Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-1029-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-1029-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil carbon accrual and biopore formation across a plant diversity gradient
Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
Institute of Plant Environmental Science, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
Maik Geers-Lucas
Department of Soil Science, Technische Universität Berlin, Berlin, Germany
G. Philip Robertson
Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
Alexandra N. Kravchenko
Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
Related authors
No articles found.
Matthew A. Belanger, Carmella Vizza, G. Philip Robertson, and Sarah S. Roley
SOIL, 7, 47–52, https://doi.org/10.5194/soil-7-47-2021, https://doi.org/10.5194/soil-7-47-2021, 2021
Short summary
Short summary
Soil health is often assessed by re-wetting a dry soil and measuring CO2 production, but the potential bias introduced by soils of different moisture contents is unclear. Our study found that wetter soil tended to lose more carbon during drying than drier soil, thus affecting soil health interpretations. We developed a correction factor to account for initial soil moisture effects, which future studies may benefit from adapting for their soil.
Cited articles
Banfield, C. C., Dippold, M. A., Pausch, J., Hoang, D. T., and Kuzyakov, Y.: Biopore history determines the microbial community composition in subsoil hotspots, Biology and Fertility of Soils, 53, 573–588, https://doi.org/10.1007/s00374-017-1201-5, 2017.
Banfield, C. C., Pausch, J., Kuzyakov, Y., and Dippold, M. A.: Microbial processing of plant residues in the subsoil–The role of biopores, Soil Biology and Biochemistry, 125, 309–318, https://doi.org/10.1016/j.soilbio.2018.08.004, 2018.
Bargaz, A., Noyce, G. L., Fulthorpe, R., Carlsson, G., Furze, J. R., Jensen, E. S., Dhiba, D., and Isaac, M. E.: Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency, Applied Soil Ecology, 120, 179–188, https://doi.org/10.1016/j.apsoil.2017.08.011, 2017.
Beare, R., Lowekamp, B., and Yaniv, Z.: Image segmentation, registration and characterization in R with SimpleITK, Journal of Statistical Software, 86, https://doi.org/10.18637/jss.v086.i08, 2018.
Berhongaray, G., Cotrufo, F. M., Janssens, I. A., and Ceulemans, R.: Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation, Plant and Soil, 434, 363–378, https://doi.org/10.1007/s11104-018-3850-z, 2019.
Blackwell, P., Green, T., and Mason, W.: Responses of biopore channels from roots to compression by vertical stresses, Soil Science Society of America Journal, 54, 1088–1091, https://doi.org/10.2136/sssaj1990.03615995005400040027x, 1990.
Bolte, A. and Villanueva, I.: Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.), European Journal of Forest Research, 125, 15–26, https://doi.org/10.1007/s10342-005-0075-5, 2006.
Chen, H., Mommer, L., Van Ruijven, J., De Kroon, H., Fischer, C., Gessler, A., Hildebrandt, A., Scherer-Lorenzen, M., Wirth, C., and Weigelt, A.: Plant species richness negatively affects root decomposition in grasslands, Journal of Ecology, 105, 209–218, https://doi.org/10.1111/1365-2745.12650, 2017.
Cotrufo, M. F., Haddix, M. L., Kroeger, M. E., and Stewart, C. E.: The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter, Soil Biology and Biochemistry, 168, 108648, https://doi.org/10.1016/j.soilbio.2022.108648, 2022.
Dexter, A.: Model experiments on the behaviour of roots at the interface between a tilled seed-bed and a compacted sub-soil: III. Entry of pea and wheat roots into cylindrical biopores, Plant and Soil, 95, 149–161, https://doi.org/10.1007/BF02378860, 1986.
Díaz, S. and Cabido, M.: Vive la différence: plant functional diversity matters to ecosystem processes, Trends in Ecology & Evolution, 16, 646–655, https://doi.org/10.1016/S0169-5347(01)02283-2, 2001.
Domeignoz-Horta, L. A., Cappelli, S. L., Shrestha, R., Gerin, S., Lohila, A. K., Heinonsalo, J., Nelson, D. B., Kahmen, A., Duan, P., and Sebag, D.: Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils, Nature Communications, 15, 8065, https://doi.org/10.1038/s41467-024-52449-5, 2014.
Eisenhauer, N., Milcu, A., Sabais, A. C., Bessler, H., Weigelt, A., Engels, C., and Scheu, S.: Plant community impacts on the structure of earthworm communities depend on season and change with time, Soil Biology and Biochemistry, 41, 2430–2443, https://doi.org/10.1016/j.soilbio.2009.09.001, 2009.
Eisenhauer, N., Lanoue, A., Strecker, T., Scheu, S., Steinauer, K., Thakur, M. P., and Mommer, L.: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass, Scientific Reports, 7, 1–8, https://doi.org/10.1038/srep44641, 2017.
Fornara, D. and Tilman, D.: Plant functional composition influences rates of soil carbon and nitrogen accumulation, Journal of Ecology, 96, 314–322, https://doi.org/10.1111/j.1365-2745.2007.01345.x, 2008.
Gersani, M., Brown, J. S., O'Brien, E. E., Maina, G. M., and Abramsky, Z.: Tragedy of the commons as a result of root competition, Journal of Ecology, 89, 660–669, https://doi.org/10.1046/j.0022-0477.2001.00609.x, 2001.
Guhra, T., Stolze, K., and Totsche, K. U.: Pathways of biogenically excreted organic matter into soil aggregates, Soil Biology and Biochemistry, 164, 108483, https://doi.org/10.1016/j.soilbio.2021.108483, 2022.
Halli, H. M., Govindasamy, P., Choudhary, M., Srinivasan, R., Prasad, M., Wasnik, V. K., Yadav, V., Singh, A. K., Kumar, S. , Vijay, D., and Pathak, H: Range grasses to improve soil properties, carbon sustainability, and fodder security in degraded lands of semi-arid regions, Science of The Total Environment, 851, 158211, https://doi.org/10.1016/j.scitotenv.2022.158211, 2022.
Helliwell, J. R., Sturrock, C. J., Grayling, K. M., Tracy, S. R., Flavel, R., Young, I., Whalley, W., and Mooney, S. J.: Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: a review, European Journal of Soil Science, 64, 279–297, https://doi.org/10.1111/ejss.12028, 2013.
Hoang, D. T., Pausch, J., Razavi, B. S., Kuzyakova, I., Banfield, C. C., and Kuzyakov, Y.: Hotspots of microbial activity induced by earthworm burrows, old root channels, and their combination in subsoil, Biology and Fertility of Soils, 52, 1105–1119, https://doi.org/10.1007/s00374-016-1148-y, 2016.
Kautz, T.: Research on subsoil biopores and their functions in organically managed soils: A review, Renewable Agriculture and Food Systems, 30, 318–327, https://doi.org/10.1017/S1742170513000549, 2015.
Keller, A. B., Brzostek, E. R., Craig, M. E., Fisher, J. B., and Phillips, R. P.: Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type, Ecology Letters, 24, 626–635, https://doi.org/10.1111/ele.13651, 2021.
Kim, K., Gil, J., Ostrom, N. E., Gandhi, H., Oerther, M. S., Kuzyakov, Y., Guber, A. K., and Kravchenko, A. N.: Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere, Soil Biology and Biochemistry, 166, 108565, https://doi.org/10.1016/j.soilbio.2022.108565, 2022.
Kravchenko, A., Guber, A., Razavi, B., Koestel, J., Quigley, M., Robertson, G., and Kuzyakov, Y.: Microbial spatial footprint as a driver of soil carbon stabilization, Nature Communications, 10, 3121, https://doi.org/10.1038/s41467-019-11057-4, 2019.
Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: concept & review, Soil Biology and Biochemistry, 83, 184–199, https://doi.org/10.1016/j.soilbio.2015.01.025, 2015.
Kuzyakov, Y. and Kooch, Y. (Eds.): Earthworm Biopores for Transport and Nutrient Cycling, in: Earthworms and Ecological Processes, Springer, https://doi.org/10.1007/978-3-031-64510-5_16, pp. 417-432, 2024.
Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., and Scheu, S.: Plant diversity increases soil microbial activity and soil carbon storage, Nature Communications, 6, 6707, https://doi.org/10.1038/ncomms7707, 2015.
Larnaudie, V., Ferrari, M. D., and Lareo, C.: Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability, Renewable and Sustainable Energy Reviews, 158, 112115, https://doi.org/10.1016/j.rser.2022.112115, 2022.
Lee, J. H., Lucas, M., Guber, A. K., Li, X., and Kravchenko, A. N.: Interactions among soil texture, pore structure, and labile carbon influence soil carbon gains, Geoderma, 439, 116675, https://doi.org/10.1016/j.geoderma.2023.116675, 2023.
Li, Z., Kravchenko, A. N., Cupples, A., Guber, A. K., Kuzyakov, Y., Philip Robertson, G., and Blagodatskaya, E.: Composition and metabolism of microbial communities in soil pores, Nature Communications, 15, 3578, https://doi.org/10.1038/s41467-024-47755-x, 2024.
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J. P., and Torn, M. S.: Persistence of soil organic carbon caused by functional complexity, Nature Geoscience, 13, 529–534, https://doi.org/10.1038/s41561-020-0612-3, 2020.
Liebman, M., Helmers, M. J., Schulte, L. A., and Chase, C. A.: Using biodiversity to link agricultural productivity with environmental quality: Results from three field experiments in Iowa, Renewable Agriculture and Food Systems, 28, 115–128, https://doi.org/10.1017/S1742170512000300, 2013.
Lucas, M., Nguyen, L. T., Guber, A., and Kravchenko, A. N.: Cover crop influence on pore size distribution and biopore dynamics: Enumerating root and soil faunal effects, Frontiers in Plant Science, 13, 928569, https://doi.org/10.3389/fpls.2022.928569, 2022.
Lucas, M., Santiago, J. P., Chen, J., Guber, A., and Kravchenko, A.: The soil pore structure encountered by roots affects plant-derived carbon inputs and fate, New Phytologist, 240, 515–528, https://doi.org/10.1111/nph.19159, 2023.
Lucas, M., Gil, J., Robertson, G., Ostrom, N., and Kravchenko, A.: Changes in soil pore structure generated by the root systems of maize, sorghum and switchgrass affect in situ N2O emissions and bacterial denitrification, Biology and Fertility of Soils, 61, 367–383, https://doi.org/10.1007/s00374-023-01761-1, 2025.
Mangan, M. E., Sheaffer, C., Wyse, D. L., Ehlke, N. J., and Reich, P. B.: Native perennial grassland species for bioenergy: establishment and biomass productivity, Agronomy Journal, 103, 509–519, https://doi.org/10.2134/agronj2010.0360, 2011.
Marshall, A. H., Collins, R. P., Humphreys, M. W., and Scullion, J.: A new emphasis on root traits for perennial grass and legume varieties with environmental and ecological benefits, Food and Energy Security, 5, 26–39, https://doi.org/10.1002/fes3.78, 2016.
McDaniel, M. D., Tiemann, L. K., and Grandy, A. S.: Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis, Ecological Applications, 24, 560–570, https://doi.org/10.1890/13-0616.1, 2014.
McMahon, S. M., Harrison, S. P., Armbruster, W. S., Bartlein, P. J., Beale, C. M., Edwards, M. E., Kattge, J., Midgley, G., Morin, X., and Prentice, I. C.: Improving assessment and modelling of climate change impacts on global terrestrial biodiversity, Trends in Ecology & Evolution, 26, 249–259, https://doi.org/10.1016/j.tree.2011.02.012, 2011.
Mellado-Vázquez, P. G., Lange, M., Bachmann, D., Gockele, A., Karlowsky, S., Milcu, A., Piel, C., Roscher, C., Roy, J., and Gleixner, G.: Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere, Soil Biology and Biochemistry, 94, 122–132, https://doi.org/10.1016/j.soilbio.2015.11.012, 2016.
Milcu, A., Partsch, S., Scherber, C., Weisser, W. W., and Scheu, S.: Earthworms and legumes control litter decomposition in a plant diversity gradient, Ecology, 89, 1872–1882, https://doi.org/10.1890/07-1377.1, 2008.
Milliken, G. A. and Johnson, D. E.: Analysis of Messy Data Volume 1, Chapman and Hall/CRC, USA, https://doi.org/10.1201/EBK1584883340, 2009.
Mills, L. S., Soulé, M. E., and Doak, D. F.: The keystone-species concept in ecology and conservation, BioScience, 43, 219–224, https://doi.org/10.2307/1312122, 1993.
Minns, A., Finn, J., Hector, A., Caldeira, M., Joshi, J., Palmborg, C., Schmid, B., Scherer-Lorenzen, M., Spehn, E., Troumbis, A., and BIODEPTH project: The functioning of European grassland ecosystems: potential benefits of biodiversity to agriculture, Outlook on Agriculture, 30, 179–185, https://doi.org/10.5367/000000001101293634, 2001.
Mou, X., Lv, P., Jia, B., Mao, H., and Zhao, X.: Plant species richness and legume presence increase microbial necromass carbon accumulation, Agriculture Ecosystems & Environment, 374, 109196, https://doi.org/10.1016/j.agee.2024.109196, 2024.
Mueller, C. W., Baumert, V., Carminati, A., Germon, A., Holz, M., Kögel-Knabner, I., Peth, S., Schlüter, S., Uteau, D., and Vetterlein, D.: From rhizosphere to detritusphere–Soil structure formation driven by plant roots and the interactions with soil biota, Soil Biology and Biochemistry, 193, 109396, https://doi.org/10.1016/j.soilbio.2024.109396, 2024.
Münch, B. and Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion, Journal of the American Ceramic Society, 91, 4059–4067, https://doi.org/10.1111/j.1551-2916.2008.02736.x, 2008.
Pierret, A., Moran, C., and Pankhurst, C.: Differentiation of soil properties related to the spatial association of wheat roots and soil macropores, Plant and Soil, 211, 51–58, https://doi.org/10.1023/A:1004490800536, 1999.
Prommer, J., Walker, T. W., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F., and Richter, A.: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity, Global Change Biology, 26, 669–681, https://doi.org/10.1111/gcb.14777, 2020.
Qian, Z., Li, Y., Du, H., Wang, K., Li, D.: Increasing plant species diversity enhances microbial necromass carbon content but does not alter its contribution to soil organic carbon pool in a subtropical forest, Soil Biology and Biochemistry, 187, 109183, https://doi.org/10.1016/j.soilbio.2023.109183, 2023.
Quigley, M. and Kravchenko, A.: Inputs of root-derived carbon into soil and its losses are associated with pore-size distributions, Geoderma, 410, 115667, https://doi.org/10.1016/j.geoderma.2021.115667, 2022.
Robertson, G. P. and Hamilton, S. K.: Long-term ecological research at the Kellogg Biological Station LTER site. The ecology of agricultural landscapes: Long-term research on the path to sustainability 1, 32, Oxford University Press, Oxford, UK, ISBN 9780199773350, 2015.
Roosendaal, D., Stewart, C. E., Denef, K., Follett, R. F., Pruessner, E., Comas, L. H., Varvel, G. E., Saathoff, A., Palmer, N., Sarath, G., Jin, V. L., Schmer, M., and Soundararajan, M.: Switchgrass ecotypes alter microbial contribution to deep-soil C, SOIL, 2, 185–197, https://doi.org/10.5194/soil-2-185-2016, 2016.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., and Schmid, B.: Fiji: an open-source platform for biological-image analysis, Nature Methods, 9, 676–682, https://doi.org/10.1038/nmeth.2019, 2012.
Schlüter, S., Sheppard, A., Brown, K., and Wildenschild, D.: Image processing of multiphase images obtained via X-ray microtomography: A review, Water Resources Research, 50, 3615–3639, https://doi.org/10.1002/2014WR015256, 2014.
Silin, D. and Patzek, T.: Pore space morphology analysis using maximal inscribed spheres, Physica A-Statistical Mechanics and its Applications, 371, 336–360, https://doi.org/10.1016/j.physa.2006.04.048, 2006.
Spiesman, B. J., Kummel, H., and Jackson, R. D.: Carbon storage potential increases with increasing ratio of C4 to C 3 grass cover and soil productivity in restored tallgrass prairies, Oecologia, 186, 565–576, https://doi.org/10.1007/s00442-017-4036-8, 2018.
Sprunger, C. D. and Robertson, G. P.: Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems, Geoderma, 318, 42–51, https://doi.org/10.1016/j.geoderma.2017.11.040, 2018.
Tilman, D., Reich, P. B., and Knops, J. M.: Biodiversity and ecosystem stability in a decade-long grassland experiment, Nature, 441, 629–632, https://doi.org/10.1038/nature04742, 2006.
Ulbrich, T. C., Rivas-Ubach, A., Tiemann, L. K., Friesen, M. L., and Evans, S. E.: Plant root exudates and rhizosphere bacterial communities shift with neighbor context, Soil Biology and Biochemistry, 172, 108753, https://doi.org/10.1016/j.soilbio.2022.108753, 2022.
Wahlström, E. M., Kristensen, H. L., Thomsen, I. K., Labouriau, R., Pulido-Moncada, M., Nielsen, J. A., and Munkholm, L. J.: Subsoil compaction effect on spatio-temporal root growth, reuse of biopores and crop yield of spring barley, European Journal of Agronomy, 123, 126225, https://doi.org/10.1016/j.eja.2020.126225, 2021.
Wang, B., Zhang, W., Ahanbieke, P., Gan, Y., Xu, W., Li, L., Christie, P., and Li, L.: Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems, Agroforestry Systems, 88, 835–850, https://doi.org/10.1007/s10457-014-9729-y, 2014.
Wang, X.-Y., Ge, Y., and Wang, J.: Positive effects of plant diversity on soil microbial biomass and activity are associated with more root biomass production, Journal of Plant Interactions, 12, 533–541, https://doi.org/10.1080/17429145.2017.1400123, 2017.
Wendel, A. S., Bauke, S. L., Amelung, W., and Knief, C.: Root-rhizosphere-soil interactions in biopores, Plant and Soil, 475, 253–277, https://doi.org/10.1007/s11104-022-05406-4, 2022.
White, R. G. and Kirkegaard, J. A.: The distribution and abundance of wheat roots in a dense, structured subsoil–implications for water uptake, Plant Cell & Environment, 33, 133–148, https://doi.org/10.1111/j.1365-3040.2009.02059.x, 2010.
Xiong, P., Zhang, Z., and Peng, X.: Root and root-derived biopore interactions in soils: A review, Journal of Plant Nutrition and Soil Science, 185, 643–655, https://doi.org/10.1002/jpln.202200003, 2022.
Yang, Y. and Tilman, D.: Soil and root carbon storage is key to climate benefits of bioenergy crops, Biofuel Research Journal, 7, 1143–1148, https://doi.org/10.18331/BRJ2020.7.2.2, 2020.
Yang, Y., Tilman, D., Furey, G., and Lehman, C.: Soil carbon sequestration accelerated by restoration of grassland biodiversity, Nature Communications, 10, 718, https://doi.org/10.1038/s41467-019-08636-w, 2019.
Zahorec, A., Reid, M. L., Tiemann, L. K., and Landis, D. A.: Perennial grass bioenergy cropping systems: Impacts on soil fauna and implications for soil carbon accrual, GCB Bioenergy, 14, 4–23, https://doi.org/10.1111/gcbb.12903, 2022.
Zegada-Lizarazu, W., Zanetti, F., Di Virgilio, N., and Monti, A.: Is switchgrass good for carbon savings? Long-term results in marginal land, GCB Bioenergy, 14, 814–823, https://doi.org/10.1111/gcbb.12944, 2022.
Short summary
We looked at soil carbon storage in bioenergy crop fields that had different levels of plant diversity over 12 years. We discovered that biopores – small holes in the soil formed as roots grow, die, and decompose – are closely linked to the amount of organic carbon in the soil. When there are more biopores, there’s more surface where roots touch the soil, which helps carbon from plants spread out and get stored better.
We looked at soil carbon storage in bioenergy crop fields that had different levels of plant...