Preprints
https://doi.org/10.5194/soil-2016-33
https://doi.org/10.5194/soil-2016-33
20 May 2016
 | 20 May 2016
Status: this preprint has been retracted.

Potential for agricultural production on disturbed soils mined for apatite using legumes and beneficial microbe

Rebecca Swift, Liza Parkinson, Thomas Edwards, Regina Carr, Jen McComb, Graham W. O'Hara, Giles E. St. John Hardy, Lambert Bräu, and John Howieson

Abstract. Christmas Island has been mined for rock phosphate for over 100 years, and as mining will finish in the next few decades there is a need to develop alternative economies on the island, such as high value crop production. However, to conserve the unique flora and fauna on the island, only land previously mined will be considered for this purpose. As these soils have been severely perturbed by mining, strategies to improve soil quality parameters need to be undertaken before plant based industries can be considered. For instance, legumes and beneficial microbes have demonstrated a positive role in the remediation of degraded soils. Therefore, this study aimed to establish the scientific basis upon which agriculture can effectively be developed on s oils post phosphate mining. Six legume species (Glycine max (Soybean), Vigna radiata (Mungbean), V. unguiculata (Cowpea), Phaseolus vulgaris (Navybean), Cajanus cajan (Pigeon pea), and Lablab purpureus (Lablab)) were sown onto a two ha rehabilitated site t hat had previously been mined for rock phosphate. The soil had a pH of 7.0, and was high in P but low in Bo, Cu, K, Mg, N and S and had low organic C. The legumes were inoculated with their respective rhizobial inoculant or co-inoculated with the rhizobia and a plant growth promoting bacteria (PGPB) at three different fertilizer rates (nil, a low rate, and five times the low rate). With the exception of P. vulgaris, all the legume species survived. The application of fertilizer was essential for maximum biomass yields 18 weeks after sowing, however the lower fertilizer rate was sufficient to obtain maximum yields for some cultivars. The PGPB increased yields and nodulation of some of the legumes at different fertilizer levels. Although the legumes (except P. vulgaris) grew in the Christmas Island environment, selection of appropriate legume cultivars and inoculants plus optimization of the fertilizer regime is required for reliable agricultural productivity on the island.

This preprint has been retracted.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Rebecca Swift, Liza Parkinson, Thomas Edwards, Regina Carr, Jen McComb, Graham W. O'Hara, Giles E. St. John Hardy, Lambert Bräu, and John Howieson

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Rebecca Swift, Liza Parkinson, Thomas Edwards, Regina Carr, Jen McComb, Graham W. O'Hara, Giles E. St. John Hardy, Lambert Bräu, and John Howieson
Rebecca Swift, Liza Parkinson, Thomas Edwards, Regina Carr, Jen McComb, Graham W. O'Hara, Giles E. St. John Hardy, Lambert Bräu, and John Howieson

Viewed

Total article views: 1,600 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
966 526 108 1,600 212 104 111
  • HTML: 966
  • PDF: 526
  • XML: 108
  • Total: 1,600
  • Supplement: 212
  • BibTeX: 104
  • EndNote: 111
Views and downloads (calculated since 20 May 2016)
Cumulative views and downloads (calculated since 20 May 2016)
Latest update: 20 Nov 2024
Download

This preprint has been retracted.