A large amount of descriptive information is available in geosciences. Considering the advances in natural language it is possible to rescue this information and transform it into a numerical form (embeddings). We used 280764 full-text scientific articles to train a language model capable of generating such embeddings. Our domain-specific embeddings (GeoVec) outperformed general domain embedding tasks such as analogies, relatedness, and categorisation, and can be used in novel applications.
A large amount of descriptive information is available in geosciences. Considering the advances...