Articles | Volume 1, issue 1
SOIL, 1, 351–365, 2015
https://doi.org/10.5194/soil-1-351-2015
SOIL, 1, 351–365, 2015
https://doi.org/10.5194/soil-1-351-2015

Review article 16 Apr 2015

Review article | 16 Apr 2015

Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world

M. Köchy et al.

Related authors

Global distribution of soil organic carbon – Part 2: Certainty of changes related to land use and climate
M. Köchy, A. Don, M. K. van der Molen, and A. Freibauer
SOIL, 1, 367–380, https://doi.org/10.5194/soil-1-367-2015,https://doi.org/10.5194/soil-1-367-2015, 2015
Short summary

Related subject area

Soil as a resource
Long-term field experiments in Germany: classification and spatial representation
Meike Grosse, Wilfried Hierold, Marlen C. Ahlborn, Hans-Peter Piepho, and Katharina Helming
SOIL, 6, 579–596, https://doi.org/10.5194/soil-6-579-2020,https://doi.org/10.5194/soil-6-579-2020, 2020
Short summary
Adsorption to soils and biochemical characterization of commercial phytases
María Marta Caffaro, Karina Beatriz Balestrasse, and Gerardo Rubio
SOIL, 6, 153–162, https://doi.org/10.5194/soil-6-153-2020,https://doi.org/10.5194/soil-6-153-2020, 2020
Short summary
Development of a harmonised soil profile analytical database for Europe: a resource for supporting regional soil management
Jeppe Aagaard Kristensen, Thomas Balstrøm, Robert J. A. Jones, Arwyn Jones, Luca Montanarella, Panos Panagos, and Henrik Breuning-Madsen
SOIL, 5, 289–301, https://doi.org/10.5194/soil-5-289-2019,https://doi.org/10.5194/soil-5-289-2019, 2019
Short summary
Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom
Daniel L. Evans, John N. Quinton, Andrew M. Tye, Ángel Rodés, Jessica A. C. Davies, Simon M. Mudd, and Timothy A. Quine
SOIL, 5, 253–263, https://doi.org/10.5194/soil-5-253-2019,https://doi.org/10.5194/soil-5-253-2019, 2019
Short summary
Assessment and quantification of marginal lands for biomass production in Europe using soil-quality indicators
Werner Gerwin, Frank Repmann, Spyridon Galatsidas, Despoina Vlachaki, Nikos Gounaris, Wibke Baumgarten, Christiane Volkmann, Dimitrios Keramitzis, Fotis Kiourtsis, and Dirk Freese
SOIL, 4, 267–290, https://doi.org/10.5194/soil-4-267-2018,https://doi.org/10.5194/soil-4-267-2018, 2018
Short summary

Cited articles

Amundson, R.: The carbon budget in soils, Ann. Rev. Earth Planet. Sci., 29, 535–562, https://doi.org/10.1146/annurev.earth.29.1.535, 2001.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Euro. J. Soil Sci., 47, 151–163, https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Batjes, N. H.: Harmonized soil profile data for applications at global and continental scales: updates to the WISE database, Soil Use Manage., 25, 124–127, https://doi.org/10.1111/j.1475-2743.2009.00202.x, 2009.
Boelter, D. H.: Important physical properties of peat materials, Proceedings of the Third International Peat Congress, Ottawa, Ontario, Canada, 18–23 August 1968, Canada. Dept. of Energy, Mines and Resources and National Research Council of Canada, 1968.
Chambers, F. M., Beilman, D. W., and Yu, Z.: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires and Peat, 7, 7.1–7.10, 2010/2011.
Short summary
Soils contain 1062Pg organic C (SOC) in 0-1m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325Pg SOC in 0-1m and ca. 3000Pg, including deeper layers.