Local versus field scale soil heterogeneity characterization – a challenge for representative sampling in pollution studies
Abstract. This study is a contribution to development of a heterogeneity characterization facility for "next-generation" soil sampling aimed, for example, at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity in quantification of a set of exemplar parameters is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The theory of sampling (TOS) and variographic analysis has been applied to develop a more general fit-for-purpose soil heterogeneity characterization approach. All parameters were assessed in large-scale transect (1–100 m) vs. small-scale (0.1–0.5 m) replication sampling point variability. Variographic profiles of experimental analytical results from a specific well-mixed soil type show that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among other soils types. This study has a significant carrying-over potential for related research areas, e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.