Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term pig manure application increases SOC through aggregate protection and Fe-C associations in a subtropical red soil (Udic Ferralsols)
Hui Rong
Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing 100093, China
Zhangliu Du
Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Weida Gao
Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing 100093, China
Lixiao Ma
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Xinhua Peng
State Key Laboratory of Efficient Utilization of Arable Land in China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yuji Jiang
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
Demin Yan
College of Criminal Science and Technology, Nanjing Police College, Nanjing 210023, China
Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Land Science and Technology, China Agricultural University, Beijing 100093, China
Cited articles
Álvaro-Fuentes, J., Franco-Luesma, S., Lafuente, V., Sen, P., Usón, A., Cantero-Martínez, C., and Arrúe, J. L.: Stover management modifies soil organic carbon dynamics in the short-term under semiarid continuous maize, Soil Till. Res., 213, 105143, https://doi.org/10.1016/j.still.2021.105143, 2021.
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., and Chabbi, A.: Towards a global-scale soil climate mitigation strategy, Nat. Commun., 11, 5427, https://doi.org/10.1038/s41467-020-18887-7, 2020.
Bai, X. X., Tang, J., Wang, W., Ma, J. M., Shi, J., and Ren, W.: Organic amendment effects on cropland soil organic carbon and its implications: A global synthesis, Catena, 231, 107343, https://doi.org/10.1016/j.catena.2023.107343, 2023.
Baldock, J. A., Oades, J. M., Nelson, P. N., Skene, T. M., Golchin, A., and Clarke, P.: Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy, Soil Res., 35, 1061–1084, https://doi.org/10.1071/S97004, 1997.
Benbi, D. K., Boparai, A. K., and Brar, K.: Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter, Soil Biol. Biochem., 70, 183–192, https://doi.org/10.1016/j.soilbio.2013.12.032, 2014.
Cambardella, C. A. and Elliott, E. J.: Particulate soil organic-matter changes across a grassland cultivation sequence, Soil Sci. Soc. Am. J., 5, 777–783, https://doi.org/10.2136/sssaj1992.03615995005600030017x, 1992.
Chen, C. M. and Sparks, D. L.: Multi-elemental scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy assessment of organo-mineral associations in soils from reduced environments, Environ. Chem., 12, 64–73, https://doi.org/10.1071/EN14042, 2015.
Chen, M., Zhang, S., and Liu, L.: Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil, Plant Soil, 474, 233–249, https://doi.org/10.1007/s11104-022-05326-3, 2022.
Chenu, C., Angers, D. A., Barre, P., Derrien, D., Arrouays, D., and Balesdent, J.: Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations, Soil Till. Res., 188, 41–52, https://doi.org/10.1016/j.still.2018.04.011, 2019.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nature Geosci., 12, 989–996, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Dennis, P. G., Miller, A. J., and Hirsch, P. R.: Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?, FEMS Microbiol. Ecol., 72, 313–327, https://doi.org/10.1111/j.1574-6941.2010.00860.x, 2010.
Du, Z. L., Han, X., and Guo, L. P.: Changes in soil organic carbon concentration, chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China, Can. J. Soil Sci., 98, 91–102, https://doi.org/10.1139/cjss-2017-0045, 2017.
Eusterhues, K., Rumpel, C., and Kögel-Knabner, I.: Organo-mineral association in sandy acid forest soils: importance of specific surface area, iron oxides and micropores, Eur. J. Soil Sci., 56, 753–763, https://doi.org/10.1111/j.1365-2389.2005.00710.x, 2005.
Gao, Q. Q., Ma, L. X., Fang, Y. Y., Zhang, A. P., Li, G. C., Wang, J. J., Wu, D., Wu, W. L., and Du, Z. L.: Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile, Sci. Total Environ., 762, 143116, https://doi.org/10.1016/j.scitotenv.2020.143116, 2021.
Gao, W. D., Zhou, T. Z., and Ren, T. S.: Conversion from conventional to no tillage alters thermal stability of orga-nic matter in soil aggregates, Soil Sci. Soc. Am. J., 79, 585–594, https://doi.org/10.2136/sssaj2014.08.0334. 2015.
Garten, C. T. and Wullschleger, S. D.: Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis, J. Environ. Qual., 29, 645–653, https://doi.org/10.2134/jeq2000.00472425002900020036x, 2000.
Gong, W., Yan, X. Y., Wang, J. Y., Hu, T. X., and Gong, Y. B.: Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat–maize cropping system in northern China, Geoderma, 149, 318–324, https://doi.org/10.1016/j.geoderma.2008.12.010, 2009.
Guo, Z. C., Zhang, J. B, Fan, J., Yang, X. Y., Yi, Y. L., Han, X. R., Wang, D. Z., Zhu, P., and Peng, X. H.: Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments, Sci. Total Environ., 660, 1029–1037, https://doi.org/10.1016/j.scitotenv.2019.01.051, 2019.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton, T. I., Derry, L. A., and Galy, V.: Mineral protection regulates long-term preservation of natural organic carbon, Nature, 570, 2717–2726, https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hou, Y. H., Chen, Y., Chen, X., He, K., and Zhu, B.: Changes in soil organic matter stability with depth in two alp-ine ecosystems on the Tibetan Plateau, Geoderma, 351, 153–162, https://doi.org/10.1016/j.geoderma.2019.05.034, 2019.
Huang, X., Feng, C., and Zhao, G.: Carbon Sequestration Potential Promoted by Oxalate Extractable Iron Oxides through Organic Fertilization, Soil Sci. Soc. Am. J., 81, 1359–1370, https://doi.org/10.2136/sssaj2017.02.0068, 2017.
Jiang, Y. J., Zhou, H., Chen, L. J., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X. Y., Liu, M., Li, H. X., Peng, X. H., and Sun, B.: Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates, Front Microbiol., 9, 2803, https://doi.org/10.3389/fmicb.2018.02803, 2018.
Kleber, M., Mikutta, R., Torn, M. S., and Jahn, R.: Poorly crystalline mineral phases protect organic matter in acid subsoil horizons, Eur. J. Soil Sci., 717–725, https://doi.org/10.1111/j.1365-2389.2005.00706.x, 2005.
Kleber, M., Bourg, I. C., Coward, E. K., Hamsel, C. M., Myneni, S. C. B., and Nunan, N.: Dynamic interactions at the mineral-organic matter interface, Nat. Rev. Earth Environ., 2, 402–421, https://doi.org/10.1038/s43017-021-00162-y, 2021.
Kögel-Knabner, I.: 13C and 15N NMR spectroscopy as a tool in soil organic matter studies, Geoderma, 80, 243–270, https://doi.org/10.1016/S0016-7061(97)00055-4, 1997.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lan, Z. J., Shan, J., Huang, Y., Liu, X. M., Lv, Z. Z., Ji, J. H., Hou, H. Q., Xia, W. J., and Liu, Y. R.: Effects of long-term manure substitution regimes on soil organic carbon composition in a red paddy soil of southern China, Soil Till. Res., 221, 105395, https://doi.org/10.1016/j.still.2022.105395, 2022.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Glob. Chang Biol., 26, https://doi.org/10.1111/gcb.14859, 2019.
Le Bissonnais, Y.: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology, Eur. J. Soil Sci., 47, 425–437, https://doi.org/10.1111/j.1365-2389.1996.tb01843.x, 1996.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Li, J., Wen, Y., Li, X., Li, Y., Yang, X., Lin, Z., Song, Z., Cooper, J., and Zhao, B.: Soil labile organic carbon fractions and soil organic carbon stocks as affected by longterm organic and mineral fertilization regimes in the North China Plain, Soil Till. Res., 175, 281–290, https://doi.org/10.1016/j.still.2017.08.008, 2018.
Li, Z. Q., Zhao, B. Z., Wang, Q., Cao, X. Y., and Zhang, J. B.: Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies, PLoS One, 10, e0124359, https://doi.org/10.1371/journal.pone.0124359, 2015.
Lian, T. X., Wang, G. H., Yu, Z. H., Li, Y. S., Liu, X. B., and Jin, J.: Carbon input from 13C-labelled soybean residues in particulate organic carbon fractions in a Mollisol, Biol. Fertil. Soils, 52, 331–339, https://doi.org/10.1007/s00374-015-1080-6, 2015.
Liang, C., Schimel, J. P., and Jastrow, J. D.: The importance of anabolism in microbial control over soil carbon storage, Nat. Microbiol., 2, 1–6, https://doi.org/10.1038/nmicrobiol.2017.105, 2017.
Liu, S. B., Wang, J. Y., Pu, S. Y., Blagodatskaya, E., Kuzyakov, Y., and Razavi, B. S.: Impact of manure on soil biochemical properties: A global synthesis, Sci. Total Environ., 745, 141003, https://doi.org/10.1016/j.scitotenv.2020.141003, 2020.
Mitchell, E., Scheer, C., Rowlings, D., Contrufo, F., Conant, R. T., and Grace, P.: Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands, Glob. Change Bio., 27, 5383–5391, https://doi.org/10.1111/gcb.15807, 2021.
Mustafa, A., Xu, H., Shah, S. A. A., Abrar, M. M., Maitlo, A. A., Kubar, K. A., Saeed, Q., Kamran, M., Naveed, M., Wang, B. R., Sun, N., and Xu, M. G.: Long-term fertilization alters chemical composition and stability of aggregate-associated organic carbon in a Chinese red soil: evidence from aggregate fraction, C mineration, and 13C NMR analyses, J. Soil Sediment., 21, 2483–2496, https://doi.org/10.1007/s11368-021-02944-9, 2021.
Nichitha, C. V., Raghaven, S., Champa, B. V., Ganapathi, G., Sudarshan, V., Nandita, S., Ravikumar, D., and Nagaraja, M. S.: Role of organic manures on soil carbon stocks and soil enzyme activities in intensively managemend ginger production systems, Int. J. Recycl. Org. Waste Agric., 1579, https://doi.org/10.30486/IJROWA.2023.1977064.1579, 2023.
Pausch, J. and Kuzyakov, Y.: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem cell, Global Change Biol., 24, 1–12, https://doi.org/10.1111/gcb.13850, 2018.
Peng, X. Y., Huang, Y., Duan, X. W., Yang, H., and Liu, J. X.: Particulate and mineral-associated organic carbon fractions reveal the roles of soil aggregates under different land-use types in a karst faulted basin of China, Catena, 220, 106721, https://doi.org/10.1016/j.catena.2022.106721, 2023.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biol. Biochem., 125, 10–26, https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Ruiz, F., Rumpel, C., Dignac, M.-F., Baudin, F., and Ferreira, T. O.: Combing thermal analyses and wet-chemical extractions to assess the stability of mixed-nature soil orgnaic matter, Soil Biol. Biochem., 187, 109216, https://doi.org/10.1016/j.soilbio.2023.109216, 2023.
Ruiz, F., Bernardino, A. F., Queiroz, H. M., Otero, X. L., Rumpel, C., and Ferreira, T. O.: Iron's role in soil organic carbon (de)stabilization in mangroves under land use change, Nat. Commun., 10433, https://doi.org/10.1038/s41467-024-54447-z, 2024.
Siewert, C.: Rapid screening of soil properties using thermogravimetry, Soil Sci. Soc. Am. J. 68, 1656–1661, https://doi.org/10.2136/sssaj2004.1656, 2004.
Simpson, M. J. and Simpson, A. J.: The chemical ecology of soil organic matter molecular constituents, J. Chem. Ecol., 38, 768–784, https://doi.org/10.1007/s10886-012-0122-x, 2012.
Six, J., Elliot, E. T., and Paustian, K.: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestratioin under no-tillage agriculture, Soil Biol. Biochem., 32, 2099–2103, https://doi.org/10.1016/S0038-0717(00)00179-6, 2000.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil organic matter: Implications for C-saturated of soils, Plant Soil, 241, 155–176, https://doi.org/10.1023/A:1016125726789, 2002.
Soil Survey Staff: Soil survey laboratory information manual. Soil survey investigations report No. 45, version 2.0, edited by: Burt, R., U.S. Department of Agriculture, Natural Resources Conservation Service, https://www.nrcs.usda.gov/sites/default/files/2022-10/SSIR45.pdf (last access: 15 May 2025), 2011.
Song, X. X., Wang, P., van Z, L., Bolan, N., Wang, H. L., Li, X. M., Cheng, K., Yang, Y., Wang, M., Liu, T. X., and Li, F. B.: Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation, Carbon Research, 1, 5, https://doi.org/10.1007/s44246-022-00008-2, 2022.
Tokarski, D., Kučerík, J., Kalbitz, K., Demyan, M. S., Merbach, I., Barkusky, D., Ruehlmann, J., and Siewert, C.: Contribution of organic amendments to soil organic matter detected by thermogravimetry, J. Plant Nutr. Soil Sci., 181, 664–674, https://doi.org/10.1002/jpln.201700537, 2018.
Vithana, C. L., Sullivan, L. A., Burton, E. D., and Bush, R. T.: Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation, Geoderma, 239–240, 47–57, https://doi.org/10.1016/j.geoderma.2014.09.022, 2015.
Volkov, D. S., Rogova, O. B., Proskurnin, M. A., Farkhodov, Y. R., and Markeeva, L. B.: Thermal stability of organic matter of typical chernozems under different land uses, Soil Till. Res., 197, 104500, https://doi.org/10.1016/j.still.2019.104500, 2020.
Wang, S. B., Hu, K. L., Feng, P. Y., Wei, Q., and Leghari, S. J.: Determining the effects of organic manure substitution on soil pH in Chinese vegetable fields: a meta-analysis, J. Soil. Sediment, 23, 118–130, https://doi.org/10.1007/s11368-022-03330-9, 2023.
Wang, P., Wang, J., and Zhang, H.: The role of iron oxides in the preservation of soil organic matter under long-term fertilization, J. Soils Sediments, 19, 588–598, https://doi.org/10.1007/s11368-018-2085-1, 2019.
Wu, J. J., Zhang, H., Pan, Y. T., Cheng, X. L., Zhang, K. R., and Liu G. H.: Particulate organic carbon is more sensitive to nitrogen addition than mineral-associated organic carbon: A meta-analysis, Soil Till. Res., 232, 105770, https://doi.org/10.1016/j.still.2023.105770, 2023.
Yan, X., Zhou, H., Zhu, Q. H., Wang, X. F., Zhang, Y. Z., Yu, X. C., and Peng, X. H.: Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China, Soil Till. Res., 130, 42–51, https://doi.org/10.1016/j.still.2013.01.013, 2013.
Zhang, B. Y., Dou, S., Guo, D., and Guan, S.: Straw inputs improve soil hydrophobicity and enhance organic carbon mineralization, Agronomy, 13, 2618, https://doi.org/10.3390/agronomy13102618, 2023.
Zhang, J. C., Zhang, L., Wang, P., Huang, Q. W., Yu, G. H., Li, D. C., Shen, Q. R., and Ran, W.: The role of non-crystalline Fe in the increase of SOC after long-term organic manure application to the red soil of southern China, Eur. J. Soil Sci., 64, 797–804, https://doi.org/10.1111/ejss.12104, 2013.
Zhou, H., Fang H., Zhang, Q., Wang, Q., Chen, C., Mooney, S. J., Peng, X. H., and Du, Z. L.: Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam, Eur. J. Soil Sci., 70, 291–300, https://doi.org/10.1111/ejss.12732, 2019.
Zhou, P., Pan, G. X., Spaccini, R., and Piccolo, A.: Molecular changes in particulate organic matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments, Eur. J. Soil Sci., 61, 231–242, https://doi.org/10.1111/j.1365-2389.2009.01223.x, 2010.
Zou, Z. C., Ma, L. X., Wang, X., Chen, R. R., Jones, D. L., Bol, R., Wu, D., and Du, Z. L.: Decadal application of mineral fertilizers alters the molecular composition and origins of organic matter in particulate and mineral-associated fractions, Soil Biol. Biochem., 182, 109042, https://doi.org/10.1016/j.soilbio.2023.109042, 2023.
Short summary
How can carbon be stored in red soils? Our 18-yr manure application reveals that applying manure stabilizes soil carbon through two key mechanisms: it helps soil particles clump together, physically shielding the carbon, and it improves soil conditions to promote minerals that act like glue, binding the carbon chemically. This research provides a sustainable strategy for enhancing soil fertility and mitigating climate change.
How can carbon be stored in red soils? Our 18-yr manure application reveals that applying manure...