Articles | Volume 8, issue 2
https://doi.org/10.5194/soil-8-687-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-8-687-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biotic factors dominantly determine soil inorganic carbon stock across Tibetan alpine grasslands
Junxiao Pan
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Jinsong Wang
CORRESPONDING AUTHOR
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Dashuan Tian
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Ruiyang Zhang
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Yang Li
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Lei Song
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
College of Resources and Environment, University of Chinese Academy
of Sciences, Beijing 100049, People's Republic of China
Jiaming Yang
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Chunxue Wei
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
Key Laboratory of Ecosystem Network Observation and Modeling,
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, People's Republic of China
College of Resources and Environment, University of Chinese Academy
of Sciences, Beijing 100049, People's Republic of China
Related authors
No articles found.
Tiia Määttä, Ankur Desai, Masahito Ueyama, Rodrigo Vargas, Eric J. Ward, Zhen Zhang, Gil Bohrer, Kyle Delwiche, Etienne Fluet-Chouinard, Järvi Järveoja, Sara Knox, Lulie Melling, Mats B. Nilsson, Matthias Peichl, Angela Che Ing Tang, Eeva-Stiina Tuittila, Jinsong Wang, Sheel Bansal, Sarah Feron, Manuel Helbig, Aino Korrensalo, Ken W. Krauss, Gavin McNicol, Shuli Niu, Zutao Ouyang, Kathleen Savage, Oliver Sonnentag, Robert Jackson, and Avni Malhotra
EGUsphere, https://doi.org/10.5194/egusphere-2025-5023, https://doi.org/10.5194/egusphere-2025-5023, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We compared ecosystem and plot-scale methane fluxes across wetland and upland sites. Ecosystem-scale fluxes were higher than at plot scale, but differences were small. Vapor pressure deficit, atmospheric pressure, turbulence, and wind direction affected the differences. Both scales could be combined for improved methane flux estimates at coarser temporal scales.
Song Wang, Carlos Sierra, Yiqi Luo, Jinsong Wang, Weinan Chen, Yahai Zhang, Aizhong Ye, and Shuli Niu
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-33, https://doi.org/10.5194/bg-2023-33, 2023
Manuscript not accepted for further review
Short summary
Short summary
Nitrogen is important for plant growth and carbon uptake, which is uaually limited in nature and can constrain carbon storage and impact efforts to combat climate change. We developed a new method of combining data and models to determine if and how much an ecosystem is nitrogen limited. This new method can help determine if and to what extent an ecosystem is nitrogen-limited, providing insight into nutrient limitations on a global scale and guiding ecosystem management decisions.
Huifang Zhang, Zhonggang Tang, Binyao Wang, Hongcheng Kan, Yi Sun, Yu Qin, Baoping Meng, Meng Li, Jianjun Chen, Yanyan Lv, Jianguo Zhang, Shuli Niu, and Shuhua Yi
Earth Syst. Sci. Data, 15, 821–846, https://doi.org/10.5194/essd-15-821-2023, https://doi.org/10.5194/essd-15-821-2023, 2023
Short summary
Short summary
The accuracy of regional grassland aboveground biomass (AGB) is always limited by insufficient ground measurements and large spatial gaps with satellite pixels. This paper used more than 37 000 UAV images as bridges to successfully obtain AGB values matching MODIS pixels. The new AGB estimation model had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g m2. Our new dataset provides important input parameters for understanding the Qinghai–Tibet Plateau during global climate change.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Cited articles
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to
warming dependent on microbial physiology, Nat. Geosci., 3, 336–340,
https://doi.org/10.1038/NGEO846, 2010.
An, H., Wu, X. Z., Zhang, Y. R., and Tang, Z. S.: Effects of land-use change on
soil inorganic carbon: A meta-analysis, Geoderma, 353, 273–282,
https://doi.org/10.1016/j.geoderma.2019.07.008, 2019.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 47, 151–163,
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x, 1996.
Borcard, D., Legendre, P., and Drapeau, P.: Partialling out the spatial
component of ecological variation, Ecology, 73, 1045–1055,
https://doi.org/10.2307/1940179, 1992.
Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform
fumigation and the release of soil-nitrogen – A rapid direct extraction
method to measure microbial biomass nitrogen in soil, Soil Biol. Biochem.,
17, 837–842, https://doi.org/10.1016/0038-0717(85)90144-0,
1985.
Chang, R. Y., Fu, B. J., Liu, G. H., Wang, S., and Yao, X. L.: The effects of
afforestation on soil organic and inorganic carbon: A case study of the
Loess Plateau of China, Catena, 95, 145–152, https://doi.org/10.1016/j.catena.2012.02.012, 2012.
Crowther, T. W., Todd-Brown, K., Rowe, C. W., Wieder, W. R., Carey, J. C.,
Machmuller, M. B., Snoek, B. L, Fang, S., Zhou, G., Allison, S. D., Blair,
J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J.
S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B.A., Estiarte,
M., Frey, S. D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kroel-Dulay,
G., Larsen, K. S., Laudon, H., Lavallee, J. M., Luo, Y., Lupascu, M., Ma, L.
N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Penuelas,
J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L. L., Schmidt, I.
K., Sistla, S., Sokol, N. W., Templer, P. H., Treseder, K. K., Welker, J.
M., and Bradford, M. A.: Quantifying global soil carbon losses in response to
warming, Nature, 540, 104–108, https://doi.org/10.1038/nature20150, 2016.
Darwish, T., Atallah, T., and Fadel, A.: Challenges of soil carbon sequestration in the NENA region, SOIL, 4, 225–235, https://doi.org/10.5194/soil-4-225-2018, 2018.
Ding, J. Z., Chen, L. Y., Ji, C. J., Hugelius, G., Li, Y. N., Liu, L.,
Qin, S. Q., Zhang, B. B., Yang, G. B., Li, F., Fang, K., Chen, Y. L., Peng,
Y. F., Zhao, X., He, H. L., Smith, P., Fang, J. Y., and Yang, Y. H.: Decadal
soil carbon accumulation across Tibetan permafrost regions, Nat. Geosci.,
10, 420–424, https://doi.org/10.1038/NGEO2945, 2017.
Doetterl, S., Berhe, A. A., Arnold, C., Bode, S., Fiener, P., Finke, P.,
Fuchslueger, L., Griepentrog, M., Harden, J. W., Nadeu, E., Schnecker, J.,
Six, J., Trumbore, S., Van Oost, K., Vogel, C., and Boeckx, P.: Links among
warming, carbon and microbial dynamics mediated by soil mineral weathering,
Nat. Geosci., 11, 589–593, https://doi.org/10.1038/s41561-018-0168-7, 2018.
Dontsova, K., Balogh-Brunstad, Z., and Chorover, J.: Plants as drivers of rock
weathering, in:
Biogeochemical cycles, edited by: Dontsova, K., Balogh-Brunstad, Z., Roux, G. L., 33–58, John Wiley Sons, Inc., https://doi.org/10.1002/9781119413332.ch2, 2020.
Frank, J. and Stuanes, A. O.: Short-term effects of liming and vitality
fertilization on forest soil and nutrient leaching in a Scots pine ecosystem
in Norway, Forest Ecol. Manag., 176, 371–386,
https://doi.org/10.1016/S0378-1127(02)00285-2, 2003.
Gandois, L., Perrin, A. S., and Probst, A.: Impact of nitrogenous
fertiliser-induced proton release on cultivated soils with contrasting
carbonate contents: A column experiment, Geochim. Cosmochim. Ac.,
75, 1185–1198, https://doi.org/10.1016/j.gca.2010.11.025, 2011.
Gao, Y., Dang, P., Zhao, Q. X., Liu, J. L., and Liu, J. B.: Effects of
vegetation rehabilitation on soil organic and inorganic carbon stocks in the
Mu Us Desert, northwest China, Land Degrad. Dev., 29, 1031–1040,
https://doi.org/10.1002/ldr.2832, 2018.
Goulding, K.: Soil acidification and the importance of liming agricultural
soils with particular reference to the United Kingdom, Soil Use Manage.,
32, 390–399, https://doi.org/10.1111/sum.12270, 2016.
Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N.
J., and Maestre, F. T.: Functional trait diversity maximizes ecosystem
multifunctionality, Nat. Ecol. Evol., 1, 0132, https://doi.org/10.1038/s41559-017-0132, 2017.
Harley, A. D. and Gilkes, R. J.: Factors influencing the release of plant
nutrient elements from silicate rock powders: a geochemical overview, Nutr.
Cycl. Agroecosys., 56, 11–36, https://doi.org/10.1023/A:1009859309453, 2000.
Hong, S. B., Gan, P., and Chen, A. P.: Environmental controls on soil pH in
planted forest and its response to nitrogen deposition, Environ. Res., 172,
159–165, https://doi.org/10.1016/j.envres.2019.02.020, 2019.
Huang, P., Zhang, J. B., Xin, X. L., Zhu, A. N., Zhang, C. Z., Ma, D. H.,
Zhu, Q. G., Yang, S., and Wu, S. J.: Proton accumulation accelerated by heavy
chemical nitrogen fertilization and its long-term impact on acidifying rate
in a typical arable soil in the Huang-Huai-Hai Plain, J. Integr. Agr.,
14, 148–157, https://doi.org/10.1016/S2095-3119(14)60750-4,
2015.
Jia, J., Feng, X. J., He, J. S., He, H. B., Lin, L., and Liu, Z. G.: Comparing
microbial carbon sequestration and priming in the subsoil versus topsoil of
a Qinghai-Tibetan alpine grassland, Soil Biol. Biochem., 104, 141–151,
https://doi.org/10.1016/j.soilbio.2016.10.018, 2017.
Jobbágy, E. G. and Jackson, R. B.: The vertical distribution of soil organic
carbon and its relation to climate and vegetation, Ecol. Appl., 10,
423–436, https://doi.org/10.2307/2641104, 2000.
Joergensen, R. G.: The fumigation-extraction method to estimate soil
microbial biomass: Calibration of the k(EC) value, Soil Biol. Biochem.,
28, 25–31, https://doi.org/10.1016/0038-0717(95)00102-6,
1996.
Kuzyakov, Y. and Razavi, B. S.: Rhizosphere size and shape: Temporal dynamics
and spatial stationarity, Soil Biol. Biochem., 135, 343–360,
https://doi.org/10.1016/j.soilbio.2019.05.011, 2019.
Lal, R.: Soil carbon sequestration impacts on global climate change and food
security, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lenzewski, N., Mueller, P., Meier, R. J., Liebsch, G., Jensen, K., and
Koop-Jakobsen, K.: Dynamics of oxygen and carbon dioxide in rhizospheres of
Lobelia dortmanna – a planar optode study of belowground gas exchange
between plants and sediment, New Phytol., 218, 131–141, https://doi.org/10.1111/nph.14973, 2018.
Le Provost, G., Badenhausser, I., Le Bagousse-Pinguet, Y., Clough, Y.,
Henckel, L., Violle, C., Bretagnolle, V., Roncoroni, M., Manning, P., and Gross.
N.: Land-use history impacts functional diversity across multiple trophic
groups, P. Natl. Acad. Sci. USA, 117, 1573–1579, https://doi.org/10.1073/pnas.1910023117, 2020.
Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G., and Zhang,
F. S.: Diversity enhances agricultural productivity via rhizosphere
phosphorus facilitation on phosphorus-deficient soils, P. Natl. Acad.
Sci. USA, 104, 11192–11196, https://doi.org/10.1073/pnas.0704591104, 2007.
Liu, H. Y., Mi, Z. R., Lin, L., Wang, Y. H., Zhang, Z. H., Zhang, F. W.,
Wang, H Liu, L. L., Zhu, B., Cao, G. M., Zhao, X. Q., Sanders, N. J.,
Classen, A. T., Reich, P. B., and He, J. S.: Shifting plant species composition
in response to climate change stabilizes grassland primary production, P.
Natl. Acad. Sci. USA, 115, 4051–4056, https://doi.org/10.1073/pnas.1700299114, 2018.
Liu, S. S., Zhou, L. H., Li, H., Zhao, X., Yang, Y. H., Zhu, Y. K., Hu, F. F., Chen, L. Y., Zhang, P. J., Shen,
H. H., and Fang, J. Y: Shrub encroachment decreases soil inorganic carbon stocks in
Mongolian grasslands, J. Ecol., 108, 678–686,
https://doi.org/10.1111/1365-2745.13298, 2020.
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L.,
Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and
Zhang, F. S.: Enhanced nitrogen deposition over China, Nature, 494,
459–462, https://doi.org/10.1038/nature11917, 2013.
Liu, Z., Sun, Y. F., Zhang, Y. Q., Feng, W., Lai, Z. R., and Qin, S. G.: Soil
microbes transform inorganic carbon into organic carbon by dark fixation
pathways in desert soil. J. Geophys. Res.-Biogeo., 126, e2020JG006047, https://doi.org/10.1029/2020JG006047, 2021.
Mi, N., Wang, S. Q., Liu, J. Y., Yu, G. R., Zhang, W. J., and Jobbaagy, E.: Soil
inorganic carbon storage pattern in China, Glob. Change Biol., 14,
2380–2387, https://doi.org/10.1111/j.1365-2486.2008.01642.x, 2008.
Monger, H. C., Kraimer, R. A., Khresat, S., Cole, D. R., Wang, X. J., and Wang,
J. P.: Sequestration of inorganic carbon in soil and groundwater, Geology,
43, 375–378, https://doi.org/10.1130/G36449.1, 2015.
Moorhead, D. L. and Sinsabaugh, R. L.: A theoretical model of litter decay and
microbial interaction, Ecol. Monogr., 76, 151–174,
https://doi.org/10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2, 2006.
Oelkers, E. H., Benning, L. G., Lutz, S., Mavromatis, V., Pearce, C. R., and
Plumper, O.: The efficient long-term inhibition of forsterite dissolution by
common soil bacteria and fungi at Earth surface conditions, Geochim.
Cosmochim. Ac., 168, 222–235, https://doi.org/10.1016/j.gca.2015.06.004, 2015.
Pan, J. X., Zhang, L., He, X. M., Chen, X. P., and Cui, Z. L.: Long-term
optimization of crop yield while concurrently improving soil quality, Land
Degrad. Dev., 30, 897–909, https://doi.org/10.1002/ldr.3276, 2019.
Pan, J. X., Wang, J. S., Zhang, R. Y., Tian, D. S., Cheng, X. L., Wang, S.,
Chen, C., Yang, L., and Niu, S. L.: Microaggregates regulated by edaphic
properties determine the soil carbon stock in Tibetan alpine grasslands,
Catena, 206, 105570, https://doi.org/10.1016/j.catena.2021.105570,
2021.
Peng, S., Ding, Y., Liu, W., and Li, Z.: 1 km monthly temperature and precipitation dataset for China from 1901 to 2017, Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, 2019.
Prietzel, J., Zimmermann, L., Schubert, A., and Christophel, D.: Organic matter
losses in German Alps forest soils since the 1970s most likely caused by
warming, Nat. Geosci., 9, 543, https://doi.org/10.1038/NGEO2732, 2016.
Raza, S., Miao, N., Wang, P. Z., Ju, X. T., Chen, Z. J., Zhou, J. B., and
Kuzyakov, Y.: Dramatic loss of inorganic carbon by nitrogen-induced soil
acidification in Chinese croplands, Glob. Change Biol., 26, 3738–3751,
https://doi.org/10.1111/gcb.15101, 2020.
Rey, A.: Mind the gap: non-biological processes contributing to soil
CO2 efflux, Glob. Change Biol., 21, 1752–1761, https://doi.org/10.1111/gcb.12821, 2015.
Rowley, M. C., Grand, S., and Verrecchia, E. P.: Calcium-mediated stabilisation
of soil organic carbon, Biogeochemistry, 137, 27–49,
https://doi.org/10.1007/s10533-017-0410-1, 2018.
Rumpel, C., Chabbi, A., and Marschner, B.: Carbon storage and
sequestration in subsoil horizons: Knowledge, gaps and potentials, in: Recarbonization of the biosphere: ecosystems and the global carbon
cycle, edited by: Lal, R., Lorenz, K., Huttl, R. F., Uwe Schneider, B., and von Braun,
J.,
445–464, Springer, Heidelberg, Germany,
https://doi.org/10.1007/978-94-007-4159-1_20, 2012.
Sartori, F.,
Lal, R., Ebinger, M. H., and Eaton, J. A.: Changes in soil carbon and nutrient
pools along a chronosequence of poplar plantations in the Columbia Plateau,
Oregon, USA, Agr. Ecosyst. Environ., 122, 325–339,
https://doi.org/10.1016/j.agee.2007.01.026, 2007.
Song, X. D., Yang, F., Wu, H. Y., Zhang, J., Li, D. C., Liu, F., Zhao, Y.
G., Yang, J. L., Ju, B., Cai, C. F., Huang, B. A., Long, H. Y., Lu, Y., Sui,
Y. Y., Wang, Q. B., Wu, K. N., Zhang, F. R., Zhang, M. K., Shi, Z., Ma, W.
Z, Xin, G., Qi, Z. P., Chang, Q. R., Ci, E., Yuan, D. G., Zhang, Y. Z., Bai,
J. P., Chen, J. Y., Chen, J., Chen, Y. J., Dong, Y. Z., Han, C. L., Li, L.,
Liu, L. M., Pan, J. J., Song, F. P., Sun, F. J., Wang, D. F., Wang, T. W.,
Wei, X. H., Wu, H. Q., Zhao, X., Zhou, Q., and Zhang, G. L.: Significant loss of
soil inorganic carbon at the continental scale, Natl. Sci. Rev., 9, nwab120,
https://doi.org/10.1093/nsr/nwab120, 2022.
Tang, C., Unkovich, M. J., and Bowden, J. W.: Factors affecting soil
acidification under legumes. III. Acid production by N2-fixing legumes
as influenced by nitrate supply, New Phytol., 143, 513–521,
https://doi.org/10.1046/j.1469-8137.1999.00475.x, 1999.
Tatti, E., McKew, B. A., Whitby, C., and Smith, C. J.: Simultaneous DNA-RNA
extraction from coastal sediments and quantification of 16S rRNA genes and
transcripts by real-time PCR, Jove-J. Vis. Exp., 112, e54067,
https://doi.org/10.3791/54067, 2016.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
van Hees, P., Rosling, A., Essen, S., Godbold, D. L., Jones, D. L., and Finlay,
R. D.: Oxalate and ferricrocin exudation by the extramatrical mycelium of an
ectomycorrhizal fungus in symbiosis with Pinus sylvestris, New Phytol.,
169, 367–377, https://doi.org/10.1111/j.1469-8137.2005.01600.x, 2006.
Ven, A., Verlinden, M. S., Fransen, E., Olsson, P. A., Verbruggen, E.,
Wallander, H., and Vicca, S.: Phosphorus addition increased carbon partitioning
to autotrophic respiration but not to biomass production in an experiment
with Zea mays, Plant Cell Environ., 43, 2054–2065,
https://doi.org/10.1111/pce.13785, 2020.
Vicca, S., Goll, D. S., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck,
A., Penuelas, J., Poblador, S., Rijnders, J., Sardans, J., Struyf, E.,
Swoboda, P., van Groenigen, J. W., Vienne, A., and Verbruggen, E.: Is the
climate change mitigation effect of enhanced silicate weathering governed by
biological processes?, Glob. Change Biol., 28, 711–726, https://doi.org/10.1111/gcb.15993, 2022.
Wang, B., Bao, Q., Hoskins, B., Wu, G. X., and Liu, Y. M.: Tibetan plateau
warming and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702,
https://doi.org/10.1029/2008GL034330, 2008.
Wang, G. X., Qian, J., Cheng, G. D., and Lai, Y. M.: Soil organic carbon pool of
grassland soils on the Qinghai-Tibetan Plateau and its global implication,
Sci. Total. Environ., 291, 207–217, https://doi.org/10.1016/S0048-9697(01)01100-7, 2002.
Wang, J. P., Wang, X. J., Zhang, J., and Zhao, C. Y.: Soil organic and inorganic
carbon and stable carbon isotopes in the Yanqi Basin of northwestern China,
Eur. J. Soil Sci., 66, 95–103, https://doi.org/10.1111/ejss.12188, 2015.
Wild, B., Imfeld, G., and Daval, D.: Direct measurement of fungal contribution
to silicate weathering rates in soil, Geology, 49, 1055–1058,
https://doi.org/10.1130/G48706.1, 2021.
Xiao, L. L., Lian, B., Hao, J. C., Liu, C. Q., and Wang, S. J.: Effect of
carbonic anhydrase on silicate weathering and carbonate formation at present
day CO2 concentrations compared to primordial values, Sci. Rep.-UK, 5, 7733,
https://doi.org/10.1038/srep07733, 2015.
Yang, R. M. and Yang, F.: Impacts of Spartina alterniflora invasion on soil
inorganic carbon in coastal wetlands in China, Soil Sci. Soc. Am. J., 84,
844–855, https://doi.org/10.1002/saj2.20073, 2020.
Yang, Y. H., Fang, J. Y., Ji, C. J., Ma, W. H., Su, S. S., and Tang, Z. Y.: Soil
inorganic carbon stock in the Tibetan alpine grasslands, Global Biogeochem.
Cy., 24, GB4022, https://doi.org/10.1029/2010GB003804, 2010.
Yang, Y. H., Ji, C. J., Ma, W. H., Wang, S. F., Wang, S. P., Han, W. X., Mohammat, A., and Smith, P.: Significant soil acidification across northern China's grasslands
during 1980s–2000s, Glob. Change Biol., 18, 2292–2300, https://doi.org/10.1111/j.1365-2486.2012.02694.x, 2012.
Yost, J. L. and Hartemink, A. E.: How deep is the soil studied – an
analysis of four soil science journals, Plant Soil, 452, 5–18, https://doi.org/10.1007/s11104-020-04550-z, 2020.
Yu, G. R., Jia, Y. L., He, N. P., Zhu, J. X., Chen, Z., Wang, Q. F., Piao,
S. L., Liu, X. J., He, H. L., Guo, X. B., Wen, Z., Li, P., Ding, G. A., and
Goulding, K.: Stabilization of atmospheric nitrogen deposition in China over
the past decade, Nat. Geosci., 12, 424–429, https://doi.org/10.1038/s41561-019-0352-4, 2019.
Zamanian, K. and Kuzyakov, Y.: Contribution of soil inorganic carbon to
atmospheric CO2: More important than previously thought, Glob. Change
Biol., 25, E1–E3, https://doi.org/10.1111/gcb.14463, 2019.
Zamanian, K., Pustovoytov, K., and Kuzyakov, Y.: Pedogenic carbonates: Forms and
formation processes, Earth-Sci. Rev., 157, 1–17, https://doi.org/10.1016/j.earscirev.2016.03.003, 2016.
Zamanian, K., Zarebanadkouki, M., and Kuzyakov, Y.: Nitrogen fertilization
raises CO2 efflux from inorganic carbon: A global assessment, Glob.
Change Biol., 24, 2810–2817, https://doi.org/10.1111/gcb.14148, 2018.
Zaharescu, D. G., Burghelea, C. I., Dontsova, K., Reinhard, C. T., Chorover, J., and Lybrand, R.: Biological weathering in the
terrestrial system: An evolutionary perspective, in: Biogeochemical Cycles: Ecological Drivers and Environmental Impact, edited by: Dontsova, K., Balogh-Brunstad, Z., and Le Roux, G., AGU, 1–32, https://doi.org/10.1002/9781119413332.ch1, 2020.
Zang, H. D., Blagodatskaya, E., Wen, Y., Xu, X. L., Dyckmans, J., and Kuzyakov,
Y.: Carbon sequestration and turnover in soil under the energy crop
Miscanthus: repeated C-13 natural abundance approach and literature
synthesis, GCB Bioenergy, 10, 262–271, https://doi.org/10.1111/gcbb.12485, 2018.
Zhou, Z., Li, Z., Chen, K., Chen, Z., Zeng, X., Yu, H., Guo, S., Shangguan, Y., Chen, Q., Fan, H., Tu, S., He, M., and Qin, Y.: Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system, SOIL, 7, 595–609, https://doi.org/10.5194/soil-7-595-2021, 2021.
Short summary
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic carbon (SIC) stock in Tibetan grasslands, and biotic factors have a larger contribution than abiotic factors to the variation in SIC stock. The effects of microbial and plant variables on SIC stock weakened with soil depth, while the effects of edaphic variables strengthened. The contrasting responses and drivers of SIC stock highlight differential mechanisms underlying SIC preservation with soil depth.
We found that climatic, edaphic, plant and microbial variables jointly affect soil inorganic...