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Abstract. This study is a contribution to development of a heterogeneity characterization facility for “next-

generation” soil sampling aimed, for example, at more realistic and controllable pesticide variability in labora-

tory pots in experimental environmental contaminant assessment. The role of soil heterogeneity in quantification

of a set of exemplar parameters is described, including a brief background on how heterogeneity affects sam-

pling/monitoring procedures in environmental pollutant studies. The theory of sampling (TOS) and variographic

analysis has been applied to develop a more general fit-for-purpose soil heterogeneity characterization approach.

All parameters were assessed in large-scale transect (1–100 m) vs. small-scale (0.1–0.5 m) replication sampling

point variability. Variographic profiles of experimental analytical results from a specific well-mixed soil type

show that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial

auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range

is an inherent characteristic of the soil heterogeneity and will differ among other soils types. This study has a

significant carrying-over potential for related research areas, e.g. soil science, contamination studies, and envi-

ronmental monitoring and environmental chemistry.

1 Introduction

All parameters for realistic, effective integration of variabil-

ity over different scales are directly related to soil hetero-

geneity. There is a growing need for an integrated under-

standing of contaminant behaviour in soil pollution studies

(Arias-Estévez et al., 2008; Crespin et al., 2001; Johnsen

et al., 2013; Li et al., 2006; Rodriguez-Cruzet al., 2006;

Sørensen et al., 2006; Torstensson and Stark 1975; Ras-

mussen et al., 2005). In this context there is a missing link in

the form of soil heterogeneity and its effective characteriza-

tion, a feature often overlooked. Heterogeneity characteriza-

tion is the first, and in some cases the most important, step in

soil contaminant studies, with relationships to various other

aspects of environmental research and monitoring. A result

of introducing more valid soil heterogeneity characterization

will be improved soil sampling procedures (Kardanpour et

al., 2014, 2015a, b), which in turn will contribute towards

improved environmental fate study reliability (Boudreault et

al., 2012; Chappell and Viscarra Rossel, 2013; De Zorzi et

al., 2008; Lin et al., 2013; Mulder et al., 2013; Totaro et al.,

2013).

Even in simple systems, the variability and risk of misin-

terpretation may have a strong effect on parameterization of

processes relating to compound fate studies. These latter is-

sues are being increasingly more recognized, as is the lack of

appropriate methods to ensure documented representativity

of the experimental batch volumes/masses with respect to the

surrounding geology and biotic/abiotic soil characteristics.

There is an urgent need for scientifically based experimen-

tal approaches, scale-up procedures, and attendant principles

for parameterization of variability in these types of natural

systems (Kardanpour et al., 2014; Adamchuk et al., 2011;

Chappell and Viscarra Rossel, 2013; De Zorzi et al., 2008).
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Of particular interest will be a newly developed facility

for empirical variability characterization, which allows het-

erogeneity to be mapped at problem-dependent scale hier-

archies. Based on this, it is possible to devise optimized

sampling strategies that will allow fit-for-purpose represen-

tativity with respect to laboratory experiments depending

on similar (or at least comparable) soil samples (pots). For

this purpose, the theory of sampling (TOS) delivers bench-

mark measures expressing acceptable maximum heterogene-

ity limits and, in the case of violations/transgressions, fur-

thers a complete understanding of how to identify and elim-

inate the detrimental sampling errors, as well as providing

tools for unambiguous mixing effectiveness. By combining

these tools with specific knowledge on the relevant contam-

inant processes and compound properties, it will be possi-

ble to address the critical scale-dependent variability with

increased confidence based on more realistic environmental

parameter delineation.

We here introduce the variographic approach mainly for

the cases of 1-D as a means of characterizing the hetero-

geneity in one transect direction. Compared to the typical

major variability in the Z direction of soil depth profiles (soil

horizons, layers, and geological formations), the linear (1-

D) or 2-D heterogeneity within soil horizons is significantly

smaller, although this is exactly the kind of heterogeneity the

present study aims at controlling. Contrary to depth profile

zonation, among other things, the within-horizon 1-D and 2-

D heterogeneity complies with the requirements of both TOS

and geostatistics – i.e. spatial heterogeneity can be modelled

variographically with regard to a physically meaningful av-

erage level (the inherent stationarity assumption in geostatis-

tics). It is not meaningful to apply variographic characteri-

zation on measurement series which contain discontinuous

shifts, oversets, or other disrupting level changes, as is the

prime characterization of soil depth zonations. The geosta-

tistical tradition of modelling 2-D patterns based on projec-

tion onto a 1-D transect is also not free from debatable is-

sues. The present authors do not wish to reject the 2-D geo-

statistical tradition with this statement, but in relation to the

present matters this issue is better deferred to another oc-

casion in which the 2-D modelling issue can be presented

and discussed in full – this issue is a legitimate and interest-

ing area for a fruitful debate. Entering into a 3-D geostatis-

tical modelling realm, there are also here issues that in need

of further discussion, e.g. the required minimum number of

samples (measurements) needed for meaningful and stable

variogram calculation. The present foray only aims at pre-

senting the power of a simple 1-D variogram characterization

operator based on TOS, upon which several versions of po-

tential follow-up generalizations to 2-D and 3-D cases may

be entertained. In the present context all isotropic 2-D het-

erogeneity patterns can be characterized comprehensively by

a randomly selected 1-D direction (transect). In all sampling

operations there should preferentially always be some sort of

random selection involved, unless compelling geoscientific

reasons exist for choosing a direction related to the genesis

of the specific heterogeneity are met with, e.g. choosing a

1-D transect along a dominant plow direction.

This study focuses on development of the necessary

heterogeneity characterization for sampling/monitoring and

multi-parameter modelling practices, allowing implementa-

tion of realistic pesticide variability in experimental envi-

ronmental contaminant assessment studies. The study has a

significant carrying-over potential for related research areas,

e.g. soil science, contamination studies, and environmental

monitoring.

We here focus on characterization of soil heterogeneity

in terms of soil moisture, organic matter (loss on ignition,

LOI), biomass, microbiology, MCPA sorption, and mineral-

ization. The measured parameters are here used to illustrate

effective management of heterogeneity; this particular loca-

tion has been studied before in its own right. Following two

earlier complementary studies, the focus below is on the nec-

essary representativity demands when facing compound fate

and mineralization studies (Kardanpour et al., 2014, 2015).

Field observation indicates a very well mixed sandy soil

with almost no visual heterogeneity features. But the main

issue is, does this apparent uniformity extend to all fate com-

pounds? How is it possible to document that small sample

masses, as typically used in pot experiments, are representa-

tive of their entire parent field, or to which sub-field scale?

In other words, how can results and conclusions from labo-

ratory experiments be reliably scaled up and generalized to

larger scales?

2 Materials and methods

2.1 Location and sampling pattern

Fladerne Bæk is situated on the Karup periglacial outwash

plain, Jutland, Denmark (56◦ N, 9◦ E), south-west of Karup

airport. The substratum is an arable sandy soil which has

been tilled and cropped for more than 100 years, mainly sup-

porting barley and potatoes during last 30 years. Thus this is

a typical “very well mixed” soil type compared to the much

more heterogeneous glacial clayey soil types treated in Kar-

danpour et al. (2014). Soil samples were collected from the

topsoil (A horizon) in cylindrical cores; the present samples

cover the depth interval from 0 to 15 cm. The 60 m long sam-

pling transect ran roughly north–south. Each field sample in-

cluded 200–300 g of fresh soil. At the centre of this transect

at point 29, seven additionally samples form a Roman grid

(3× 3) replication experiment with 0.3 m equidistance.

The sampling rationale aimed at variographic fate charac-

terization commensurate with a long profile at a scale length

between 1 and 60 m; the Roman square was intended as a

basis for conventional statistical treatment (average and stan-

dard deviation). This central sample layout serves as a small-

scale local “replication experiment” compared with the tran-

sect dimensions (Kardanpour et al., 2014). In total 64 sam-
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ples were collected: 57 samples from the long profile and 9

samples of the small grid, including 2 samples from the tran-

sect and the rest on the sides of the transect and between in a

way to make a grid with 9 points. The original fresh soil was

kept frozen until use.

The primary sampling was specifically intended to corre-

spond to current sampling traditions in the soil and microbi-

ology communities. In other studies efforts have been made

to optimize each individual field sample, for example with re-

spect to the famous “Gy’s formula”, from which control over

the so-called fundamental sampling error is often sought.

However, in the present study it is a major point to outline

how the variographic approach, among other things, leads to

a procedure with which to characterize the magnitude of the

total sampling-plus-analytical error and thus to be warned of

the need to control (better) all the inherent sampling errors;

see, for example, DS3077 (2013) for a comprehensive intro-

duction.

2.2 Theory of sampling and variographic analysis

The total analytical error (TAE) is most often under accept-

able control in the analytical laboratory as regards both ac-

curacy and precision. A sampling procedure must be both

correct (ensures accuracy) and reproducible (ensures preci-

sion); TOS defines representativity in a rigid conceptual and

mathematical approach. The critical issue is always, even

for TOS-compliant sampling, that analytical results are but

an estimate of the true (average) analytical grade of the lot

sampled, because the aliquot is based on only a miniscule

mass (0.5–2.0 g) compared to the entire field topsoil layer

it is supposed to represent (typical mass / mass sampling ra-

tios range from 1 : 103 to 1 : 109). The full sampling–analysis

process and its characteristics are therefore the only guaran-

tee for the relevance and reliability of the aliquot brought

forth for analysis. The fundamental TOS principles need to

be applied to all appropriate scales along the entire “field-

to-aliquot” pathway, not only to the primary sampling but

in particular also to the successive stages of mass reduction

in the laboratory before the ultimate analytical aliquot ex-

traction. The only change in this multi-stage sampling chain

is the operative scale (TOS principles and unit operations

are scale-invariant). A comprehensive overview of all sub-

sampling issues (laboratory mass reduction) can be found in

Petersen et al. (2004), which does not include the “coning-

and-quartering” approach, despite the fact that this approach

has enjoyed some popularity, e.g. for certain field applica-

tions to soils (Gerlach et al., 2002). However, the coning-

and-quartering approach has been severely criticized in the

professional TOS literature, e.g. most recently in Esbensen

and Wagner (2014); from a representativity point of view this

mass reduction approach must be strongly discouraged.

On the basis of a correct sampling and mass reduction

regimen, it is possible to characterize the inherent auto-

correlation between units of a process/lot or along a 1-D

transect (or transect). The semi-variogram (in this work re-

ferred to simply as the “variogram”) is employed to describe

the variation observed between sample pairs as a function of

their internal distance.

To calculate a variogram, a sufficient number of units (in-

crements/samples) are extracted equidistantly, spanning the

process interval of interest, or the full transect length, as

needed. The variogram is a function of a dimensionless,

relative lag parameter, j , which is this distance between

two units, the analytical results of which are compared.

Full details of the variographic approach are described in

DS3077 (2013), Esbensen et al. (2007, 2012a, b), Gy (1998),

Minkkinen et al. (2012), and Petersen and Esbensen (2006),

Petersen et al. (2005). Variograms may have apparent dif-

ferent specific appearances, but three fundamental character-

izing features carry all the important information related to

sampling errors and the heterogeneity along the transect in

any-and-all variogram: the sill, the range, and the y axis in-

tercept, termed the nugget effect. Definitions of these features

are given below.

The sill is the y axis value at which the variogram levels off

and becomes horizontal. The sill represents the total variance

calculated from all experimental heterogeneity values. The

sill corresponds to the overall maximum variance for the data

series if/when calculated without taking their ordering into

account.

The range is the lag distance beyond which the variogram

v(j ) levels off and reaches a stable, constant sill. Samples

taken at lags below the range are auto-correlated to a larger

and larger degree as the lags become smaller and smaller.

The range carries critical information as to the local hetero-

geneity with respect to the objective of the present method

development.

The nugget effect indicates the amount by which the vari-

ance differs from zero when a variogram is extrapolated

backwards so as to correspond to what would have been lag

= 0. A lag equal to zero has no physical meaning, but it

represents the hypothetical case of two samples extracted at

the same time and location (indeed from exactly the same

physical volume of the lot). Thus, although “true replicates”

from the exact same soil location (volume) are not physically

possible, the nugget effect nevertheless allows for estimation

of the corresponding discontinuous variance difference. This

can be viewed as a collapse of the 1-D sampling situation

(profile, transect) to a stationary sampling situation (small

lots, 2-D and 3-D lots); see DS3077 (2013) and Esbensen et

al. (2007, 2012a, b) for further descriptions.

The nugget effect has a special interest; it contains all

sampling, sample handling/processing, and analytical errors

combined, which makes up the total measurement uncer-

tainty. A variogram with a high nugget effect with regard

to the sill signifies a measurement system not in sufficient

control (DS3077, 2013; Esbensen and Wagner, 2014).

Variogram calculations are strongly influenced by outliers

and/or trends. A valid variographic analysis often necessi-
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Figure 1. A generic variogram, schematically defining nugget ef-

fect, sill, and range. The illustration depicts an increasing vari-

ogram, which is the most often occurring type of variogram in the

case of significant auto-correlation (for lags below the range) (Kar-

danpour et al., 2014). The nugget effect magnitude relative to the sill

in this illustration is significant of an acceptable total measurement

system, < 20 %.

tates outlier deletion after proper recognition and description

and occasionally also de-trending of the raw transect data

if/when trends are dominant or severe. In this study the raw

data transect was de-trended using a simple regression slope

subtraction from the data set where needed.

2.3 Mass reduction/subsampling procedure

After the stored samples were thawed and accommodated for

20 ◦C for a week, before being processed further, the primary

field sample size (200–300 g) had to be reduced to the ana-

lytical sample size (1–2 g), not at all a trivial mass-handling

issue. In order to provide representative subsamples, TOS

principles were applied scrupulously to all mass reduction

steps. Thus samples were dried and macerated, or ground,

where appropriate, and subsequently deployed in a longi-

tudinal tray, forming a 1-D lot, using the soil-adapted bed-

blending/cross-cut reclaiming technique described in detail

in Petersen et al. (2004) and Kardanpour et al. (2015). These

pre-blended micro-beds were cut by 10 randomly selected

transverse increments along the elongated dimension which

were aggregated, resulting in subsamples of 20–30 g each.

The exact same procedure was repeated in a secondary mass

reduction step further down, ending up with the final analyt-

ical mass (2 g) for the wet samples analyses. This procedure

has been applied to provide full representativity in samples

and to exclude all of the post-primary-sampling errors in or-

der to be better able to focus on the latter and the variogram

deployment (ibid).

The remainders of the secondary subsamples were air-

dried for 4 days at laboratory temperature (20 ◦C), to be used

in parallel sorption experiments. As a further scale-down iter-

ation, a similar bed-blending/cross-cut reclaiming was used

to provide analytical samples of 2 g, also based on 10 incre-

ments each.

Kardanpour et al. (2015) describe the “from-field-

sampling-to-aliquot” pathway in full detail, complete with

an exhaustive pictorial presentation.

2.4 Analytical experiment methods

2.4.1 MCPA sorption

The sorption experiment started in glass vials with Teflon

caps containing 1 g of the respective soils, and 9 mL of Milli-

Q water. The vials were kept for 24 h and then shaken in

a horizontal, angled shaker prior to addition of 1 mL14C–

MCPA stock solution, with 10 000 dpm in each individual

vials. Sorption experiments were performed with two initial

concentrations: 1 and 100 mg of MCPA/L. Sorption was de-

termined for MCPA in all of the 64 soil samples, using 14C-

labelled MCPA.

After adding the stock solution, the vials were incubated in

the shaker for 48 h and then placed vertically for another 48 h,

all at 20 ◦C. Subsequently 2 mL of the solution was trans-

ferred to the 2 mL Eppendorf micro-centrifuge tubes and

centrifuged at 14 500× g for 7 min. Radioactivity in 1.5 mL

of supernatant was determined using a Wallac 1409 liquid

scintillation counter after mixing it with 10 mL of OptiPhase

Hisafe3 scintillation cocktail.

2.4.2 MCPA mineralization

Mineralization experiments were carried out in a 100 mL

glass jar with an airtight lid. Two-gram soil samples (wet

weight) were placed in small plastic vials before adding

0.5 mL of 14C-labelled MCPA (5 mg MCPA per gram of soil)

with a radioactivity of 2000 dpm. A liquid scintillation count-

ing (LSC) vial containing 2 mL of 0.2 M NaOH as a CO2

trap was also placed in the glass jar. The jars were incubated

at 20 ◦C for 14 days. Mineralization encountered as percent-

evolved 14CO2 was measured at day 3, 7, and 14. The CO2

traps were changed and replaced with a fresh trap at each

sampling date. 14C in the NaOH was measured as described

in the sorption experiment by liquid scintillation counting.

2.4.3 Biomass, substrate-induced respiration (SIR)

The same setup as used for MCPA was used for the glucose

mineralization, with adding 0.5 mL14C-labelled glucose with

5000 dpm to the 2 g of soil. All other setup, equipment, and

experimental design details were identical. Alkaline traps

were replaced with fresh alkaline traps and measured after

4 and 24 h considering the rapid respiration of the glucose

and 14C measured as described in the sorption experiment

by liquid scintillation counting. Conversion into biomass was

according to Dictor et al. (1998) and Tate et al. (1988).
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2.4.4 Microbiology, bacteria colony formation units

(CFUs)

A suspension was made with 2 g of soil into 200 mL of ster-

ile water, which was then shake for 15 min and diluted with

sterilized water; this ended in two different dilutions for each

sample, with differences of three and four orders of magni-

tude. To measure the soil microbiology, 1 mL of each sam-

ple was placed on a Petrifilm® (3M, Saint Paul, Minnesota,

USA) sheet and CFUs were counted after 3 and 7 days of

incubation at 20 ◦C.

3 Results

3.1 Geochemical profiling

In order to show the natural soil heterogeneity in a compara-

ble format, Figs. 2–5 illustrate the individual large-scale pa-

rameter transects: concentration vs. location of the samples

taken from the transect in the Fladerne field. Also shown is

the variation in the central small-scale replication samples is

shown as mean concentration± 2 SD with dashed horizon-

tal lines in the figures. The large-scale variation in the soil

moisture, LOI, and the biomass content are compared to the

small-scale replication result for the same parameter in each

graph (Fig. 2).

The same comparison graph (large scale/small scale) is il-

lustrated for the MCPA sorption in Fig. 3 for two different

initial MCPA concentrations, as it is clear; the soil sorption

behaviour shows different variation with different concentra-

tions. The results of the MCPA mineralization of the soil in

Fig. 4 also show different variability in different mineraliza-

tion steps. The transect of the MCPA mineralization is illus-

trated for different mineralization steps: the first 3 days, 4 to

7 days, and 8 to 14 days. The two latter periods show a rather

similar variation because these two periods are in the final

part of the mineralization development (Fig. 6).

The soil microbiology (log (CFU/g soil)) transect after 7

days of incubation is also illustrated in Fig. 5.

The Fladerne case represents an inherently very well

mixed soil type, which has been managed by plowing for

up to 100 years. The consequence of taking this low-

heterogeneity end of the spectrum into account is that there

is a limit to the degree of transect heterogeneity to be ex-

pected, as indeed witnessed in Figs. 2–5, where concentra-

tions only comparatively rarely deviate outside the ±2 SD

of the central Roman square design employed. However, this

specific soil and tilling history feature must not lead to un-

toward confusion and illegitimate generalizations. It is the

general applicability of the variographic approach which is

illustrated here, as it happens, on a very well mixed substra-

tum. Our parallel study showcases the approach on a signifi-

cantly more heterogeneous case, in which the central Roman

square does not bracket most of the transect concentration

manifestations. This case was selected to represent the one

Figure 2. Fladerne Bæk. Transects of soil moisture (%), LOI, and

biomass (mg C g−1) vs. soil sample number (transect location).

Dashed lines represent mean ±2 SD of the small-scale replication

experiment.

(almost extreme) end of a spectrum (only little inherent het-

erogeneity) from which to compare a whole spectrum of in-

creasingly more heterogeneous soil types, horizons, and ge-

ological formations. Our own studies went a fair distance in

this direction as possible with the Kardanpour et al. (2015),

but obviously many even more heterogeneous cases exist and

are to be found in the literature.

www.soil-journal.net/1/695/2015/ SOIL, 1, 695–705, 2015
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Figure 3. Fladerne Bæk. Transects of Kd MCPA sorption vs. sam-

ple number (transect location) – Kd,1: MCPA (1 mg L−1); Kd,100:

MCPA (100 mg L−1). Dashed lines represent mean ±2 SD of the

small-scale replication experiment.

3.2 Experimental variograms

Prior to variogram calculation, all parameters were checked

for outliers and trends (Figs. 2–5). Variograms were calcu-

lated using large-scale experimental transects without model

fitting of the variogram parameters. This is common in geo-

statistics but not used here as TOS’ variogram approach is not

used for kriging but instead solely for heterogeneity charac-

terization and interpretation.

Two different behaviours can be observed as displayed by

two parameters groupings: the increasing Min1, LOI, and

biomass variograms at the top, versus the remainder of pa-

rameters, which show a strongly similar form and behaviour

(Fig. 7). As the sill levels represent the maximum parame-

ter variation along the transect, parameters Min1, LOI, and

biomass clearly display the highest transect variability. All

variograms are of the increasing type with a distinct nugget

effect. Following DS3077 (2013), the percentage nugget ef-

fect in relation to the sill, termed RSV1-dim, is an expression

of the total measurement uncertainty (MU) including total

sampling error (TSE) (Esbensen and Wagner, 2014). In the

present study this MUtotal quality index ranges from 15 %

(Kd,100) to 75 % (Min1). There is thus an appreciable dif-

ference concerning the possibility to measure and character-

Figure 4. Fladerne Bæk. Transects of MCPA mineralization in

three different periods, i.e. 0–3, 4–7, and 8–14 days, vs. sample

number (transect location). Dashed lines represent mean ±2 SD of

the small-scale replication experiment.

ize soil heterogeneity along the transect, ranging from very

good to very poor. This facility for total measurement un-

certainty validation is a powerful TOS benefit, with a wide

carrying-over potential to many other sciences and fields of

application. This feature is described in full in Esbensen and

Romanach (2015) and Kardanpour et al. (2015), in which,

incidentally, the 1-D transect of the present study appears in

the form of a 1-D industrial process measurement series, il-

lustrating the surprising generality of the variogram approach

– modelling and interpretation and showing the way for ap-

plication to natural processes in the geoscience and environ-

mental science realms.

SOIL, 1, 695–705, 2015 www.soil-journal.net/1/695/2015/
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Figure 5. Fladerne Bæk. Transects of log (CFU/g soil) vs. sample

number (transect location).

Figure 6. Average mineralization rate for all 57 samples: error bars

are based on the standard deviation (solid bars) and the range of the

whole sample set (dashed vertical bars).

Through application of the multivariate data analysis ap-

proach developed in the previous studies (Kardanpour et al.,

2014, 2015), i.e. using the variograms as the input (X ma-

trix) to a principal component analysis (PCA) with no cen-

tring and no scaling (see further below), the first component

is found to represent 99 % of the total variogram variance

over all parameters, making it easy to find the average range

characterizing the heterogeneity of the Fladerne transect, ca.

5 m. Figure 8 shows the loadings for principal components

1 and 2, displayed in a fashion that mimics a spectrum. As

expected, the PC-1 loadings delineate a general variogram

shape, in fact presenting the average of all variograms in

Fig. 7. The PC-2 loadings account for deviations from here,

as caused by the individual variograms (mainly expressing

a higher or lower average slope), a general feature that is

markedly interprinted by random deviations. This compo-

nent models the set of different slopes of the individual var-

iograms, and it accounts for less than 1 % total variance, but

nevertheless it lends itself easily to interpretation as the well-

known spectroscopic “tilting” signature (Martens and Næs,

1991).

Figure 7. Synoptic variogram of all parameters in the present study

comparing nugget effect, sill, and range levels.

In our earlier studies (e.g. Kardanpour et al., 2014), a pro

et contra discussion can be found regarding pre-treatment

of an X matrix made up of variograms. When basing vari-

ograms on heterogeneity contributions (a one-to-one trans-

formation of the original analytical concentrations), this is-

sue becomes moot, as this transformation is already perform-

ing what amounts to scaling. In the present paper we there-

fore did not apply centring, opting instead for the easily inter-

preted and useful appearance of the average variogram shape

(Fig. 8, left).

4 Discussion

Aiming for a general approach to soil heterogeneity char-

acterization, a set of naturally occurring organic, anthro-

pogenic, and biota parameters were studied at scales from 1

to 60 m to be compared with other, for example minerogenic,

parameters (see further below). The first step is always in-

spection of the raw data set with respect to potential outliers

and/or trends. In the present study the geochemical parameter

transects show no outliers and no strong trends (Figs. 2–5).

The experimental design allows comparison of the small-

scale replication variability (classic statistics) and large-scale

variability. All transects can, for example, be directly com-

pared with the level and variation at the small-scale experi-

ment (less than 1 m), considering the pertinent mean ±2 SD.

In Figs. 2–5 the variation in the parameters in any selected

small-scale window cannot be overestimated to the large

scale; indeed, it also cannot be obtained from a small-scale

replication study deviation estimate. This is just for visual

orientation, however, and not to be confused with the nugget

effect, a much more general characterization of the small(est)

scale variability pertaining to below lag = 1, summing up

and averaging this information for all the sample pairs in the

transect.

Any short interval on a transect (Figs. 2–5) can be con-

sidered as a small-scale study in its own right. In this con-

text there is a clear difference between the empirical vari-

ability in different segments along each transect: the local

www.soil-journal.net/1/695/2015/ SOIL, 1, 695–705, 2015
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Figure 8. PCA (Xvariogram) loading plot for PC-1 (left) and PC-2 (right). The Xvariogram matrix has not been subjected to pre-treatment

before PCA (no centring, no scaling). The range of the average variogram shape as represented by the PC-1 loadings is ca. 5 m.

variability does not necessarily extend to larger scales. This

has an important practical conclusion: no local small-scale

sample collection can be generalized to larger scales. Un-

witting or unreflected scaling-up of small-scale experimen-

tal organic, anthropogenic, and biota fate and mineraliza-

tion results will bring an inflated uncertainty outside exper-

imental control. The mineralization parameters which show

different variation behaviour in the different mineralization

steps send an important message regarding studies concern-

ing time-dependent characterizations. A similar difference

is observed for MCPA sorption with different concentra-

tions, i.e. when studies are concerned with concentration-

dependent phenomena.

The general local variability behaviour is, however, well

captured as the below-range part of the general variogram

loading spectrum for PC-1. The variogram is able to gener-

alize the common local-scale behaviour. With TOS, there is

synoptic information residing in the range, sill, and nugget

effect for each individual parameter. Whenever heterogene-

ity variograms display a range, this relates to the ease and risk

associated with attempting to secure field samples with min-

imum variability: sampling with smaller inter-increment lag

distances than the range makes it possible to use the inherent

auto-correlation between samples in a beneficial fashion.

From the earlier studies (Kardanpour et al., 2014, 2015)

the overall conclusion was only to employ composite sam-

pling. In the present context this means that, wherever prac-

tically possible, increments should only be collected with a

maximum of half the observed range as a means to avoid

unnecessary compositional variability effects due to the in-

herent soil heterogeneity. It follows that, in order to mini-

mize the total sampling error, increments must be sampled

with a maximum lag of 0.5× range, preferably smaller. In the

present soil variograms a general range of 5 m is observed

for multivariate variographic approach of the parameters

(Fig. 8). It is evident that a thorough mixing of the selected

set of increments is mandatory to sample locations with less

than 2.5 m distance in between; for other soil types/analytes,

other numerical magnitudes apply.

The variograms show different behaviour with respect to

mineralization stages. This is expected from the slower rate

of the mineralization in the latter stages (Fig. 6). The later

stages display a flat variogram that only represents little auto-

correlation between sample locations (Fig. 7) and the low

sill level representing low variation along the transect. As is

common in environmental studies, results of the mineraliza-

tion are mostly reported in terms of the accumulated miner-

alization rate (see Fig. 6 as an example), i.e. results that are

mostly affected by the first stages of the mineralization.

Most of the variograms level off quickly after only a few

lags (range ca. 5 m), followed by a flat (or slightly increasing)

trend, whilst the first steps of MCPA mineralization, biomass,

and LOI show more markedly increasing variograms (Fig. 7).

The CFU sill level is lower than natural organic and an-

thropogenic compounds, indicating lower variability in soil

microbiology at the large scale(s). This can be compared with

results from a series of other large-scale studies on different

microbial communities for different anthropogenic and nat-

ural compound mineralization, which also showed that mi-

crobial biomass seems to be a stable intrinsic parameter of

longer periods (Sørensen et al., 2003; Bending et al., 2001,

2003; Walker et al., 2001).

It is always a matter for discussion when theoretically an-

ticipated correlations between the physiochemical/microbial

activities fail to appear in specific real-world case studies.

The more complex compounds have shown a more irregular,

patchy fashion of decaying due to more specific microbial

communities (but still generally isotropic in nature). Analy-

sis of soil parameters rarely gives a clear pattern; this seems

to be associated with a number of non-included or unknown

parameters, resulting in a high degradation potential in some

cases but low elsewhere (Sørensen et al., 2003; Rasmussen

et al., 2005; Bending et al., 2001; Walker et al., 2001). Upon

reflection, however, this is no mystery but simply a result

of local soil heterogeneity, which cannot be formulated or

predicted based on the physiochemical biological or micro-

bial correlation of the properties of soil in large-scale studies.

A variographic heterogeneity characterization at all scales is

thus a beneficial pilot experiment able to focus on the rele-

vant heterogeneities characterizing individual, or groups of,

parameters in their proper scale-dependent relationships.

To sum up the results of all measured parameters studied

here, for environmental purposes and objectives related to

soil parameters at field scale, it is advantageous to employ a
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variographic heterogeneity characterization as a pilot study.

Results here will lead to a comprehensive understanding of

the spatial variability and auto-correlation of the parameters

in the field.

The results from the present study show that, for well-

mixed sandy soil, it is recommended to sample locations with

less than 2.5 m inter-distance in between, preferably smaller.

It is necessary to conduct a similar variographic pilot experi-

ment in order to outline the relevant scale-heterogeneity char-

acteristics for other soil types, which, unavoidably, will tend

to show more irregular spatial heterogeneity patterns – each

principal soil type will in principle be characterized by a spe-

cific range, but there is a further caveat. Each analyte may in

fact display its own more or less specific range, as witnessed

above, as well as in a large number of studies in the literature.

When controlling the spatial heterogeneity is of the essence,

the logical solution is to design the sampling according to

the analyte with the smallest range, i.e. the most heteroge-

neously distributed analyte – this will by necessity also take

care of all other analytes with higher ranges. If the emphasis

is on sampling costs, a not completely unlikely alternative

scenario that may or may not clash with representativity, it

is a comforting thought that all analytes are measured on the

same final aliquot. By carefully optimizing the primary field

sampling according to the principles presented here, all an-

alytes will be measured with the same, optimal relevance,

indeed with regard to the same representativity. If sampling

is done right from the start, there are no extra costs – the op-

posite, however, is a very different case, as should be abun-

dantly clear.

Results from a parallel study on the minerogenic com-

pounds for the same Fladerne field (Kardanpour et al.,

2014) show a similar soil heterogeneity compared to the

present anthropogenic compounds. The nugget effects for

most of the minerogenic compounds are of the same or-

der of magnitude as those for the anthropogenic compounds

– i.e. the total measurement system and procedures (sam-

pling/handling/processing/analysis) pass all the quality crite-

ria for representative sampling established in the recent sam-

pling standard (DS3077, 2013).

In cases where the next step in studies might be assess-

ment of the main factors driving the spatial heterogeneity

of soil contamination analytes, for example, the 1-D (or 2-

D X−Y ) approach advocated here will only serve as a basis

for proper selection of experimental material to be taken to

the laboratory – upon which further considerations will fo-

cus on, say, the potential factors involved in contaminant in-

put and transport, among other things. Note that these latter

processes manifest themselves primarily in the Z direction,

where it is by no means a given that application of the same

variographic approach (or geostatistical modelling) will nec-

essary give meaningful results.

5 Conclusions

A pilot experiment aimed at an intrinsic 1-D soil heterogene-

ity characterization is a critical success factor for laboratory

studies relying on field samples to provide the experimental

pots, which for replicate and comparative study objectives

need to be as similar as at all possible. As a case study, the

variographic results for sandy soils show that the distance

between two sample spot must be less than 2.5 m for the

present set of organic compounds and soil type. Specific soil

types and/or other analytes will in principle display differ-

ent ranges and nugget effects, and hence our call for system-

atic deployment of the variographic pilot experiment, from

which all necessary information can be derived for designing

an optimal sampling plan, e.g. identifying the analyte with

the smallest range (for significantly correlated analytes). For

the case of well-mixed soil components, a general PCA ap-

proach for modelling a whole set of variograms may be use-

ful in addition to individual analyte consideration.

Without these types of information, experimental fate

study work is essentially devoid of a valid basis as regards

interpretation, scaling up, and scientific generalization of the

experimental results back to the field scale. A large-scale 1-

D transect sampling can reveal the inherent heterogeneity at

all scales, from the smallest local sampling equidistance up

to the maximum experimental length scale studied. Vario-

graphic analysis was here employed successfully to soil het-

erogeneity at scales between 1 and 100 m; other scenarios

may require other numerical parameters, while the general

approach remains identical.

The TOS-guided variogram pilot study approach illus-

trated here has a substantial carrying-over potential to geo-

chemistry and environmental science, as well as other areas

of application. It is even applicable to dynamic systems, i.e.

to natural or technological processes in these realms.
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