and random error variances (Eq. 14):

σ 2
tot = σ

2
α + σ

2
ε . (14)

When all sensors in a MZ are (spatially) independent of
each other, the variances of the systematic and random errors
of the MZ-averaged soil moisture measurements are related
to the respective error variances obtained with Eqs. (7)–(9)
as given by Eqs. (15)–(17), respectively (as derived in Ap-
pendix C, Eqs. C1–C3).

σ 2
α =

σ 2
α

n
, (15)

σ 2
ε =

σ 2
ε

n
, (16)

σ 2
tot =

σ 2
tot
n
, (17)

where n is the number of sensors in a MZ. The autocorrela-
tion (AR) of the errors of the mean of all sensors in a MZ is
given by Eq. (18). As a result, for independent sensors, the
autocorrelation (AR) of the errors of the MZ-averaged soil
moisture measurements is equal to that of the individual sen-
sor measurements (Eq. 10).

AR=
σ 2
α

σ 2
tot

. (18)

4.3 Spatial sensor correlation within a MZ

Spatial dependency is inherently present within a MZ as lo-
cations that are closer together tend to have more similar soil
and plant properties. Therefore, it is best to distribute soil
sample and sensor locations well spread across the field or
MZ. However, it is not practical to use a set of sensors that
are connected to an Internet-of-Things data logger via long
sensor cables, as they can complicate sensor installation and
hinder field operations. In the case that a small set of sen-
sors with short sensor cables is installed in close proxim-
ity within a MZ and the observational errors of the sensors,
i.e., the deviations of the point measurements compared to
the true average SWC in the top 30 cm soil layer of a MZ,
are spatially correlated with each other, we underestimate
the observational errors when using Eqs. (15)–(16) to infer
the systematic and random error variances of MZ-averaged
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moisture measurements from systematic and random error
variances of the individual sensor measurements.

Spatial sensor correlation can be divided in a temporally
stable spatial SWC pattern and a spatial correlation of tem-
poral deviations from the stable SWC pattern. Temporally
stable spatial correlation between measurement points that
are close to each other within a MZ manifests itself as a sys-
tematic deviation of the sensor-specific intercepts (α) within

a MZ (illustrated in Fig. 4a) so that σ 2
α >

σ 2
α

n
, where n is the

number of sensors in a MZ. The correlation between the n
sensor-specific intercepts in a MZ, ρα , can be quantified us-
ing Eq. (19) (as derived in Appendix C). Due to the stable
spatial SWC pattern, the systematic deviation of a sensor set
of three sensors will depend on the specific location of the
sensors within the MZ so that two different sensor sets in the
same MZ might have a different systematic deviation from
the MZ average SWC (Fig. 4a).

ρα =
nσ 2

α − σ
2
α

(n− 1)σ 2
α

. (19)

The degree of spatial correlation can be assessed in three
ways. The first method involves constructing a semivari-
ogram by quantifying spatial soil moisture variability for dif-
ferent distances. Measured soil moisture variability is ex-
pected to increase with distance until soil moisture semi-
variances stabilize, at which point the measurements can be
considered independent, and the correlation length, i.e., the
range of spatial dependence, can be roughly estimated. The
second method compares the variability of the systematic er-
rors α obtained per field (σ 2

α ), i.e., from the average sensor
measurements, and the variability of the systematic errors α
obtained from the individual sensors (σ 2

α ), both qualitatively
and numerically using Eq. (19). Spatial independence of n
sensors within a field implies that the variance of sensor-
specific intercepts (σ 2

α ) equals n times the variance of MZ-
specific intercepts (σ 2

α ) (Eq. 15). Deviations from this con-
dition indicate temporally stable spatial dependence among
sensors. The third method analyzes the spatial correlation be-
tween the sensor-specific intercepts per MZ.

Analogously, a spatial correlation of random errors of in-
dividual sensors, ε, corresponds to a spatial correlation of
temporal variations in SWC (illustrated in Fig. 4b). These
temporally varying deviations are related to soil hydrological
processes that change soil moisture. Spatial covariance of hy-
drological processes and of soil properties (soil texture, soil
structure, organic matter content, bulk density, and hydraulic
conductivity) that define how SWC changes in response to
a process results in a spatial covariance of temporal varia-
tions in SWC. One can expect that all sensors at 15 cm depth
would measure a lower SWC compared to the “true” SWC of
the 0–30 cm soil layer just after a rainfall or irrigation event
because precipitation in the top layer has not (yet) been de-
tected by the sensors. Similarly, all sensors would measure
a higher SWC compared to the “true” SWC of the 0–30 cm

soil layer in periods with high evaporation from the top soil
layer. This results in a random error that varies over time, but
part of this variation will be similar for the different sensors
in the MZ; i.e., part of the temporal variation of ε in Eq. (8)
is “shared” or correlated among sensors. This shared tem-
poral variation of differences between sensor measurements
and the true mean could be represented in the error model by
introducing Eq. (6) with a temporally varying term βi that
is equal for all sensors at time i, while εnc is the remaining
non-correlated part of the random error (Eq. 20).

θsensor,i,k = θ i +αk +βi + εnc,i,k. (20)

In contrast to α, which could be interpreted as a temporally
fixed deviation related to the spatial variation, the temporally
varying β represents process-related deviations between sen-
sor measurements and the true SWC that are correlated be-
tween sensors. The temporally variable spatial sensor corre-
lation would manifest itself as a systematic deviation of all
sensors in a field at a certain time step (Fig. 4b). When sen-
sor measurements in a MZ are averaged, the deviation of the
spatial average from the true SWC mean that is corrected for
the average of the systematic deviations of the sensors, ε,
contains both β and a non-correlated random error εnc:

εi,f = βi +
1
n

∑n

k=1
εnc,i,k, (21)

so that

σ 2
ε = σ

2
β +

σ 2
ε,nc

n
>
σ 2
β

n
+
σ 2
ε,nc

n
=
σ 2
ε

n
. (22)

In a sensor setup with n perfectly correlated sensors, the
total random error variance of the MZ averages (σ 2

ε ) will be
equal to the total random error of the individual sensors (σ 2

ε )
(illustrated in Fig. 4b). The correlation between the “ran-
dom” errors of the individual sensors can be quantified us-
ing Eq. (23) as derived in Appendix C. This correlation is
equal to the ratio of the sensor-correlated “random” error
(co)variance (σ 2

β ) to the total “random” error variance (σ 2
ε ).

ρε =
nσ 2

ε − σ
2
ε

(n− 1)σ 2
ε

=
σ 2
β

σ 2
ε

. (23)

4.4 Pooled error covariance matrix of averaged soil
moisture measurements in a MZ

When all pooled errors are quantified, the pooled error co-
variance matrix can be built. The error covariance matrix for
field f has a sizeM×M , withM being the sum of the num-
ber of (daily) mean sensor measurements over time (Nf ) and
the number of soil moisture sample events (p) in field f . The
error covariance matrix (Fig. 5) contains a Nf ×Nf matrix
with the pooled total error variance σ 2

tot (Eq. 14) on the diago-
nal and the pooled error covariance σ 2

α (Eq. 12) off-diagonal.
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Figure 4. (a) Illustration of spatial correlation of sensors in a MZ: sensors that are close together have a similar deviation from the average
of the MZ. Two sets of three sensors in the same MZ might have different systematic deviations depending on their location. (b) Illustration
of a perfect (temporally variable) process-related sensor correlation: the three sensors in a single MZ show equal deviations from their
sensor-specific curve for a certain soil moisture sampling event.

Figure 5. Error covariance matrix for Nf days of sensor measure-
ments and p soil moisture sampling events in field f .

The additional p rows and columns represent the uncorre-
lated composite soil moisture sample variabilities, with the
pooled sample variance σ 2

samp (Eq. 5) on the diagonal and
off-diagonal zeros. The pooled error covariance matrix is by
definition invertible and well conditioned as long as a signifi-
cant random error is present; i.e., the observational errors are
not perfectly autocorrelated.

5 Results and discussion

5.1 Uncorrelated soil moisture samples

The pooled standard deviation (Eq. 4) for individual soil
moisture samples was 0.0114 m3 m−3. For nine individual
soil samples in a sampling event, the standard error of the
mean was 0.0038 m3 m−3 (σ 2

samp = 0.0000144). This stan-
dard error was small enough to consider these soil moisture
samples as reliable reference measurements.

The standard deviation of individual soil moisture samples
was smaller than soil moisture sampling variabilities found
in the literature (e.g., Brocca et al., 2010; Famiglietti et al.,
2008). However, it is possible that different sampling depths
and methods, as well as differences in heterogeneity, result
in different sampling variabilities. In a particularly heteroge-
neous field or MZ, a multi-sample analysis is recommended
to obtain a more accurate estimate of the soil moisture sam-
ple variance specifically for that MZ.

5.2 Quantifying observational errors of sensor
measurements

5.2.1 Systematic errors

In a field equipped with sensor sets in multiple MZs within
the field, each sensor set was characterized by a different
systematic deviation, α, from their MZ-specific mean SWC
measured by the soil moisture samples, of which two MZs
are shown in Fig. 6. Moreover, all three sensors in a given
MZ showed similar deviations from the composite soil mois-
ture sample in that MZ. For example, the sensors in MZ 2
all measured a consistently higher SWC compared to the soil
moisture samples (Fig. 6b). These similar deviations demon-
strate that the sensors within a MZ are not independent, but
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rather they have observational errors that are spatially cor-
related. Figure 6a also shows that the autocorrelation of the
observational errors remains persistent over time, which is
not in line with a classical autoregressive model, where a de-
cay with increasing time lag is typically expected. Moreover,
if these error autocorrelations were to be time-variable, auto-
correlation would be a function of SWCs or (soil) hydrolog-
ical events rather than time lag or time itself (Hendrickx et
al., 2023).

Furthermore, the sensor data may underestimate the true
average SWC in a certain MZ (Fig. 6, MZ 1), while in an-
other MZ, the sensor data may overestimate the true average
SWC in the MZ (Fig. 6, MZ 2). This suggests that if the sen-
sor set were installed at a different position within the same
MZ, the systematic deviation, α, from its MZ-specific mean
SWC would be different (as is also illustrated by sensor re-
moval and reinstallation in Fig. A2). Hence, if more sensors
were installed within a MZ, expanding spatial coverage and
reducing spatial correlation of observational errors (Eqs. 19
and 23), the systematic error of the MZ-average would be
expected to decrease, likely causing a reduced error autocor-
relation (AR) of the average sensor measurement.

The pooled systematic error variance was quantified for
the individual sensors as well as the averaged sensor mea-
surements based on all cropping cycles (Table 2). The indi-
vidual sensor measurements resulted in 279 sensor-specific
intercepts, all based on more than one sampling event, as
shown in Fig. 7, which illustrates that measurements by a sin-
gle sensor may differ consistently over time from the true soil
moisture in the top 30 cm soil layer. The standard deviation
of these intercepts was 0.037 m3 m−3, which corresponded to
an error covariance of an individual sensor of σ 2

α = 0.001380.
Under the assumption of sensor independence and for three
sensors in a MZ, the error covariance of the average mea-
sured soil moisture would be σ 2

α = 0.000460 (Eq. 15).
Next, the 93 MZ-specific intercepts, all based on the av-

erages of three soil moisture sensor measurements and more
than one sampling event, were estimated. The standard de-
viation of these intercepts was 0.033 m3 m−3, which corre-
sponded to an error covariance of σ 2

α = 0.001070, and was
considerably larger than the estimate based on the assump-
tion of non-correlated systematic errors.

When analyzing double-cropping cycles on a certain field
within 1 year, we see how the mean bias (intercept) shifts
after the sensors are removed and reinstalled (Fig. A2). This
demonstrates the impact of sensor repositioning on measure-
ment accuracy, highlighting the systematic changes that can
occur due to sensor position adjustments.

Systematic errors between the mean soil moisture mea-
surement obtained from few sensors with limited spatial cov-
erage and the true mean soil moisture of the MZ may origi-
nate from time-persistent spatial differences in soil moisture.
Such time-persistent spatial differences may be due to vari-
ability in soil properties, water retention, vegetation cover,
and root distribution (Hendrickx et al., 2023; Schlüter et al.,

2013), as well as groundwater depth, topography, and non-
equilibrium (Vogel et al., 2010; Schlüter et al., 2012). Brocca
et al. (2010) and Vachaud et al. (1985) demonstrated a strong
temporal stability of soil moisture variability, indicating a
persistent soil moisture pattern over time, which is the main
cause of the observed systematic error. Moreover, the dielec-
tric properties of the substrate, influenced by soil proper-
ties such as clay content, soil organic matter, bulk density,
and soil salinity, may affect the soil moisture measurements
of dielectric sensors. Within a MZ, mainly microscale soil
moisture variability, resulting from variations in soil particle
and pore size, preferential flow, plant roots, microtopogra-
phy, and localized irrigation practices (e.g., drip irrigation),
may significantly impact soil moisture sensor measurements
depending on the exact position of the sensor. Finally, sys-
tematic errors may also arise due to incorrect sensor instal-
lation. For example, when sensors are installed too deep or
inserted vertically instead of horizontally or are influenced
by air gaps, their measurements may be consistently biased.
On top of an additive bias, such improper installation could
also lead to a multiplicative systematic error, which was not
considered in this study but is included in the random error
term.

The difference between the systematic error of individual
sensors and the systematic error of averaged sensor measure-
ments was smaller than what would be expected if the time-
persistent deviations between the individual sensor measure-
ments and the true SWC were independent between differ-
ent sensors. This could be due to spatial correlation of soil
moisture that exists within the range of distances between
the different sensors in a MZ. As such, sensors that are close
together, i.e., sensors that are spatially correlated, will have
similar systematic deviations from the true SWC in the MZ
due to similar soil and plant properties. Spatial sensor corre-
lation will be further discussed in Sect. 5.3.

5.2.2 Random errors

After estimating the sensor-specific and MZ-specific inter-
cepts, the random errors were quantified for both the individ-
ual sensors and the averaged sensor measurements relative to
their respective curves (Table 2). The pooled random error
variance of the individual sensors (σ 2

ε ) was quantified based
on the sensor measurement deviations with respect to their
sensor-specific curve using Eq. (8) and resulted in a stan-
dard deviation of 0.034 m3 m−3 (σ 2

ε = 0.001183). The ran-
dom error variance of the individual sensors was divided by
3 to obtain the random error variance of the MZ averages un-
der the assumption of sensor independence (Eq. 16), which
resulted in σ 2

ε = 0.000394. Then, the pooled random error
variance of the MZ averages was quantified based on the sen-
sor measurement deviations with respect to their MZ-specific
curve using Eq. (13), which resulted in a standard deviation
of 0.032 m3 m−3 (σ 2

ε = 0.000998), which was considerably
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Figure 6. (a) SWC measured in two MZs within a field with three sensors per MZ. The sensor data were calibrated with the pooled sensor
calibration (Eq. 3) and are plotted along with the MZ-averaged SWC (– – –). (b) Mean SWC (0–30 cm) measured with a composite soil
sample are plotted against the mean sensor measurements at each location, and their MZ-specific regression line with a slope equal to 1 is
shown. The MZ-averaged SWCs and curves are also shown (– – –).

Table 2. Summary of error variances and standard deviations derived from individual and averaged sensor measurements, with a number of
N = 3×375 data points. n/a: not applicable.

Individual sensor
(Eqs. 6–10)

MZ-averaged assuming
spatial sensor
independence
(Eqs. 15–17)

MZ-averaged
(Eqs. 11–14)

Number of intercepts 279 279 93

Systematic error σ 2
α

(σα)
0.001380
(0.037 m3 m−3)

0.000460
(0.021 m3 m−3)

0.001070
(0.033 m3 m−3)

Random error σ 2
ε

(σε )
0.001183
(0.034 m3 m−3)

0.000394
(0.020 m3 m−3)

0.000998
(0.032 m3 m−3)

Total error σ 2
tot

(σtot)
0.002563
(0.051 m3 m−3)

0.000854
(0.029 m3 m−3)

0.002068
(0.045 m3 m−3)

AR 0.538 0.538 0.518

σ 2
β (Eq. 23) 0.000905

(0.030 m3 m−3)
n/a n/a

σ 2
ε,nc 0.000279

(0.017 m3 m−3)
n/a n/a

larger than the estimate based on the individual sensors as-
suming non-correlated random errors.

Fluctuations in environmental conditions, vertical soil
moisture (re)distribution, and measurement timing affect all
sensors equally, resulting in correlated temporal errors across
all sensors within a MZ. This process-related sensor correla-
tion will be further discussed in Sect. 5.3.

5.2.3 Total error variance and error autocorrelation

Finally, the total error variance and error autocorrelation
were quantified for both the individual sensors and the aver-
aged sensor measurements (Table 2). The pooled total error
variance of individual sensor measurements was 0.002563
(σtot =0.051 m3 m−3), and the error autocorrelation (AR)
was 0.538. The total error variance of the field averages de-
rived under the assumption of sensor independence using
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Figure 7. Intercepts based on individual sensor measurements re-
sulting in 279 sensor-specific curves.

Eq. (17) resulted in σ 2
tot
n
= 0.000854. The pooled total error

variance of the average measured SWC using Eq. (14) was
σ 2

tot = 0.002068 (σtot =0.045 m3 m−3). The pooled system-
atic error variance σ 2

α was similar to the pooled random error
variance σ 2

ε , which caused a strong error autocorrelation of
0.518.

Even though σ 2
tot was significantly different from σ 2

tot
n

,
the difference between the AR values was negligibly small,
which implies that the random temporal error and the time-
invariant systematic error were affected similarly by sensor
dependency. The process-related deviations that are tempo-
rally varying but correlated among sensors, β, are also af-
fected by spatial dependency; i.e., sensors placed in close
proximity are more likely to be at locations with similar soil
hydrological process behavior, characterized by similar soil
parameters such as porosity and hydraulic conductivity.

The pooled error autocorrelation found in this study was
lower than expected based on previous studies (Hendrickx et
al., 2023). A larger spatial soil variability within a MZ would
generate a larger systematic deviation of an individual sen-
sor or a group of sensors installed at a specific location in the
MZ from the average soil moisture in the MZ. This may be
the result of a larger inherent soil heterogeneity or a larger
MZ area. If the random error remains stable while the MZ
area expands, the error autocorrelation is likely to increase.
In contrast, error autocorrelation of the average sensor mea-
surement is expected to decrease with decreasing spatial sen-
sor correlation. Hence, as sensors are located further apart,
spatial sensor correlation decreases, resulting in a decrease in
error autocorrelation. If the sensors are not biased inherently
but their bias is position-dependent as was the case here, the
bias of the average sensor measurement will decrease with
an increasing number and broader coverage of sensors, again
resulting in a decrease in error autocorrelation. The previous
study of Hendrickx et al. (2023) assessed error autocorre-
lations of the deviations of an individual sensor compared

to the average sensor measurement in the field, which was
much larger than a MZ in this study, and found error auto-
correlations close to 1, as could be expected due to the larger
systematic deviations at field scale compared to MZ scale
and smaller random errors due to a one-on-one comparison
of sensor time series instead of soil moisture samples with a
different measurement volume.

The standard error of the soil moisture sample mean
of nine subsamples (σsamp = 0.0038 m3 m−3) was 12 times
smaller than the total error standard deviation of a mean sen-
sor measurement from three sensors (σtot = 0.045 m3 m−3,
Table 2), which would result in a much larger weight of the
soil moisture samples in a data assimilation context.

5.3 Spatial sensor correlation assessment

The degree of temporally stable spatial correlation was as-
sessed by performing numerical calculations and spatial
analysis on the systematic errors. As the variance of the
sensor-specific intercepts (σ 2

α ) was significantly smaller than
3 times the variance of the MZ-specific intercepts (σ 2

α ), the
sensors could not be considered spatially independent. The
correlation coefficient ρα was 0.655 (Eq. 19), indicating
strong spatial correlation. Additionally, the intercepts of the
three sensors in one MZ showed strong positive correlations
with an average Pearson correlation of 66.5 % (Fig. A3). The
construction and assessment of a small-scale semivariogram
can be found in Sect. S2.

The process-related sensor correlation was quantified by
comparing the random error variance of the individual sen-
sors (σ 2

ε ) and the random error variance based on the average
of the three sensors (σ 2

ε ). If the random errors of the sensors

were independent, σ
2
ε

n
would be equal to σ 2

ε , which was not
the case. The correlation coefficient ρε was 0.765 (Eq. 23),
which resulted in σ 2

β = 0.000905 (σβ =0.030 m3 m−3). This
means that only 24 % of the total “random” error was sensor-
independent, and assuming sensor independence would re-
sult in inaccurate error estimates.

5.4 Assumptions

First of all, the pooled error model approach assumes linear-
ity between the true soil moisture contents in the top 30 cm
soil layer in a 80 m2 MZ and the soil moisture contents de-
rived from the sensor measurements at 15 cm depth with
the manufacturer’s calibration function. The (perpendicular)
residual plot of the pooled linear sensor calibration shows
randomly scattered residuals (Fig. A1), while the compos-
ite soil moisture samples, representing the true soil moisture,
and the mean sensor measurements showed a high correla-
tion of 83 %, both suggesting that the linearity assumption is
valid. Additionally, second-, third-, and fourth-degree poly-
nomial regression models were compared with a linear re-
gression model using the Akaike information criterion (AIC),
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which suggested that the linear model would be the most ap-
propriate choice (Fig. A4).

Secondly, the pooled error model approach assumes er-
ror stationarity and error orthogonality; i.e., error variances
do not change over time and are therefore also independent
of the soil moisture state. Previous studies have, however,
shown that spatial soil moisture variability is dependent on
the mean soil moisture state (Albertson and Montaldo, 2003;
Famiglietti et al., 2008; Hendrickx et al., 2023; Lawrence
and Hornberger, 2007; Manns et al., 2014; Pan and Peters-
Lidard, 2008; Rosenbaum et al., 2012; Schlüter et al., 2013;
Teuling and Troch, 2005; Vereecken et al., 2007). Nonethe-
less, we argue that these assumptions are acceptable during
the growing season in an irrigated field as the temporal soil
moisture range in such a field will likely be narrow. If the er-
ror model were to consider a multiplicative systematic error,
the errors would depend on the soil moisture state; i.e., er-
rors would be non-orthogonal. Furthermore, dynamic errors
that are independent of soil moisture state might occur when
soil properties such as bulk density and field capacity change
over time (Jirkù et al., 2013).

Additionally, the pooled error model approach assumes
spatial consistency; i.e., the pooled total error variance (σ 2

tot)
and the pooled error covariance (σ 2

α ) are considered to apply
for all fields and all soils in the area of Flanders in which data
were collected in a set of fields well spread over that area,
which implies that we regard the MZs in the different fields
over the different years as having equal spatial soil moisture
variability. We argue that this assumption is acceptable for
MZs of about 80 m2, which is smaller than the scale over
which significant variations in soil texture, soil properties,
topography, etc. may occur within a field, and that the effects
of these factors may be reduced due to uniform vegetation in
flat, irrigated fields where extreme drying and large temporal
soil moisture fluctuations are minimized. A zone of 80 m2 in
such irrigated, tilled agricultural fields is small compared to
correlation lengths of field-scale soil moisture variability of
10 to 70 m as described in the literature (De Lannoy et al.,
2006; Vereecken et al., 2014). Therefore, the variability that
we consider is related to microscale variations. Whether the
results are also applicable to grasslands or no-till fields would
be an interesting future research topic. Moreover, the irriga-
tion method applied during a cropping cycle may impact sys-
tematic deviations of the sensors compared to the composite
soil moisture samples. As discussed in Sect. S3, a pooled er-
ror model for a specific irrigation method could result in a
more accurate error estimation, but it would require an ex-
tensive dataset for that specific irrigation method.

Our motivation to assume a general soil moisture variabil-
ity and covariance, i.e., assuming temporal and spatial inde-
pendence, is to use it as a best “guesstimate” that can be used
in data assimilation or inverse modeling to estimate model
parameter and model prediction uncertainty. Estimating the
variance and temporal covariance of soil moisture measure-

ments in a specific field or MZ would require a large number
of sensors. Then, an accurate estimate of the variance and
covariance is obtained, but at the same time also an accurate
estimate of the soil moisture is obtained. The paradox is that
when soil moisture variability can be estimated accurately, its
estimate may not be so relevant anymore since then the mean
soil moisture will also be estimated accurately, and model
parameter uncertainty and prediction uncertainty will depend
more on the model error rather than on the errors or uncer-
tainties in the measurements. Further studies are required to
evaluate the impact of the assumptions that we make on the
resulting parameter and model prediction uncertainty, as well
as the impact of a violation of the assumptions compared to
not having an estimate of the error variance and covariance
at all.

When deriving the errors of the MZ averages from the er-
rors of individual sensors (Eqs. 15–16), sensor independence
is typically assumed. The process-related sensor correlation
(impacting random errors) and the spatial correlation (im-
pacting systematic errors) found in this study were 76 % and
66 %, respectively (Sect. 5.3). The strong correlations that
were observed suggest that assuming sensor independence
would be incorrect, and the errors of the MZ averages should
be computed directly based on the average measurements us-
ing Eqs. (11)–(14). The impact of spatial correlation on ob-
servational errors could be reduced by obtaining larger spa-
tial coverage, e.g., by installing more sensors and by posi-
tioning the sensors further apart. Reducing the spatial corre-
lation is however not required as long as it is accounted for
in the error model and error covariance matrix.

Furthermore, the pooled error model approach assumes
zero cross-correlation between the errors of the soil moisture
samples and the observational errors of the sensor measure-
ments. This assumption was satisfied as the individual soil
moisture samples were taken within a radius of 5 m around
the sensors and at different locations each time, and they
sample different soil volumes. Additionally, it is important
to note that the sensor data in a specific MZ are not cal-
ibrated with the MZ-specific samples, but instead they are
calibrated with the pooled sensor calibration, which is based
on all MZs, ensuring this observational error independence.

Finally, the error models (Eqs. 6 and 11) assume normally
distributed errors. A normal Q–Q plot with acceptable heavy
tails supports the assumption of normally distributed errors
(Fig. A5), while the distributions of the sensor-specific inter-
cepts substantiate the normal distribution of the systematic
errors (Fig. A3).

6 Application in Bayesian inverse modeling: a case
study

We present an illustrative case study of a soil water balance
parameter estimation in which the pooled error covariance
matrix is used in a Bayesian inverse modeling algorithm.
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The model is a single-layered soil water balance “bucket”
model, based on FAO-56 approaches (Allen et al., 1998),
that computes a daily soil water balance for the growing root
zone using weather data, soil, and crop parameters as input
and applies a dual crop coefficient approach. The parame-
ter estimation was performed using the Differential Evolu-
tion Adaptive Metropolis algorithm (DREAM(ZS)), which ef-
ficiently explores the parameter space through a multi-chain
Markov chain Monte Carlo (MCMC) approach. This method
ensures robust uncertainty quantification and convergence to
the posterior distribution of the estimated parameters, given
the soil moisture observations. The algorithm applies the log-
likelihood function that includes the full error covariance ma-
trix (Eq. 24) as an objective function.

L (x;µ,6)=−
n

2
ln(2π )−

1
2

ln(|6|)

−
1
2

(x−µ)T6−1 (x−µ) , (24)

where x is a vector with the model simulations, µ is a vec-
tor with the mean observations, and 6 is their corresponding
error covariance matrix.

Twelve uncertain physical model parameters were esti-
mated in DREAM(ZS) using soil moisture sensor measure-
ments and composite soil moisture samples of nine individ-
ual gouge auger samples, identical to the measurement setup
described in Sect. 2. The parameters that are estimated in-
clude the crop factors during the initial, mid-season, and end
stage (Kcb,ini, Kcb,mid, and Kcb,end, respectively), as well
as the lengths of the initial, development and mid-season
stage (Lini, Ldev and Lmid, respectively). Additionally, the
soil moisture content at field capacity (θFC), the logarithm
of the saturated hydraulic conductivity (ln(Ksat)), the curve
number (CN) for runoff estimation, the maximum groundwa-
ter table depth (zGWT,max), the maximum root depth (zr,max),
and the initial soil moisture content (θini) are estimated.

This case study focuses on the soil water balance of an
irrigated chicory field in Herent in 2023. The pooled error
covariance matrix is applied, and results are compared to the
parameter estimation where error covariance is assumed to
be zero to highlight its importance. The sensor measurements
are calibrated using the pooled sensor calibration, and the
remaining bias between soil samples and mean sensor data is
demonstrated in this case study.

Since the standard error of the composite soil moisture
sample was 12 times smaller than the total error standard
deviation of a mean sensor measurement, and a soil sample
was available every 2 weeks in contrast to the daily sensor
measurements, the weight of the sensor data and soil sam-
ples in the parameter estimation was similar on average over
the whole cropping cycle. However, the presence of sensor
error autocovariance affects how these weights influence the
parameter estimates. In Fig. 8a, the predicted SWC is shown
with its 95 % confidence interval (CI) for the configuration
in which both sensor data and soil samples are used in the

DREAM(ZS) parameter estimation while applying the pooled
error covariance matrix. Due to the high sensor error autocor-
relation of 0.518 (Table 2), the framework is able to correct
for the bias in the sensor data.

In contrast, Fig. 8b shows the predicted SWC with its 95 %
CI under the assumption of zero observational sensor error
covariance. Although the total variance of the observational
errors remained unchanged, the model uncertainty is gener-
ally larger than in Fig. 8a. Since all error variability is now
assumed to be random, soil moisture dynamics are not cap-
tured well in the model calibration (e.g., 28 June–25 July).
Additionally, the framework does not correct for the system-
atic bias in the sensor data, which is most visible during pe-
riods without a soil sample (e.g., 11 September–1 October).

7 General discussion and conclusions

In this study, a pooled error approach was presented and
illustrated using soil moisture measurement data from 93
cropping cycles in agricultural fields across Flanders, which
were used to quantify the pooled error variance, error covari-
ance, and error autocorrelation of daily soil moisture sensor
data. The pooled results apply to a sensor setup with three
TEROS 10 sensors that are located close together within a
MZ of about 80 m2 and apply to fields in the area of Flanders
with soil textures ranging from sand to silt loam. The case
study presented in Sect. 6 serves as a preview for future work
and illustrates the implementation of the pooled error covari-
ance matrix in a Bayesian inverse modeling framework.

While this paper focuses on error modeling in soil mois-
ture sensing, the proposed observational error modeling ap-
proach is applicable in various contexts characterized by
(1) spatial heterogeneity impacting point measurements,
(2) continuous measurements at fixed locations with few
repetitions and limited spatial extent due to practical con-
straints and cost considerations, and (3) reference measure-
ments representing the true average of a MZ. Such measure-
ment setups are prevalent across diverse domains and appli-
cations, including but not limited to environmental monitor-
ing, (agro)geophysical monitoring, water quality monitoring,
and agricultural management. For example, a stem water po-
tential sensor (e.g., FloraPulse) can be considered the equiv-
alent of a soil moisture sensor, providing automated high-
frequency readings but being limited to only a few sensors.
Manual stem water potential measurements are the equiva-
lent of manual soil moisture sampling, where measurements
on a sufficient number of leaves in the plot can provide a reli-
able average, but the process is too labor-intensive to perform
frequently. Similarly, sap flow sensors, which provide high-
frequency data but are expensive and show variability be-
tween trees and locations on a tree stem, need to be calibrated
with independent observations of transpiration. This calibra-
tion can be achieved through longer-term observations of wa-
ter balance components over several weeks for a MZ, yield-
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Figure 8. Predicted SWC with a 95 % CI (blue) after parameter estimation in DREAM(zs) using daily, averaged soil moisture sensor
measurements (black) and composite soil moisture samples (•) while applying the pooled error covariance matrix (a) and while assuming
zero error covariance (b).

ing only a few data points over time. In water quality moni-
toring, multi-parameter sensors for surface water, which are
expensive but provide high-frequency data, must be comple-
mented with manual water sampling and laboratory analysis.
In agrogeophysical monitoring, methods such as electrical
resistivity tomography (ERT) or electromagnetic induction
(EMI) are often used to map soil moisture variability across
agricultural fields. These methods provide spatially extensive
snapshots of subsurface conditions, but they typically require
calibration with point measurements, such as soil moisture
sensors, to improve accuracy. The pooled sensor calibration
and the MZ-specific systematic deviations between the cal-
ibrated sensor data and (unbiased) sampling data found in
this study underline once more that it is essential to consider
potential biases of the point-based sensor measurements rel-
ative to the true values when using sparse sensor networks to
calibrate these geophysical measurements. Similar to the dis-
crepancy between the soil moisture sample of the 30 cm layer
and the point measurement of the sensor at 15 cm depth, the
point measurement might not be representative for the mea-
surement resolution (both vertical and horizontal) of the geo-
physical measurement.

The proposed pooled error approach initially requires an
extensive measurement dataset but minimizes MZ-specific
measurement requirements. This approach could also be ap-
plied to identify observational errors at larger scales, such
as management zone or field level. This means that, rather
than requiring an extensive sensor network in each field or
management zone, only few sensors are required in combi-

nation with temporally sparse reference measurements. Even
with practical and budgetary limitations, this approach per-
mits the estimation of soil moisture observational errors, both
systematic and random, and permits the correct allocation of
weight and confidence to different types of measurements.
For example, in Bayesian model state and parameter estima-
tion, independent uncorrelated soil moisture samples with a
low uncertainty may have a significant impact on model bias
reduction when sensor observational errors are highly auto-
correlated, as was illustrated by the case study. A limitation
of this approach is the assumption that all MZs have equal
local heterogeneity, which might not always hold true. How-
ever, overcoming this limitation would require a denser mea-
surement network in each field, which is exactly what we are
trying to avoid. Furthermore, geophysical methods such as
ERT and EMI can be applied to quantify spatial variability in
a field, but this is typically done only once per crop cycle, of-
ten at the start before the crop is established. Integrating these
spatial geophysical data with in situ point measurements can
enhance the robustness of parameter estimation in soil hy-
drological models by providing higher data accuracy and ap-
propriate error propagation. Such joint datasets offer the ad-
vantage of capturing both spatial and temporal variations in
soil moisture, which are critical for effective irrigation man-
agement. This also raises the question of whether a sparse
sensor network within one management zone can be used to
extrapolate dynamics to other management zones or whether
a MZ is required in each management zone. Additionally,
it is important to note that sensor measurements in different
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MZs or management zones within a field could exhibit dif-
ferent spatial patterns compared to the actual conditions and
geophysical observations due to varying biases (α) between
sensors and ground truth (e.g., see Fig. 6).

In the context of Bayesian model state or parameter esti-
mation, the accuracy of the error estimates will also signifi-
cantly impact optimization results, including the uncertainty
estimate on the model state or parameter, as inaccurate error
estimates will propagate through Bayesian inference. Addi-
tionally, adoption of the pooled error approach yields an er-
ror covariance matrix that is invertible and well conditioned.
This computational attribute holds particular significance in
likelihood computation procedures, ensuring numerical sta-
bility and facilitating accurate statistical inference.

To conclude, the pooled error modeling approach facili-
tates low density in situ sensor measurement networks while
still being able to estimate soil moisture variability and er-
ror autocorrelation by assessing MZ-specific biases and ran-
dom errors. This approach is particularly relevant for agro-
geophysical studies, where understanding soil moisture dy-
namics and their uncertainty is critical for decision-making in
agriculture. Neglection of error autocorrelation is a common
but incorrect assumption when measurements have limited
spatial coverage, as was illustrated by the substantial AR of
0.518 found in this study. Future research is needed to eval-
uate the impact of this pooled error model and uncorrelated
soil moisture samples on parameter estimation in Bayesian
soil hydrological modeling. Additional work is required to
test whether the results, i.e., the error variances and autocor-
relation found in this study, are applicable in other regions,
for different land uses, or alternative setups.
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Appendix A: Additional figures

Figure A1. Perpendicular residuals after applying the orthogonal Deming regression to the sensor data (Eq. 3, Fig. 2), as a function of
SWC (a) and as a function of SWC rank (b).

Figure A2. Examples of double-cropping cycles on a certain field within 1 year that show how the mean bias (intercept) shifts after the
sensors are removed and reinstalled (blue: first cropping cycle, pink: second cropping cycle).
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Figure A3. Pair plot of the three sensor-specific intercepts of each
cropping cycle with their Pearson correlations indicated in bold.

Figure A4. If we were not to opt for an orthogonal Deming regres-
sion, but instead fit a model with the soil moisture sensor data being
the uncertain dependent variable (y) and the soil moisture sample
data (ground truth) being the independent variable (x), we would be
able to compare different models using the Akaike information cri-
terion (AIC). To determine whether a higher-degree polynomial fit
would be more appropriate, we tested a second-, third-, and fourth-
degree polynomial model. The best polynomial model was a third-
degree fit with AIC=−1571.6, while the linear model was similar
and even slightly better with AIC=−1572.3. The linear regression
model and the third-degree polynomial model are plotted.

Figure A5. Normal Q–Q plot of error residuals.

Appendix B: Statistical definition on the
autocovariance of observational sensor errors equal
to σ2

α

We can show that the autocovariance of observational er-
rors of sensor measurements is equal to the systematic error
variance σ 2

α . We start from our error model formulation in
Eq. (6): Ei,k = αk+ εi,k , where αk is the systematic error for
sensor k, and εi,k is the random error for measurement i for
sensor k. The random error is assumed to have zero mean and
to be uncorrelated so that Cov

(
εi,k,εj,k

)
= 0 for i 6= j . The

systematic error variance is σ 2
α = Var(αk).

The autocovariance for two errors Ei,k and Ej,k within the
time series of sensor k (i 6= j ) is then defined as

Cov
(
Ei,k,Ej,k

)
= Cov

(
αk + εi,k,αk + εj,k

)
. (B1)

Using the linearity of covariance, this expands to

Cov
(
Ei,k,Ej,k

)
= Cov(αk,αk)+Cov

(
αk,εj,k

)
+Cov

(
εi,k,αk

)
+Cov

(
εi,k,εj,k

)
. (B2)

We can simplify this notation. The first term is simply the
variance of α:

Cov(αk,αk)= σ 2
α . (B3)

Since αk is independent of the random error ε.,k , these co-
variances are zero:

Cov
(
αk,εj,k

)
= Cov

(
εi,k,αk

)
= 0. (B4)

Since εi,k and εj,k are uncorrelated for i 6= j , this term is
also zero:

Cov
(
εi,k,εj,k

)
= 0. (B5)

Thus, the autocovariance of observational errors for mea-
surements within a time series of a sensor k is equal to the
systematic error variance:

Cov
(
Ei,k,Ej,k

)
= σ 2

α . (B6)

https://doi.org/10.5194/soil-11-435-2025 SOIL, 11, 435–456, 2025



454 M. G. A. Hendrickx et al.: Pooled error estimation in soil moisture sensing

Appendix C: Derivation of variance of the mean
(Eqs. 15–16) and spatial correlation (Eqs. 19 and 23)

For n random variables (X1, X2, . . ., Xn), the variance of
their average is given by Eq. (C1).

Var
(
X1+X2+ . . .+Xn

n

)
=

1
n2 Var(X1+X2+ . . .+Xn) . (C1)

If the covariances between these variables are equal, i.e.,
CovXX = Cov(X1,X2)= . . .= Cov(Xn−1,Xn), the vari-
ance of the sum of the variables is given by Eq. (C2).

Var(X1 +X2+ . . .+Xn)= Var(X1)+Var(X2)

+ . . .+Var(Xn)+ (n− 1)nCovXX. (C2)

If the variances of these variables are also equal, i.e.,
σ 2
= Var(X1)= Var(X2)= . . .= Var(Xn), the variance of

the average (σ 2
mean) can be written as Eq. (C3).

σ 2
mean =

1
n2

[
nσ 2
+ (n− 1)nρσ 2

]
, (C3)

where ρ is the correlation, defined as CovXX
σ 2 . When both the

variance of the n individual variables (σ 2) and the variance
of their average (σ 2

mean) are known, the correlation can be
quantified using Eq. (C4).

ρ =
nσ 2

mean− σ
2

(n− 1)σ 2 . (C4)

The correlation between measurements of three sensors
(n= 3) can then be quantified using Eq. (C5).

ρ =
3σ 2

mean− σ
2

2σ 2 . (C5)
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