Articles | Volume 5, issue 1
https://doi.org/10.5194/soil-5-121-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-5-121-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial community responses determine how soil–atmosphere exchange of carbonyl sulfide, carbon monoxide, and nitric oxide responds to soil moisture
Thomas Behrendt
CORRESPONDING AUTHOR
Department Biogeochemical Processes, Max Planck Institute for
Biogeochemistry, Jena, Germany
Elisa C. P. Catão
Department Biogeochemical Processes, Max Planck Institute for
Biogeochemistry, Jena, Germany
Rüdiger Bunk
Department Multiphase Chemistry, Max Planck Institute for Chemistry,
Mainz, Germany
Zhigang Yi
Department Multiphase Chemistry, Max Planck Institute for Chemistry,
Mainz, Germany
College of Resources and Environment, Fujian Agriculture and Forestry
University, Fuzhou, China
Elena Schweer
Department Biogeochemical Processes, Max Planck Institute for
Biogeochemistry, Jena, Germany
Steffen Kolb
Research Group Microbial Biogeochemistry, Research Area 1 Landscape
Functioning, Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.,
Müncheberg, Germany
Jürgen Kesselmeier
Department Multiphase Chemistry, Max Planck Institute for Chemistry,
Mainz, Germany
Susan Trumbore
Department Biogeochemical Processes, Max Planck Institute for
Biogeochemistry, Jena, Germany
Related authors
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Rüdiger Bunk, Zhigang Yi, Thomas Behrendt, Dianming Wu, Meinrat Otto Andreae, and Jürgen Kesselmeier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-20, https://doi.org/10.5194/bg-2018-20, 2018
Manuscript not accepted for further review
Short summary
Short summary
We examined the OCS exchange of four soils with the atmosphere. The laboratory setup used allowed to monitor this exchange while simultaneously monitor soil moisture. The OCS exchange of those soils was measured over full range from very wet to very dry.
We found that uptake of OCS is highly dependent on soil moisture, that probably heterotroph and autotrophs drive the uptake at different soil moistures and that the role of soils as net consumer or producers of OCS may vary with soil moisture.
Martin E. Nowak, Valérie F. Schwab, Cassandre S. Lazar, Thomas Behrendt, Bernd Kohlhepp, Kai Uwe Totsche, Kirsten Küsel, and Susan E. Trumbore
Hydrol. Earth Syst. Sci., 21, 4283–4300, https://doi.org/10.5194/hess-21-4283-2017, https://doi.org/10.5194/hess-21-4283-2017, 2017
Short summary
Short summary
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with a set of different geochemical and microbiological methods in order to get a comprehensive view of biogeochemical cycling and groundwater flow in two limestone aquifer assemblages. This allowed us to understand interactions and feedbacks between microbial communities, their carbon sources, and water chemistry.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Luciano Emmert, Susan Trumbore, Joaquim dos Santos, Adriano Lima, Niro Higuchi, Robinson Negrón-Juárez, Cléo Dias-Júnior, Tarek El-Madany, Olaf Kolle, Gabriel Ribeiro, and Daniel Marra
EGUsphere, https://doi.org/10.5194/egusphere-2024-3234, https://doi.org/10.5194/egusphere-2024-3234, 2024
Short summary
Short summary
For the first time, we documented wind gusts with the potential to damage trees in a forest in the Central Amazon. We used meteorological data collected at crown height over 24 months. We recorded 424 gusts, which occur more frequently and intensely in higher elevated areas and during the transition from the dry to the wet season. More intense rains showed the strongest relationship with extreme winds, highlighting the role of extreme events in tree mortality.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Hella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Forsberg, Sávio José Filgueiras Ferreira, Thomas Röckmann, Carina van der Veen, Sipko Bulthuis, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Jailson da Mata, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Julie Andrews de França e Silva, Susan Trumbore, and Justus Notholt
Biogeosciences, 21, 3183–3199, https://doi.org/10.5194/bg-21-3183-2024, https://doi.org/10.5194/bg-21-3183-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is regarded as an important indirect greenhouse gas. Soils can emit and take up CO, but, until now, uncertainty remains as to which process dominates in tropical rainforests. We present the first soil CO flux measurements from a tropical rainforest. Based on our observations, we report that tropical rainforest soils are a net source of CO. In addition, we show that valley streams and inundated areas are likely additional hot spots of CO in the ecosystem.
Maximiliano González-Sosa, Carlos A. Sierra, J. Andrés Quincke, Walter E. Baethgen, Susan Trumbore, and M. Virginia Pravia
SOIL, 10, 467–486, https://doi.org/10.5194/soil-10-467-2024, https://doi.org/10.5194/soil-10-467-2024, 2024
Short summary
Short summary
Based on an approach that involved soil organic carbon (SOC) monitoring, radiocarbon measurement in bulk soil, and incubations from a long-term 60-year experiment, it was concluded that the avoidance of old carbon losses in the integrated crop–pasture systems is the main reason that explains their greater carbon storage capacities compared to continuous cropping. A better understanding of these processes is essential for making agronomic decisions to increase the carbon sequestration capacity.
Ingrid Chanca, Ingeborg Levin, Susan Trumbore, Kita Macario, Jost Lavric, Carlos Alberto Quesada, Alessandro Carioca de Araújo, Cléo Quaresma Dias Júnior, Hella van Asperen, Samuel Hammer, and Carlos Sierra
EGUsphere, https://doi.org/10.5194/egusphere-2024-883, https://doi.org/10.5194/egusphere-2024-883, 2024
Short summary
Short summary
Assessing the net carbon (C) budget of the Amazon entails considering the magnitude and timing of C absorption and losses through respiration (transit time of C). Radiocarbon-based estimates of the transit time of C in the Amazon Tall Tower Observatory (ATTO) suggest a doubling of the transit time from 6 ± 2 years and 18 ± 5 years (October 2019 and December 2021, respectively). This variability indicates that only a fraction of newly fixed C can be stored for decades or longer.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Jeffrey Prescott Beem-Miller, Craig Rasmussen, Alison May Hoyt, Marion Schrumpf, Georg Guggenberger, and Susan Trumbore
EGUsphere, https://doi.org/10.5194/egusphere-2022-1083, https://doi.org/10.5194/egusphere-2022-1083, 2022
Preprint withdrawn
Short summary
Short summary
We compared the age of persistent soil organic matter as well as active emissions of carbon dioxide from soils across a gradient of climate and geology. We found that clay minerals are more important than mean annual temperature for both persistent and actively cycling soil carbon, and that they may attenuate the sensitivity of soil organic matter decomposition to temperature. Accounting for geology and soil development could therefore improve estimates of soil carbon stocks and changes.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Nina Löbs, David Walter, Cybelli G. G. Barbosa, Sebastian Brill, Rodrigo P. Alves, Gabriela R. Cerqueira, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Florian Ditas, Daniel Moran-Zuloaga, Ana Paula Pires Florentino, Stefan Wolff, Ricardo H. M. Godoi, Jürgen Kesselmeier, Sylvia Mota de Oliveira, Meinrat O. Andreae, Christopher Pöhlker, and Bettina Weber
Biogeosciences, 17, 5399–5416, https://doi.org/10.5194/bg-17-5399-2020, https://doi.org/10.5194/bg-17-5399-2020, 2020
Short summary
Short summary
Cryptogamic organisms, such as bryophytes, lichens, and algae, cover major parts of vegetation in the Amazonian rain forest, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown.
Over the duration of 2 years we measured their water content, temperature, and light conditions to get better insights into their physiological activity patterns and thus their potential impact on local, regional, and even global biogeochemical processes.
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech., 13, 153–164, https://doi.org/10.5194/amt-13-153-2020, https://doi.org/10.5194/amt-13-153-2020, 2020
Short summary
Short summary
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. Measurement data on the release of fungal spores under natural conditions are also sparse. Here, we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Ralph Dlugi, Martina Berger, Chinmay Mallik, Anywhere Tsokankunku, Michael Zelger, Otávio C. Acevedo, Efstratios Bourtsoukidis, Andreas Hofzumahaus, Jürgen Kesselmeier, Gerhard Kramm, Daniel Marno, Monica Martinez, Anke C. Nölscher, Huug Ouwersloot, Eva Y. Pfannerstill, Franz Rohrer, Sebastian Tauer, Jonathan Williams, Ana-Maria Yáñez-Serrano, Meinrat O. Andreae, Hartwig Harder, and Matthias Sörgel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325, https://doi.org/10.5194/acp-2018-1325, 2019
Publication in ACP not foreseen
Short summary
Short summary
Incomplete mixing (segregation) results in reduced chemical reaction rates compared to those expected from mean values and rate constants. Segregation has been suggested to cause discrepancies between modelled and measured OH radical concentrations. In this work, we summarize the intensities of segregation for the reaction of OH and isoprene for different field and modelling studies and compare those to our results from measurements in a pristine environment.
Shaun R. Levick, Anna E. Richards, Garry D. Cook, Jon Schatz, Marcus Guderle, Richard J. Williams, Parash Subedi, Susan E. Trumbore, and Alan N. Andersen
Biogeosciences, 16, 1493–1503, https://doi.org/10.5194/bg-16-1493-2019, https://doi.org/10.5194/bg-16-1493-2019, 2019
Short summary
Short summary
We used airborne lidar to map the three-dimensional structure and model the biomass of plant canopies across a long-term fire experiment in the Northern Territory of Australia. Our results show that late season fires occurring every 2 years reduce the amount of carbon stored above-ground by 50 % relative to unburnt control plots. We also show how increased fire intensity removes the shrub layer from savannas and discuss the implications for biodiversity conservation.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Rüdiger Bunk, Zhigang Yi, Thomas Behrendt, Dianming Wu, Meinrat Otto Andreae, and Jürgen Kesselmeier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-20, https://doi.org/10.5194/bg-2018-20, 2018
Manuscript not accepted for further review
Short summary
Short summary
We examined the OCS exchange of four soils with the atmosphere. The laboratory setup used allowed to monitor this exchange while simultaneously monitor soil moisture. The OCS exchange of those soils was measured over full range from very wet to very dry.
We found that uptake of OCS is highly dependent on soil moisture, that probably heterotroph and autotrophs drive the uptake at different soil moistures and that the role of soils as net consumer or producers of OCS may vary with soil moisture.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Martin E. Nowak, Valérie F. Schwab, Cassandre S. Lazar, Thomas Behrendt, Bernd Kohlhepp, Kai Uwe Totsche, Kirsten Küsel, and Susan E. Trumbore
Hydrol. Earth Syst. Sci., 21, 4283–4300, https://doi.org/10.5194/hess-21-4283-2017, https://doi.org/10.5194/hess-21-4283-2017, 2017
Short summary
Short summary
In the present study we combined measurements of dissolved inorganic carbon (DIC) isotopes with a set of different geochemical and microbiological methods in order to get a comprehensive view of biogeochemical cycling and groundwater flow in two limestone aquifer assemblages. This allowed us to understand interactions and feedbacks between microbial communities, their carbon sources, and water chemistry.
Bettina Derstroff, Imke Hüser, Efstratios Bourtsoukidis, John N. Crowley, Horst Fischer, Sergey Gromov, Hartwig Harder, Ruud H. H. Janssen, Jürgen Kesselmeier, Jos Lelieveld, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Gavin J. Phillips, Rolf Sander, Carina Sauvage, Jan Schuladen, Christof Stönner, Laura Tomsche, and Jonathan Williams
Atmos. Chem. Phys., 17, 9547–9566, https://doi.org/10.5194/acp-17-9547-2017, https://doi.org/10.5194/acp-17-9547-2017, 2017
Short summary
Short summary
The aim of the study was to examine aged air masses being transported from the European continent towards Cyprus. Longer-lived oxygenated volatile organic compounds (OVOCs) such as methanol were mainly impacted by long-distance transport and showed higher values in air masses from eastern Europe than in a flow regime from the west. The impact of the transport through the marine boundary layer as well as the influence of the residual layer/free troposphere on OVOCs were studied.
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017, https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
Short summary
We used phospholipid fatty acids (PLFAs) to link specific microbial markers to the spatio-temporal changes of groundwater physico-chemistry. PLFA-based functional groups were directly supported by DNA/RNA results. O2 resulted in increased eukaryotic biomass and abundance of nitrite-oxidizing bacteria but impeded anammox, sulphate-reducing and iron-reducing bacteria. Our study demonstrates the power of PLFA-based approaches to study the nature and activity of microorganisms in pristine aquifers.
Lesego Khomo, Susan Trumbore, Carleton R. Bern, and Oliver A. Chadwick
SOIL, 3, 17–30, https://doi.org/10.5194/soil-3-17-2017, https://doi.org/10.5194/soil-3-17-2017, 2017
Short summary
Short summary
We evaluated mineral control of organic carbon dynamics by relating the content and age of carbon stored in soils of varied mineralogical composition found in the landscapes of Kruger National Park, South Africa. Carbon associated with smectite clay minerals, which have stronger surface–organic matter interactions, averaged about a thousand years old, while most soil carbon was only decades to centuries old and was associated with iron and aluminum oxide minerals.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Jérôme Ogée, Joana Sauze, Jürgen Kesselmeier, Bernard Genty, Heidi Van Diest, Thomas Launois, and Lisa Wingate
Biogeosciences, 13, 2221–2240, https://doi.org/10.5194/bg-13-2221-2016, https://doi.org/10.5194/bg-13-2221-2016, 2016
Short summary
Short summary
Estimates of photosynthesis and respiration at large scales are needed to improve our predictions of the global CO2 cycle. Carbonyl sulfide (OCS) has been proposed as a new tracer of photosynthesis, as it was shown that the uptake of OCS from leaves is nearly proportional to photosynthesis. But soils also exchange OCS with the atmosphere. Here we propose a mechanistic model of this exchange and show, using this new model, how we are able to explain several observed features of soil OCS fluxes.
Daniel Magnabosco Marra, Niro Higuchi, Susan E. Trumbore, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, Vilany M. C. Carneiro, Adriano J. N. Lima, Jeffrey Q. Chambers, Robinson I. Negrón-Juárez, Frederic Holzwarth, Björn Reu, and Christian Wirth
Biogeosciences, 13, 1553–1570, https://doi.org/10.5194/bg-13-1553-2016, https://doi.org/10.5194/bg-13-1553-2016, 2016
Short summary
Short summary
Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases.
Leandro T. dos Santos, Daniel Magnabosco Marra, Susan Trumbore, Plínio B. de Camargo, Robinson I. Negrón-Juárez, Adriano J. N. Lima, Gabriel H. P. M. Ribeiro, Joaquim dos Santos, and Niro Higuchi
Biogeosciences, 13, 1299–1308, https://doi.org/10.5194/bg-13-1299-2016, https://doi.org/10.5194/bg-13-1299-2016, 2016
Short summary
Short summary
In the Amazon forest, wind disturbances can create canopy gaps of many hundreds of hectares. We show that inputs of plant litter associated with large windthrows cause a short-term increase in soil carbon stock. The degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.
Shang Sun, Alexander Moravek, Lisa von der Heyden, Andreas Held, Matthias Sörgel, and Jürgen Kesselmeier
Atmos. Meas. Tech., 9, 599–617, https://doi.org/10.5194/amt-9-599-2016, https://doi.org/10.5194/amt-9-599-2016, 2016
Short summary
Short summary
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. We found out that at a relative humidity of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the O3-deposition to the plant leaves was found to be only controlled by leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves.
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015, https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Short summary
Microorganisms have been recognized as an important source of soil organic matter (SOM). Autotrophic microorganisms utilize CO2 instead of organic carbon. Microbial CO2 fixation is accompanied with high 13C isotope discrimination. Because autotrophs are abundant in soils, they might be a significant factor influencing 13C signatures of SOM. Thus, it is important to asses the importance of autotrophs for C isotope signatures in soils, in order to use isotopes as a tracer for soil C dynamics.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
C. A. Sierra, M. Müller, and S. E. Trumbore
Geosci. Model Dev., 7, 1919–1931, https://doi.org/10.5194/gmd-7-1919-2014, https://doi.org/10.5194/gmd-7-1919-2014, 2014
E. Bourtsoukidis, J. Williams, J. Kesselmeier, S. Jacobi, and B. Bonn
Atmos. Chem. Phys., 14, 6495–6510, https://doi.org/10.5194/acp-14-6495-2014, https://doi.org/10.5194/acp-14-6495-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
M. S. Torn, M. Kleber, E. S. Zavaleta, B. Zhu, C. B. Field, and S. E. Trumbore
Biogeosciences, 10, 8067–8081, https://doi.org/10.5194/bg-10-8067-2013, https://doi.org/10.5194/bg-10-8067-2013, 2013
A. Bracho-Nunez, N. M. Knothe,, S. Welter, M. Staudt, W. R. Costa, M. A. R. Liberato, M. T. F. Piedade, and J. Kesselmeier
Biogeosciences, 10, 5855–5873, https://doi.org/10.5194/bg-10-5855-2013, https://doi.org/10.5194/bg-10-5855-2013, 2013
E. Solly, I. Schöning, S. Boch, J. Müller, S. A. Socher, S. E. Trumbore, and M. Schrumpf
Biogeosciences, 10, 4833–4843, https://doi.org/10.5194/bg-10-4833-2013, https://doi.org/10.5194/bg-10-4833-2013, 2013
A.C. Nölscher, E. Bourtsoukidis, B. Bonn, J. Kesselmeier, J. Lelieveld, and J. Williams
Biogeosciences, 10, 4241–4257, https://doi.org/10.5194/bg-10-4241-2013, https://doi.org/10.5194/bg-10-4241-2013, 2013
C. Breuninger, F. X. Meixner, and J. Kesselmeier
Atmos. Chem. Phys., 13, 773–790, https://doi.org/10.5194/acp-13-773-2013, https://doi.org/10.5194/acp-13-773-2013, 2013
Related subject area
Soils and atmosphere
Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda
Oxygen isotope exchange between water and carbon dioxide in soils is controlled by pH, nitrate and microbial biomass through links to carbonic anhydrase activity
Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO2 in calcareous and acidic soils
Mitigating N2O emissions from soil: from patching leaks to transformative action
Joseph Tamale, Roman Hüppi, Marco Griepentrog, Laban Frank Turyagyenda, Matti Barthel, Sebastian Doetterl, Peter Fiener, and Oliver van Straaten
SOIL, 7, 433–451, https://doi.org/10.5194/soil-7-433-2021, https://doi.org/10.5194/soil-7-433-2021, 2021
Short summary
Short summary
Soil greenhouse gas (GHG) fluxes were measured monthly from nitrogen (N), phosphorous (P), N and P, and control plots of the first nutrient manipulation experiment located in an African pristine tropical forest using static chambers. The results suggest (1) contrasting soil GHG responses to nutrient addition, hence highlighting the complexity of the tropical forests, and (2) that the feedback of tropical forests to the global soil GHG budget could be altered by changes in N and P availability.
Sam P. Jones, Aurore Kaisermann, Jérôme Ogée, Steven Wohl, Alexander W. Cheesman, Lucas A. Cernusak, and Lisa Wingate
SOIL, 7, 145–159, https://doi.org/10.5194/soil-7-145-2021, https://doi.org/10.5194/soil-7-145-2021, 2021
Short summary
Short summary
Understanding how the rate of oxygen isotope exchange between water and CO2 varies in soils is key for using the oxygen isotope composition of atmospheric CO2 as a tracer of biosphere CO2 fluxes at large scales. Across 44 diverse soils the rate of this exchange responded to pH, nitrate and microbial biomass, which are hypothesised to alter activity of the enzyme carbonic anhydrase in soils. Using these three soil traits, it is now possible to predict how this isotopic exchange varies spatially.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015, https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary
Short summary
Further progress in understanding and mitigating N2O emissions from soil lies within transdisciplinary research that reaches across spatial scales and takes an ambitious look into the future.
Cited articles
Abarenkov, K., Nilsson, R. H., Larsson, K. H., Alexander, I. J., Eberhardt,
U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T.,
Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T.,
Liimatainen, K., Peintner, U., and Kõljalg, U.: The UNITE database for
molecular identification of fungi – recent updates and future perspectives,
New Phytol., 186, 281–285, 2010.
Alber, B. E.: Autotrophic CO2 Metabolism, in: Encyclopedia of
Microbiology edited by: Schaechter, M., Elsevier, Heidelberg, Germany,
18–31, 2009.
Badger, M. R. and Bek, E. J.: Multiple Rubisco forms in proteobacteria: their
functional significance in relation to CO2 acquisition by the CBB
cycle, J. Exp. Bot., 59, 1525–1541, 2008.
Baldrian, P., Kolařik, M., Stursová, M., Kopecký, J.,
Valášková, V., Větrovský, T., Zifčáková, L.,
Snajdr, J., Rídl, J., Vlček, C., and Voříšková, J.:
Active and total microbial communities in forest soil are largely different
and highly stratified during decomposition, ISME J., 6, 248–258,
https://doi.org/10.1038/ismej.2011.95, 2012.
Banwart, W. L. and Bremner, J. M.: Formation of volatile sulfur compounds by
microbial decomposition of sulfur-containing amino acids in soils, Soil Biol.
Biochem., 7, 359–364, 1975.
Banwart, W. L. and Bremner, J. M.: Volatilization of sulfur from unamended
and sulfate-treated soils, Soil Biol. Biochem., 8, 19–22, 1976.
Bédard, C. and Knowles, R.: Physiology, biochemistry and specific
inhibitors of CH4, and CO oxidation by
methanotrophs and nitrifiers, Microbiol. Rev., 53, 68–84, 1989.
Behrendt, T., Veres, P. R., Ashuri, F., Song, G., Flanz, M., Mamtimin, B.,
Bruse, M., Williams, J., and Meixner, F. X.: Characterisation of NO
production and consumption: new insights by an improved laboratory dynamic
chamber technique, Biogeosciences, 11, 5463–5492,
https://doi.org/10.5194/bg-11-5463-2014, 2014.
Bender, M. and Conrad, R.: Microbial oxidation of methane, ammonium and
carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils,
Biogeochemistry, 27, 97–112, 1994.
Berry, J., Wolf, A., Campbell, E., Baker, I., Blake, N., Blake, D., Denning,
A. S., Kawa, R., Montzka, S. A., Seibt, U., Stimler, K., Yakir, D., and Zhu,
Z.: A coupled model of the global cycles of carbonyl sulfide and CO2:
A possible new window on the carbon cycle, J. Geophys. Res.-Biogeo., 118,
842–852, https://doi.org/10.1002/jgrg.20068, 2013.
Blazewicz, S. J., Barnard, R. L., Daly, R. A., and Firestone, M. K.:
Evaluating rRNA as an indicator of microbial activity in environmental
communities: limitations and uses, ISME J., 7, 2061–2068, 2013.
Blezinger, S., Wilhelm, C., and Kesselmeier, J.: Enzymatic consumption of
carbonyl sulfide (COS) by marine algae, Biogeochemistry, 48, 185–197, 2000.
Blonquist, J. M., Montzka, S. A., Munger, W., Yakir, D., Desai, A. R.,
Dragoni, D., Griffis, T. J., Monson, R. K., Scott, R. L., and Bowling, D. R.:
The potential of carbonyl sulfide as a proxy for gross primary production at
flux tower sites, J. Geophys. Res., 116, G04019, https://doi.org/10.1029/2011JG001723,
2011.
Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of
carbonyl sulphide as a source of stratospheric sulphate aerosol and its
impact on climate, Atmos. Chem. Phys., 12, 1239–1253,
https://doi.org/10.5194/acp-12-1239-2012, 2012.
Bunk, R., Behrendt, T., Yi, Z., Andreae, M. O., and Kesselmeier, J.: Exchange
of carbonyl sulfide (OCS) between soils and atmosphere under various
CO2 concentrations, J. Geophys. Res.-Biogeo., 122, 1343–1358,
https://doi.org/10.1002/2016JG003678, 2017.
Bunk, R., Yi, Z., Behrendt, T., Wu, D., Andreae, M. O., and Kesselmeier, J.:
Carbonyl sulfide (OCS) exchange between soils and the atmosphere affected by
soil moisture and compensation points, Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2018-20, 2018.
Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y.,
Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J.
A., Montzka, S. A., Sweeny, C., Schnoor, J. L., and Stanier, C. O.:
Photosynthetic control of atmospheric carbonyl sulfide during the growing
season, Science, 322, 1085–1088, 2008.
Campbell, J. E., Berry, J. A., Seibt, U., Smith, S. J., Montzka, S. A.,
Launois, T., Belviso, S., Bopp, L., and Laine, M.: Large historical growth in
global terrestrial gross primary production, Nature, 544, 84–87,
https://doi.org/10.1038/nature22030, 2017.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., Fierer, N., Gonzalez Pena, A., Goodrich, J. K., Gordon, J.
I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E.,
Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J.,
Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko,
T., Zaneveld, J., and Knight, R.: QIIME allows analysis of high-throughput
community sequencing data, Nat. Methods, 7, 335–336,
https://doi.org/10.1038/nmeth.f.303, 2010.
Catão, E. C. P., Lopes, F. A. C., Rubini, M. R., Nardoto, G. B., Prosser,
J. I., and Krüger, R. H.: Short-term impact of soybean management of
ammonia oxidizers in a Brazilian savanna under restoration as revealed by
coupling different techniques, Biol. Fert. Soils, 52, 1–12, 2016.
Conrad, R.: Soil Microorganisms as Controllers of Atmospheric Trace Gases
(H2, CO, CH4, OCS, N2O, and NO), Microbiol.
Rev., 60, 609–640, 1996.
Conrad, R. and Seiler, W.: Influence of temperature, moisture, and organic
carbon on the flux of H2 and CO between soil and atmosphere: Field
studies in subtropical regions, J. Geophys. Res.-Atmos., 90, 5699–5709,
https://doi.org/10.1029/JD090iD03p05699, 1985.
Conrad, R., Meyer, O., and Seiler, W.: Role of carboxydobacteria in
consumption of atmospheric carbon monoxide by soil, Appl. Environ.
Microbiol., 42, 211–215, 1981.
Cousins, A., Baroli, I., Badger, M. R., Ivakov, A., Lea, P. J., Leegood, R.
C., and von Caemmerer, S.: The Role of Phosphoenolpyruvate Carboxylase during
C4 Photosynthetic Isotope Exchange and Stomatal Conductance, Plant Physiol.,
145, 1006–1017, https://doi.org/10.1104/pp.107.103390, 2007.
Davidova, M. N., Tarasova, N. B., Mukhitova, F. K., and Karpilova, I. U.:
Carbon monoxide in metabolism of anaerobic bacteria, Can. J. Microbiol., 40,
417–425, 1993.
Environment Agency: Determination of thiocyanate by alkaline extraction of
soil samples followed by spectrophotometric determination using
chloramine-T-isonicotinic acid and 1,3-dimethylbarbituric acid,
Leicestershire, UK, 1–60, available at:
http://www.environment-agency.gov.uk/nls (last access: 24 April 2017),
2011.
Erb, T. J.: Carboxylases in Natural and Synthetic Microbial Pathways, Appl.
Environ. Microbiol., 77, 8466–8477, https://doi.org/10.1128/AEM.05702-11,
2011.
Eyice, O., Namura, M., Chen, Y., Mead, A., Samavedam, S., and Schäfer,
H.: SIP metagenomics identifies uncultivated Methylophilaceae as
dimethylsulfide degrading bacteria in soil and lake sediment, ISME J., 9,
2336–2348, 2015.
Flöck, O. R., Andreae, M. O., and Dräger, M.: Environmentally
relevant precursors of carbonyl sulfide in aquatic systems, Mar. Chem., 59,
71–85, 1997.
Inman, R. E. and Ingersoll, R. B.: Note on the uptake of carbon monoxide by
soil fungi, JAPCA J. Air Waste. Ma., 21, 646–647, 1971.
Jones, R. D. and Morita, R. Y.: Effects of various parameters on carbon
monoxide oxidation by ammonium oxidizers, Can. J. Microbiol., 30, 894–899,
1983.
Jones, R. D., Morita, R. Y., and Griffiths, R. P.: Method for estimating in
situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation,
Mar. Ecol.-Prog. Ser., 17, 259–269, 1984.
Kaisermann, A., Ogée, J., Sauze, J., Wohl, S., Jones, S. P., Gutierrez,
A., and Wingate, L.: Disentangling the rates of carbonyl sulfide (COS)
production and consumption and their dependency on soil properties across
biomes and land use types, Atmos. Chem. Phys., 18, 9425–9440,
https://doi.org/10.5194/acp-18-9425-2018, 2018.
Kamezaki, K., Hattori, S., Ogawa, T., Toyoda, S., Kato, H., Katayama, Y., and
Yoshida, N.: Sulfur Isotopic Fractionation of Carbonyl Sulfide during
Degradation by Soil Bacteria, Environ. Sci. Technol., 50, 3537–3544,
https://doi.org/10.1021/acs.est.5b05325, 2016.
Katayama, Y., Narahara, Y., Inoue, Y., Amano, F., Kanagawa, T., and
Kuriaishi, H.: A thiocyanate hydrolase of Thiobacillus thioparus: a
novel enzyme catalizing the formation of carbonyl sulfide from thiocyanate,
J. Biol. Chem., 267, 9170–9175, 1992.
Kelly, D. P., Malin, G., and Wood, A. P.: Microbial transformations and
biogeochemical cycling of one-carbon substrates containing Sulphur, nitrogen
or halogens, in: Microbial Growth on C1 Compounds, edited by: Murrell, J. C.
and Kelly, D. P., Intercept, Andover, Mass., 47–63, 1993.
Kesselmeier, J., Teusch, N., and Kuhn, U.: Controlling variables for the
uptake of atmospheric carbonyl sulfide by soil, J. Geophys. Res., 104,
11577–11584, 1999.
King, G. M. and Weber, C. F.: Distribution, diversity and ecology of aerobic
CO-oxidizing bacteria, Nat. Rev. Microbiol., 5, 107–118, 2007.
Klindworth, A., Pruesse, E., Schweer, T., Peplles, J., Quast, C., Horn, M.,
and Glöckner, F. O.: Evaluation of general 16S ribosomal RNA gene PCR
primers for classical and next-generation sequencing-based diversity studies,
Nucleic Acids Res., 41, 1–11, 2013.
Könneke, M., Schubert, D. M., Brown, P. C., Hügler, M., Standfest,
S., Schwander, T., Schada von Borzyskowski, L., Erb, T. J., Stahl, D. A., and
Berg, I. A.: Ammonia-oxidizing archaea use the most energy-efficient aerobic
pathway for CO2 fixation, P. Natl. Acad. Sci. USA, 111, 8239–8244,
https://doi.org/10.1073/pnas.1402028111, 2014.
Kooijmans, L. M. J., Uitslag, N. A. M., Zahniser, M. S., Nelson, D. D.,
Montzka, S. A., and Chen, H.: Continuous and high-precision atmospheric
concentration measurements of COS, CO2, CO and H2O using a
quantum cascade laser spectrometer (QCLS), Atmos. Meas. Tech., 9, 5293–5314,
https://doi.org/10.5194/amt-9-5293-2016, 2016.
Kuhn, U. and Kesselmeier, J.: Environmental variables controlling the uptake
of carbonyl sulfide by lichens, J. Geophys. Res., 105, 26783–26792, 2000.
Laing, W. A. and Christeller, J. T.: A Steady-State Kinetic Study on the
Catalytic Mechanism of Ribulose Biphosphate Carboxylase from Soybean, Arch.
Biochem. Biophys., 202, 592–600, 1980.
Lehmann, S. and Conrad, R.: Characteristics of Turnover of Carbonyl Sulfide
in Four Different Soils, J. Atmos. Chem., 23, 193–207, 1996.
Lorimer, G. H. and Pierce, J.: Carbonyl Sulfide: An Alternate Substrate for
but Not an Actovator of Ribulose-1,5-biphosphate Carboxylase, J. Biol. Chem.,
264, 2764–2772, 1989.
Masaki, Y., Ozawa, R., Kageyama, K., and Katayama, Y.: Degradation and
emission of carbonyl sulfide, an atmospheric trace gas, by fungi isolated
from forest soil, FEMS Microbiol. Lett., 363, fnw197,
https://doi.org/10.1093/femsle/fnw197, 2016.
Maseyk, K., Berry, J. A., Billesbach, D., Campbell, J. E., Torn, M. S.,
Zahniser, M., and Seibt, U.: Sources and sinks of carbonyl sulfide in an
agricultural field in the southern great planes, P. Natl. Acad. Sci. USA,
111, 9064–9069, https://doi.org/10.1073/pnas.1319132111, 2014.
Mason, F., Harper, D., and Larkin, M.: The microbial degradation of
thiocyanate, Biochem. Soc. T., 22, 423S, https://doi.org/10.1042/bst022423s, 1994.
McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z.,
Probst, A., Andersen, G. L., Knight, R., and Hugenholtz, P.: An improved
Greengenes taxonomy with explicit ranks for ecological and evolutionary
analyses of bacteria and archaea, ISME J., 6, 610–618, 2012.
Melillo, J. M. and Steudler, P. A.: The effect of nitrogen fertilization on
the COS and CS2 emissions from temperature forest soils, J. Atmos. Chem., 9,
411–417, 1989.
Meredith, L. K., Boye, K., Youngerman, C., Whelan, M., Ogée, J., Sauze,
J., and Wingate, L.: Coupled Biological and Abiotic Mechanisms Driving
Carbonyl Sulfide Production in Soils, Soil Systems, 2, 37,
https://doi.org/10.3390/soilsystems2030037, 2018.
Meredith, L. K., Ogée, J., Boye, K., Singer, E., Wingate, L., von
Sperber, C., Sengupta, A., Whelan, M., Pang, E., Keiluweit, M.,
Brüggemann, N., Berry, J. A., and Welander, P. V.: Soil exchange rates of
COS and CO18O differ with the diversity of microbial communities
and their carbonic anhydrase enzymes, ISME J., 13, 290–300,
https://doi.org/10.1038/s41396-018-0270-2, 2019.
Michalski, G., Böhlke, J. K., and Thiemens, M.: Long term atmospheric
deposition as the source of nitrate and other salts in the Atacama Desert,
Chile: New evidence from mass-independent oxygen isotopic compositions,
Geochim. Cosmochim. Ac., 68, 4023–4038, 2004.
Notni, J., Schenk, S., Protoschill-Krebs, G., Kesselmeier, J., and Anders,
E.: The missing link in COS metabolism: A model study on the reactivation of
carbonic anhydrase from its hydrosulfide analogue, ChemBioChem, 8, 530–536,
2007.
Ogawa, T., Kato, H., Higashide, M., Nishimiya, M., and Katayama, Y.:
Degradation of carbonyl sulfide by Actinomycetes and detection of clade D of
β-class carbonic anhydrase, FEMS Microbiol. Lett., 363, fnw223,
https://doi.org/10.1093/femsle/fnw223, 2016.
Ogée, J., Sauze, J., Kesselmeier, J., Genty, B., Van Diest, H., Launois,
T., and Wingate, L.: A new mechanistic framework to predict OCS fluxes from
soils, Biogeosciences, 13, 2221–2240,
https://doi.org/10.5194/bg-13-2221-2016, 2016.
Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger,
C., Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser,
A., Sörgel, M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F.
X., and Trebs, I.: HONO emissions from soil bacteria as a major source of
atmospheric reactive nitrogen, Science, 341, 1233–1235, 2013.
Placella, S. A. and Firestone, M. K.: Transcriptional Response of Nitrifying
Communities to Wetting of Dry soil, Appl. Environ. Microbiol., 79,
3294–3302, 2013.
Pratscher, J., Dumont, M. G., and Conrad, R.: Ammonia-oxidation coupled to
CO2 fixation by archaea and bacteria in an agricultural soil, P.
Natl. Acad. Sci. USA, 108, 4170–4175, 2011.
Protoschill-Krebs, G. and Kesselmeier, J.: Enzymatic pathways for the
consumption of carbonyl sulphide (COS) by higher plants, Bot. Acta, 105,
206–212, 1992.
Protoschill-Krebs, G., Wilhelm, C., and Kesselmeier, J.: Consumption of
carbonyl sulfide by Chlamydomonas reinhardtii with different
activities of carbonic anhydrase (CA) induced by different CO2
growing regimes, Bot. Acta, 108, 445–448, 1995.
Protoschill-Krebs, G., Wilhelm, C., and Kesselmeier, J.: Consumption of
carbonyl sulphide by carbonic anhydrase (CA) isolated from Pisum sativum,
Atmos. Environ., 30, 3151–3156, 1996.
Ragsdale, S. W.: Life with carbon monoxide, Crit. Rev. Biochem. Mol., 39,
165–195, 2004.
Rasigraf, O., Kool, D. M., Jetten, M. S. M., Sinninghe Damsté, J. S., and
Ettwig, K. F.: Autotrophic Carbon Dioxide Fixation via the
Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph “Candidatus
Methylomirabilis oxyfera”, Appl. Environ. Microbiol., 80, 2451–2460, 2014.
Rocca, J. D., Hall, E. K., Lennon, J. T., Evans, S. E., Waldrop, M. P.,
Cotner, J. B., Nemergut, D. R., Graham, E. B., and Wallenstein, M. D.:
Relationships between protein-encoding gene abundance and corresponding
process are commonly assumed yet rarely observed, ISME J., 9, 1693–1999,
https://doi.org/10.1038/ismej.2014.252, 2015.
Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
structural gene amoA as a functional marker: molecular fine-scale analysis of
natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63,
4704–4712, 1997.
Sandoval-Soto, L., Stanimirov, M., von Hobe, M., Schmitt, V., Valdes, J.,
Wild, A., and Kesselmeier, J.: Global uptake of carbonyl sulfide (COS) by
terrestrial vegetation: Estimates corrected by deposition velocities
normalized to the uptake of carbon dioxide (CO2), Biogeosciences, 2,
125–132, https://doi.org/10.5194/bg-2-125-2005, 2005.
Sandoval-Soto, L., Kesselmeier, M., Schmitt, V., Wild, A., and Kesselmeier,
J.: Observations of the uptake of carbonyl sulfide (COS) by trees under
elevated atmospheric carbon dioxide concentrations, Biogeosciences, 9,
2935–2945, https://doi.org/10.5194/bg-9-2935-2012, 2012.
Sauze, J., Ogeé, J., Maron, P.-A., Crouzet, O., Nowak, V., Wohl, S.,
Kaisermann, A., Jones, S. P., and Wingate, L.: The interaction of soil
phototrophs and fungi with pH and their impact on soil CO2,
CO18O and OCS exchange, Soil Biol. Biochem., 115, 371–382,
https://doi.org/10.1016/j.soilbio.2017.09.009, 2017.
Schmieder, R. and Edwards, R.: Quality control and preprocessing of
metagenomic datasets, Bioinformatics, 27, 863–864, 2011.
Selesi, D., Pattis, I., Schmid, M., Kandeler, E., and Hartmann, A.:
Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time
PCR, J. Microbiol. Meth., 69, 497–503, 2007.
Selesi, D., Schmid, M., and Hartmann, A.: Diversity of green-like and
red-like ribulose-1,5-biphosphate carboxylase/oxygenase large-subunit genes
(cbbL) in differently managed agricultural soils, Appl. Environ.
Microbiol., 71, 175–184, 2005.
Smeulders, M. J., Barends, T. R. M., Pol, A., Scherer, A., Zandvoort, M. H.,
Udvarhelyi, A., Khadem, A. F., Menzel, A., Hermans, J., Shoeman, R. L.,
Wessels., H. J. C. T., van den Heuvel, L. P., Russ, L., Schlichting, I.,
Jetten, M. S. M., and Op den Camp, H. J. M.: Evolution of a new enzyme for
carbon disulphide conversion by an acidothermophilic archaeon, Nature, 478,
412–416, 2011.
Smith, K. S. and Ferry, J. G.: Procaryotic carbonic anhydrases, FEMS Microbiology
Reviews, 24, 335–366, 2000.
Smith, N. A. and Kelly, P.: Oxidation of carbon disulphide as the sole source
of energy for the autotrophic growth of Thiobacillus thioporus
strain TK-m, J. Gen. Microbiol., 134, 3041–3048, 1988.
Sokolova, T. G., Yakimov, M. M., Chernyh, N. A., Yu, E. Lun'kova, Kostrikina,
N. A., Taranov, E. A., Lebedinskii, A. V., and Bonch-Osmolovskaya, E. A.:
Aerobic Carbon Monoxide Oxidation in the Course of Growth of a
Hyperthermophilic Archaeon, Sulfolobus sp. ETSY, Microbiology, 86, 539–548,
2017.
Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., and Muyzer, G.: Diversity of
culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats,
Microbiology, 152, 3013–3023, 2006.
Sun, W., Kooijmans, L. M. J., Maseyk, K., Chen, H., Mammarella, I., Vesala,
T., Levula, J., Keskinen, H., and Seibt, U.: Soil fluxes of carbonyl sulfide
(COS), carbon monoxide, and carbon dioxide in a boreal forest in southern
Finland, Atmos. Chem. Phys., 18, 1363–1378, https://doi.org/10.5194/acp-18-1363-2018,
2018.
Tourna, M., Freitag, T. E., Nicol, G. W., and Prosser, J. I.: Growth,
activity and temperature response of ammonia-oxidizing archaea and bacteria
in soil microcosms, Environ. Microbiol., 10, 1357–1364, 2008.
Van Diest, H. and Kesselmeier, J.: Soil atmosphere exchange of carbonyl
sulfide (COS) regulated by diffusivity depending on water-filled pore space,
Biogeosciences, 5, 475–483, https://doi.org/10.5194/bg-5-475-2008, 2008.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779, 2000.
Whelan, M. E., Hilton, T. W., Berry, J. A., Berkelhammer, M., Desai, A. R.,
and Campbell, J. E.: Carbonyl sulfide exchange in soils for better estimates
of ecosystem carbon uptake, Atmos. Chem. Phys., 16, 3711–3726,
https://doi.org/10.5194/acp-16-3711-2016, 2016.
Whelan, M. E. and Rhew, R. C.: Carbonyl sulfide produced by abiotic thermal
and photodegradation of soil organic matter from wheat field substrate, J.
Geophys. Res.-Biogeo., 120, 54–62, https://doi.org/10.1002/2014JG002661, 2015.
Whelan, M. E., Lennartz, S. T., Gimeno, T. E., Wehr, R., Wohlfahrt, G., Wang,
Y., Kooijmans, L. M. J., Hilton, T. W., Belviso, S., Peylin, P., Commane, R.,
Sun, W., Chen, H., Kuai, L., Mammarella, I., Maseyk, K., Berkelhammer, M.,
Li, K.-F., Yakir, D., Zumkehr, A., Katayama, Y., Ogée, J., Spielmann, F.
M., Kitz, F., Rastogi, B., Kesselmeier, J., Marshall, J., Erkkilä, K.-M.,
Wingate, L., Meredith, L. K., He, W., Bunk, R., Launois, T., Vesala, T.,
Schmidt, J. A., Fichot, C. G., Seibt, U., Saleska, S., Saltzman, E. S.,
Montzka, S. A., Berry, J. A., and Campbell, J. E.: Reviews and syntheses:
Carbonyl sulfide as a multi-scale tracer for carbon and water cycles,
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, 2018.
White, T. J., Bruns, T. D., Lee, S. B., and Taylor, J. W.: Amplification and
direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: PCR
protocols: a guide to methods and applications, edited by: Innis, M. A.,
Gelfand, D. H., Sninsky, J. J., and White, T. J., Academic Press, London, UK,
315–322, 1990.
Wingate, L., Ogée, J., Cuntz, M., Genty, B., Reiter, I., Seibt, U.,
Yakir, D., Maseyk, K., Pendall, E. G., Barbour, M. M., Mortazavi, B.,
Burlett, R., Peylin, P., Miller, J., Mencuciini, M., Shim, J. H., Hunt, J.,
and Grace, J.: The impact of soil organisms on the global budget of
δ18O in atmospheric CO2, P. Natl. Acad. Sci. USA,
106, 22411–22415, https://doi.org/10.1073/pnas.0905210106, 2009.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A.: PEAR: a fasta and
accurate Illumina Paired-End reAd mergeR, Bioinformatics, 30, 614–620, 2014.
Žifčáková, L., Vĕtrovský, T., Howe, A., and Baldrian,
P.: Microbial activity in forest soil reflects the changes in ecosystem
properties between summer and winter, Environ. Microbiol., 18, 288–301,
https://doi.org/10.1111/1462-2920.13026, 2016.
Short summary
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber system and analyzed for one soil RNA relative abundance and gene transcripts. Our data suggest that indeed carbonic anhydrase (CA) plays an important role for OCS exchange, but the role of other enzymes might have been underestimated. Our study is the first assessment of the environmental significance of different microbial groups producing and consuming OCS by various enzymes other than CA.
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber...