Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-1131-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/soil-11-1131-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Why a mechanistic theory of soils is crucially important: Another line of supportive argument exists, seldom invoked in soil science
Philippe C. Baveye
CORRESPONDING AUTHOR
Saint Loup Research Institute, 7 rue des chênes, La Grande Romelière, 79600 Saint Loup Lamairé, France
Cited articles
Ågren, G. I.: Investigating soil carbon diversity by combining the MAXimum ENTropy principle with the Q model, Biogeochemistry, 153, 85–94, 2021.
Amador, J. A. and Görres, J. H.: A problem-based learning approach to teaching introductory soil science, Journal of Natural Resources and Life Sciences Education, 33, 21–27, 2004.
Barton, C. D. and Karathanasis, A. D.: Measuring cation exchange capacity and total exchangeable bases in batch and flow experiments, Soil Technology, 11, 153–162, https://doi.org/10.1016/S0933-3630(97)00002-0, 1997.
Baveye, P., Jacobson, A. R., Allaire, S. E., Tandarich, J. P., and Bryant, R. B.: Whither goes soil science in the United States and Canada?, Soil Science, 171, 501–518, 2006.
Baveye, P. C.: The characterization of pyrolysed biomass added to soils needs to encompass its physical and mechanical properties, Soil Science Society of America Journal, 78, 2112–2113, 2014.
Baveye, P. C.: Bypass and hyperbole in soil research: Worrisome practices critically reviewed through examples, European Journal of Soil Science, 72, 1–20, 2021a.
Baveye, P. C.: Bypass and hyperbole in soil research: A personal view on plausible causes and possible remedies, European Journal of Soil Science, 72, 21–28, 2021b.
Baveye, P. C.: Soil health at a crossroad, Soil Use and Management, 37, 215–219, 2021c.
Baveye, P. C.: Crying wolf: The renewed “running out of soil” scare threatens meaningful soil science research, Saint Loup Research Institute Discussion Papers, 3, 1, https://www.researchgate.net/publication/359504958_Crying_wolf_The_renewed_running_out_of_soil_scare_threatens_meaningful_soil_science_research (last access: 17 December 2025), 2022.
Baveye, P. C.: Ecosystem-scale modelling of soil carbon dynamics: Time for a radical shift of perspective?, Soil Biology and Biochemistry 184, 109112, https://doi.org/10.1016/j.soilbio.2023.109112, 2023.
Baveye, P. C. and Laba, M.: Moving away from the geostatistical lamppost: Why, where, and how does the spatial heterogeneity of soils matter?, Ecological Modelling, 298, 24–38, 2015.
Baveye, P. C. and Wander, M.: The (bio) chemistry of soil humus and humic substances: Why is the “new view” still considered novel after more than 80 years?, Frontiers in Environmental Science, 7, 27, https://doi.org/10.3389/fenvs.2019.00027, 2019.
Baveye, P. C., Palfreyman, J., and Otten, W.: Research efforts involving several disciplines: adherence to a clear nomenclature is needed, Water Air & Soil Pollution, 225), 1997, https://doi.org/10.1007/s11270-014-1997-7, 2014.
Baveye, P. C., Otten, W., Kravchenko, A., Balseiro-Romero, M., Beckers, É., Chalhoub, M., Darnault, C., Eickhorst, T., Garnier, P., Hapca, S., Kiranyaz, S., Monga, O., Mueller, C.W., Nunan, N., Pot, V., Schlüter, S., Schmidt, H., and Vogel, H.-J.: Emergent properties of microbial activity in heterogeneous soil microenvironments: Different research approaches are slowly converging, yet major challenges remain, Frontiers in Microbiology, 9, 1929, https://doi.org/10.3389/fmicb.2018.01929, 2018.
Baveye, P. C., Balseiro-Romero, M., Bottinelli, N., Briones, M., Capowiez, Y., Garnier, P., Kravchenko, A., Otten, W., Pot, V., Schlüter, S., and Vogel, H. J.: Lessons from a landmark 1991 article on soil structure: distinct precedence of non-destructive assessment and benefits of fresh perspectives in soil research, Soil Research, 60, 321–336, 2022.
Baveye, P. C., Berthelin, J., Tessier, D., and Lemaire, G.: Storage of soil carbon is not sequestration: Straightforward graphical visualization of their basic differences, European Journal of Soil Science, 74, e13380, https://doi.org/10.1111/ejss.13380, 2023.
Baveye, P. C., Otten, W., and Young, I.: `Shifting gears ain't easy': Disciplinary resistances to perspective shifts in soil science and how to move forward, European Journal of Soil Science, 75, e70010, https://doi.org/10.1111/ejss.70010, 2024.
Behrens, T. and Viscarra Rossel, R. A.: On the interpretability of predictors in spatial data science: The information horizon, Scientific Reports, 10(1), 16737, 2020.
Boast, C. W.: Modeling the movement of chemicals in soils by water, Soil Science, 115, 224–230, 1973.
Bosatta, E. and Agren, G. I.: Dynamics of carbon and nitrogen in the organic matter of the soil: A generic theory, The American Naturalist, 138, 227–245, 1991.
Bosatta, E. and Ågren, G. I.: Exact solutions to the continuous-quality equation for soil organic matter turnover, Journal of Theoretical Biology, 224), 97–105, 2003.
Bouma, J.: Using soil survey data for quantitative land evaluation, Advances in Soil Science, 9, 177–213, 1989.
Bouma, J., Booltink, H. W. G., and Finke, P. A.: Use of soil survey data for modeling solute transport in the vadose zone, Journal of Environmental Quality, 25, 519–526, 1996.
Bouma, J., Bonfante, A., Basile, A., van Tol, J., Hack-ten Broeke, M. J. D., Mulder, M., Heinen, M., Rossiter, D. G., Poggio, L., and Hirmas, D. R.: How can pedology and soil classification contribute towards sustainable development as a data source and information carrier?, Geoderma, 424, 115988, https://doi.org/10.1016/j.geoderma.2022.115988, 2022.
Briones, M. J. I.: Soil fauna and soil functions: a jigsaw puzzle, Frontiers in Environmental Science, 2, https://doi.org/10.3389/fenvs.2014.00007, 2014.
Briones, M. J.: The serendipitous value of soil fauna in ecosystem functioning: the unexplained explained, Frontiers in Environmental Science, 6, 149, https://doi.org/10.3389/fenvs.2018.00149, 2018.
Buckingham, E.: Studies on the movement of soil moisture, U. S. Dep. Agric. Bur. Soils Bull., 38, 1907.
Bui, E. N.: Data-driven Critical Zone science: A new paradigm, Science of the Total Environment, 568, 587–593, 2016.
Bui, E., Henderson, B., and Viergever, K.: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia, Global Biogeochemical Cycles, 23, https://doi.org/10.1029/2009GB003506, 2009.
Cayuela, M. L., Clause, J., Frouz, J., and Baveye, P. C.: Interactive feedbacks between soil fauna and soil processes, Frontiers in Environmental Science, 8, https://doi.org/10.3389/fenvs.2020.00014, 2020.
Chalhoub, M., Garnier, P., Coquet, Y., Montagne, D., and Baveye, P. C.: Assessment of future soil ecosystem services of a drained soil under different climate change scenarios, European Journal of Soil Science, 76, e70144, https://doi.org/10.1111/ejss.70144, 2025.
Chaplot, V. and Smith, P.: Cover crops do not increase soil organic carbon stocks as much as has been claimed: What is the way forward?, Global Change Biology, 29, 6163–6169, 2023.
Chaplot, V. and Smith, P.: Cover crop studies: The need for more reliable data, Global Change Biology, 30, 17129, https://doi.org/10.1111/gcb.17129, 2024.
Chaplot, V., Baveye, P., Guenon, R., Le Guyader, E., Minasny, B., and Srivastava, A. K.: Biochars improve agricultural production: The evidence base is limited, Pedosphere, 35, 295–298, 2025.
Chen, S., Arrouays, D., Angers, D. A., Chenu, C., Barré, P., Martin, M. P., Saby, N. P., and Walter, C.: National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones, Science of the Total Environment, 666, 355–367, https://doi.org/10.1016/j.scitotenv.2019.02.249, 2019.
Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S., and Lu, X.: A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling, Journal of Advances in Modeling Earth Systems, 11, 2996–3023, https://doi.org/10.1029/2019MS001784, 2019.
Fourcade, Y., Besnard, A. G., and Secondi, J.: Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics, Global Ecology and Biogeography, 27, 245–256, 2018.
Garland, G., Koestel, J., Johannes, A., Heller, O., Doetterl, S., Or, D., and Keller, T.: Perspectives on the misconception of levitating soil aggregates, SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, 2024.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.: Global mapping of soil water characteristics parameters—fusing curated data with machine learning and environmental covariates, Remote Sensing, 14, 1947, https://doi.org/10.3390/rs14081947, 2022.
Harris, J. A., Evans, D. L., and Mooney, S. J.: A new theory for soil health, European Journal of Soil Science, 73, e13292, https://doi.org/10.1111/ejss.13292, 2022.
Hashimoto, S., Bruni, E., Ťupek, B., Yamashita, N., Toriyama, J., Mori, T., Imaya, A., Guenet, B., Ito, A., and Lehtonen, A.: Mining global soil carbon datasets: can modern machine learning uncover the missing pieces of process-based models?, Environmental Research Letters, 20, 101003, https://doi.org/10.1088/1748-9326/adfe83, 2025.
Hazard, C., Anantharaman, K., Hillary, L. S., Neri, U., Roux, S., Trubl, G., Williamson, K., Pett-Ridge, J., Nicol, G. W., and Emerson, J. B.: Beneath the surface: Unsolved questions in soil virus ecology, Soil Biology and Biochemistry, 205, 109780, https://doi.org/10.1016/j.soilbio.2025.109780, 2025.
Hueting, R.: Wat is de natuur ons waard? Een econoom over milieuverslechtering, Amsterdam: Het wereldvenster/barn, Wereldvenster, Amsterdam, the Netherlands, 1970.
Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., and Verheijen, F.: Biochar boosts tropical but not temperate crop yields, Environmental Research Letters, 12, 053001, https://doi.org/10.1088/1748-9326/aa67bd, 2017.
Kemgue, A. T., Monga, O., Moto, S., Pot, V., Garnier, P., Baveye, P. C., and Bouras, A.: From spheres to ellipsoids: Speeding up considerably the morphological modeling of pore space and water retention in soils, Computers & Geosciences, 123, 20–37, 2019.
Lee, S., Sorensen, J. W., Walker, R. L., Emerson, J. B., Nicol, G. W., and Hazard, C.: Soil pH influences the structure of virus communities at local and global scales, Soil Biology and Biochemistry, 166, 108569, https://doi.org/10.1016/j.soilbio.2022.108569, 2022.
Letey, J.: The study of soil structure-science or art, Soil Research, 29, 699–707, 1991.
Lin, H.: Hydropedology: Bridging disciplines, scales, and data, Vadose Zone Journal, 2, 1–11, 2003.
Marquet, P. A., Allen, A. P., Brown, J. H., Dunne, J. A., Enquist, B. J., Gillooly, J. F., Gowaty, P. A., Green, J. L., Harte, J., Hubbell, S. P., and O'Dwyer, J., Okie, J. G., Ostling, A., Ritchie, M., Storch, D., and West, G. B.: On theory in ecology, BioScience, 64, 701–710, https://doi.org/10.1093/biosci/biu098, 2014.
Mbé, B., Monga, O., Pot, V., Otten, W., Hecht, F., Raynaud, X., Nunan, N., Chenu, C., Baveye, P. C., and Garnier, P.: Scenario modelling of carbon mineralization in 3D soil architecture at the microscale: Toward an accessibility coefficient of organic matter for bacteria, European Journal of Soil Science, 73, e13144, https://doi.org/10.1111/ejss.13144, 2022.
Minasny, B. and McBratney, A. B.: Machine learning and artificial intelligence applications in soil science, European Journal of Soil Science, 76, e70093, https://doi.org/10.1111/ejss.70093, 2025.
Mokady, R. S. and Bresler, E.: Reduced sodium exchange capacity in unsaturated flow, Soil Science Society of America Journal, 32, 463–467, https://doi.org/10.2136/sssaj1968.03615995003200040015x, 1968.
Neal, A.: The theory of soil, AWE International, https://www.awe.international/article/1841384/theory-soil (last access: 17 December 2025), 2021.
Neal, A. L., Bacq-Labreuil, A., Zhang, X., Clark, I. M., Coleman, K., Mooney, S. J., Ritz, K., and Crawford, J. W.: Soil as an extended composite phenotype of the microbial metagenome, Scientific Reports, 10, 10649, https://doi.org/10.1038/s41598-020-67631-0, 2020.
Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, 2017.
Myrold, D. D., Zeglin, L. H., and Jansson, J. K.: The potential of metagenomic approaches for understanding soil microbial processes, Soil Science Society of America Journal, 78, 3–10, 2014.
Narasimhan, T. N.: Central ideas of Buckingham (1907): A century later, Vadose Zone Journal, 6, 687–693, 2007.
Niemelä, J.: Is there a need for a theory of urban ecology?, Urban Ecosystems, 3, 57–65, 1999.
Nimmo, J. R. and Landa, E. R.: The soil physics contributions of Edgar Buckingham, Soil Science Society of America Journal, 69, 328–342, 2005.
Norouzi, S., Pesch, C., Arthur, E., Norgaard, T., Moldrup, P., Greve, M. H., Beucher, A. M., Sadeghi, M., Zaresourmanabad, M., Tuller, M., and Iversen, B. V.: Physics-informed neural networks for estimating a continuous form of the soil water retention curve from basic soil properties, Water Resources Research, 61, e2024WR038149, https://doi.org/10.1029/2024WR038149, 2025.
Or, D.: Who invented the tensiometer?, Soil Science Society of America Journal, 65, 1–3, 2001.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Fernández-Ugalde, O.: LUCAS Soil, the largest expandable soil dataset for Europe: A review, European Journal of Soil Science, 69, 140–153, 2018.
Pachepsky, Y. A., Rawls, W. J., and Lin, H. S.: Hydropedology and pedotransfer functions, Geoderma, 131, 308–316, 2006.
Pot, V., Gerke, K. M., Ebrahimi, A., Garnier, P., and Baveye, P. C.: Microscale modelling of soil processes: Recent advances, challenges, and the path ahead, Frontiers in Environmental Science, 9, 818038, https://doi.org/10.3389/fenvs.2021.818038, 2021.
Pot, V., Portell, X., Otten, W., Garnier, P., Monga, O., and Baveye, P. C.: Accounting for soil architecture and microbial dynamics in microscale models: Current practices in soil science and the path ahead, European Journal of Soil Science, 73, e13142, https://doi.org/10.1016/j.jhydrol.2017.10.021, 2022a.
Pot, V., Portell, X., Otten, W., Garnier, P., Monga, O., and Baveye, P. C.: Understanding the joint impacts of soil architecture and microbial dynamics on soil functions: Insights derived from microscale models, European Journal of Soil Science, 73, e13256, https://doi.org/10.1111/ejss.13256, 2022b.
Pratama, A. A. and Van Elsas, J. D.: The `neglected' soil virome: Potential role and impact, Trends in Microbiology, 26, 649–662, 2018.
Pulleman, M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Peres, G., and Rutgers, M.: Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches, Current Opinion in Environmental Sustainability, 4, 529–538, 2012.
Ray, C., Boast, C. W., Ellsworth, T., and Valocchi, A. J.:. Simulation of the impact of agricultural management practices on chemical transport in macroporous soils, Transactions of the ASAE, 39, 1697–1707, 1996.
Rentschler, T. and Scholten, T.: A note on spurious correlations and explainable machine learning in digital soil mapping, European Journal of Soil Science, 76, e70172, 2025.
Salam, A.: Unification of Fundamental Forces, Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/CBO9780511622854, 1990.
Schimel, J.: Modeling ecosystem-scale carbon dynamics in soil: the microbial dimension, Soil Biology and Biochemistry, 178, 108948, https://doi.org/10.1016/j.soilbio.2023.108948, 2023.
Scheiner, S. M. and Willig, M. R.: A general theory of ecology, Theoretical Ecology, 1, 21–28, 2008.
Schnee, L. S., Knauth, S., Hapca, S., Otten, W., and Eickhorst, T.: Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat, Plant and Soil, 408, 357–368, 2016.
Simonson, R. W.: Shifts in the usefulness of soil resources in the USA, Agriculture, 23, 11–15, 1966.
Sumner, M. E. and Miller, W. P.: Cation exchange capacity and exchange coefficients, in: Methods of soil analysis: Part 3 Chemical methods, 5, ISBN-10 0-89118-825-8, 1201–1229, 1996.
Teodosio, B., Wasantha, P. L. P., Yaghoubi, E., Guerrieri, M., van Staden, R., and Fragomeni, S.: Application of artificial intelligence in reactive soil research: A scientometric analysis, Geotechnical and Geological Engineering, 43, 145, https://doi.org/10.1007/s10706-025-03097-z, 2025.
Uxa, T.: When statistical learning violates physics: An extensive mismatch in soil temperature–depth relationships in global maps of soil temperature, Global Change Biology, 31, e70754, https://doi.org/10.1111/gcb.70574, 2025.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., and Genuchten, M. T. V.: Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review, Vadose Zone Journal, 9, 795–820, 2010.
Vereecken, H., Schnepf, A., Hopmans, J., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M., Amelung, W., Aitkenhead, M., Allison, S., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H., Heppell, J., Horn, R., Huisman, J., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S., Vogel, H., Vrugt, J., Wöhling, T., and Young, I.: Modeling soil processes: Review, key challenges, and new perspectives, Vadose Zone Journal, 15, vzj2015-09, https://doi.org/10.2136/vzj2015.09.0131, 2016.
Vogel, H. J., Balseiro-Romero, M., Kravchenko, A., Otten, W., Pot, V., Schlüter, S., Weller, U., and Baveye, P. C.: A holistic perspective on soil architecture is needed as a key to soil functions, European Journal of Soil Science, 73, e13152, https://doi.org/10.1111/ejss.13152, 2022.
Wadoux, A. M. C.: Artificial intelligence in soil science, European Journal of Soil Science, 76, e70080, https://doi.org/10.1111/ejss.70080, 2025.
Wadoux, A. M. C., Samuel-Rosa, A., Poggio, L., and Mulder, V. L.: A note on knowledge discovery and machine learning in digital soil mapping, European Journal of Soil Science, 71, 133–136, 2020.
Wadoux, A. M. C., Román-Dobarco, M., and McBratney, A. B.: Perspectives on data-driven soil research, European Journal of Soil Science, 72, 1675–1689, 2021.
Wagenet, R. J., Baveye, P., and Stewart, B. A.: Interacting processes in soil science, CRC Press, Bocca Raton, Florida, USA, ISBN 0-87371-889-5, 1992.
Wang, D., Fonte, S. J., Parikh, S. J., Six, J., and Scow, K. M.: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates, Geoderma, 303, 110–117, 2017.
Wang, Y., Shi, L., Hu, X., Song, W., and Wang, L.: Multiphysics-informed neural networks for coupled soil hydrothermal modelling, Water Resources Research, 59, e2022WR031960, https://doi.org/10.1029/2022WR031960, 2023.
Weihermüller, L., Lehmann, P., Herbst, M., Rahmati, M., Verhoef, A., Or, D., Jacques, D., and Vereecken, H.: Choice of pedotransfer functions matters when simulating soil water balance fluxes, Journal of Advances in Modeling Earth Systems, 13, e2020MS002404, https://doi.org/10.1029/2020MS002404, 2021.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model, Vadose Zone Journal, 8, 86–95, 2009.
Short summary
The objective of this Forum article is to argue that one of the key justifications for developing theories and models of soil processes is that these theories are needed to determine what it is relevant to measure in soils. Without these theories and models to guide us, in particular if we rely on machine-learning and artificial intelligence methods to make progress, we are navigating in the dark, and are likely to base decisions on mere correlations that do not reflect true mechanisms.
The objective of this Forum article is to argue that one of the key justifications for...
Special issue