Articles | Volume 11, issue 2 
            
                
                    
            
            
            https://doi.org/10.5194/soil-11-883-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-883-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Contribution of soil microbial necromass carbon to soil organic carbon fractions and its influencing factors in different grassland types
Shenggang Chen
                                            School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    
                                            Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    Yaqi Zhang
                                            School of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
                                        
                                    
                                            Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
                                        
                                    Jun Ma
                                            School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    
                                            Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    Mingyue Bai
                                            School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    
                                            Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    Jinxiao Long
                                            School of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
                                        
                                    
                                            Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
                                        
                                    Ming Liu
                                            School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    
                                            Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    Yinglong Chen
                                            School of Earth and Environment, The University of Western Australia, Perth, WA 6009, Australia
                                        
                                    Jianbin Guo
CORRESPONDING AUTHOR
                                            
                                    
                                            School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    
                                            Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
                                        
                                    Lin Chen
CORRESPONDING AUTHOR
                                            
                                    
                                            School of Ecology and Environment, Ningxia University, Yinchuan, 750021, China
                                        
                                    
                                            Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
                                        
                                    Cited articles
                        
                        An, S. S., Huang, Y. M., and Liu, M. Y.: Soil Organic Carbon Density and Land Restoration: Example of Southern Mountain Area of Ningxia Province, Northwest China, Communications in Soil Science and Plant Analysis, 41, 181–189, https://doi.org/10.1080/00103620903429976, 2010. 
                    
                
                        
                        Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter, Soil Biology & Biochemistry, 156, https://doi.org/10.1016/j.soilbio.2021.108189, 2021. 
                    
                
                        
                        Bell, C. W., Acosta-Martinez, V., McIntyre, N. E., Cox, S., Tissue, D. T., and Zak, J. C.: Linking Microbial Community Structure and Function to Seasonal Differences in Soil Moisture and Temperature in a Chihuahuan Desert Grassland, Microbial Ecology, 58, 827–842, https://doi.org/10.1007/s00248-009-9529-5, 2009. 
                    
                
                        
                        Bölscher, T., Vogel, C., Olagoke, F. K., Meurer, K. H. E., Herrmann, A. M., Colombi, T., Brunn, M., and Domeignoz-Horta, L. A.: Beyond growth: The significance of non-growth anabolism for microbial carbon-use efficiency in the light of soil carbon stabilisation, Soil Biology & Biochemistry, 193, https://doi.org/10.1016/j.soilbio.2024.109400, 2024. 
                    
                
                        
                        Camenzind, T., Grenz, K. P., Lehmann, J., and Rillig, M. C.: Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios, Ecology Letters, 24, 208–218, https://doi.org/10.1111/ele.13632, 2021. 
                    
                
                        
                        Chai, J., Ling, Z. B., Wang, Y., Dong, R., Zheng, Y. H., and Qi, J. T.: A method for measuring soil water content based on principal component analysis, Review of Scientific Instruments, 95, https://doi.org/10.1063/5.0178324, 2024. 
                    
                
                        
                        Chen, C., Li, Z. B., Li, S. J., Deng, N. X., and Mei, P.: Effects of root exudates on the activation and remediation of cadmium ion in contaminated soils, Environmental Science and Pollution Research, 27, 2926–2934, https://doi.org/10.1007/s11356-019-07263-8, 2020a. 
                    
                
                        
                        Chen, G. P., Ma, S. H., Tian, D., Xiao, W., Jiang, L., Xing, A. J., Zou, A. L., Zhou, L. H., Shen, H. H., Zheng, C. Y., Ji, C. J., He, H. B., Zhu, B., Liu, L. L., and Fang, J. Y.: Patterns and determinants of soil microbial residues from tropical to boreal forests, Soil Biology & Biochemistry, 151, https://doi.org/10.1016/j.soilbio.2020.108059, 2020b. 
                    
                
                        
                        Chen, J. G., Xiao, W., Zheng, C. Y., and Zhu, B.: Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest, Soil Biology & Biochemistry, 142, https://doi.org/10.1016/j.soilbio.2020.107708, 2020c. 
                    
                
                        
                        Chen, X. B., Hu, Y. J., Xia, Y. H., Zheng, S. M., Ma, C., Rui, Y. C., He, H. B., Huang, D. Y., Zhang, Z. H., Ge, T. D., Wu, J. S., Guggenberger, G., Kuzyakov, Y., and Su, Y. R.: Contrasting pathways of carbon sequestration in paddy and upland soils, Global Change Biology, 27, 2478–2490, https://doi.org/10.1111/gcb.15595, 2021. 
                    
                
                        
                        Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nature Geoscience, 12, https://doi.org/10.1038/s41561-019-0484-6, 2019. 
                    
                
                        
                        Cui, H., Mo, C. Y., Chen, P. F., Lan, R., He, C., Lin, J. D., Jiang, Z. H., and Yang, J. P.: Impact of rhizosphere priming on soil organic carbon dynamics: Insights from the perspective of carbon fractions, Applied Soil Ecology, 189, https://doi.org/10.1016/j.apsoil.2023.104982, 2023. 
                    
                
                        
                        Deng, F. B. and Liang, C.: Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil, Soil Biology & Biochemistry, 165, https://doi.org/10.1016/j.soilbio.2021.108486, 2022. 
                    
                
                        
                        Dijkstra, F. A., Zhu, B., and Cheng, W. X.: Root effects on soil organic carbon: a double-edged sword, New Phytologist, 230, 60–65, https://doi.org/10.1111/nph.17082, 2021. 
                    
                
                        
                        Ding, W. L., Cong, W. F., and Lambers, H.: Plant phosphorus-acquisition and -use strategies affect soil carbon cycling, Trends in Ecology & Evolution, 36, 899–906, https://doi.org/10.1016/j.tree.2021.06.005, 2021. 
                    
                
                        
                        Ding, X. L., Chen, S. Y., Zhang, B., Liang, C., He, H. B., and Horwath, W. R.: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow, Soil Biology & Biochemistry, 135, 13–19, https://doi.org/10.1016/j.soilbio.2019.04.004, 2019. 
                    
                
                        
                        Du, L. T., Gong, F., Zeng, Y. J., Ma, L. L., Qiao, C. L., and Wu, H. Y.: Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia province, northwest China, Ecological Indicators, 120, https://doi.org/10.1016/j.ecolind.2020.106971, 2021. 
                    
                
                        
                        Dou, M. K., Zhang, W. D., Yang, Q. P., Chen, L. C., Liu, Y. J., and Hu, Y. L.: Effects of Chinese fir planting and phosphorus addition on soil microbial biomass, Chinese Journal of Applied Ecology, 34, 631–638, https://doi.org/10.13287/j.1001-9332.202303.003, 2023. 
                    
                
                        
                        Fernandez, C. W., Heckman, K., Kolka, R., and Kennedy, P. G.: Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming, Ecology Letters, 22, 498–505, https://doi.org/10.1111/ele.13209, 2019. 
                    
                
                        
                        Fujii, K.: Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests, Ecological Research, 29, 371–381, https://doi.org/10.1007/s11284-014-1144-3, 2014. 
                    
                
                        
                        Gavazov, K., Canarini, A., Jassey, V. E. J., Mills, R., Richter, A., Sundqvist, M. K., Väisänen, M., Walker, T. W. N., Wardle, D. A., and Dorrepaal, E.: Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types, Soil Biology & Biochemistry, 165, https://doi.org/10.1016/j.soilbio.2021.108530, 2022. 
                    
                
                        
                        Griepentrog, M., Bodé, S., Boeckx, P., Hagedorn, F., Heim, A., and Schmidt, M. W. I.: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions, Global Change Biology, 20, 327–340, https://doi.org/10.1111/gcb.12374, 2014. 
                    
                
                        
                        Hao, Z. G., Zhao, Y. F., Wang, X., Wu, J. H., Jiang, S. L., Xiao, J. N., Wang, K. C., Zhou, X. H., Liu, H. Y., Li, J., and Sun, Y. X.: Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues, Communications Earth & Environment, 2, https://doi.org/10.1038/s43247-021-00306-4, 2021. 
                    
                
                        
                        He, H. B., Zhang, W., Zhang, X. D., Xie, H. T., and Zhuang, J.: Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation, Soil Biology & Biochemistry, 43, 1155–1161, https://doi.org/10.1016/j.soilbio.2011.02.002, 2011. 
                    
                
                        
                        He, J. H., Nie, Y. X., Tan, X. P., Hu, A., Li, Z. Q., Dai, S. P., Ye, Q., Zhang, G. X., and Shen, W. J.: Latitudinal patterns and drivers of plant lignin and microbial necromass accumulation in forest soils: Disentangling microbial and abiotic controls, Soil Biology & Biochemistry, 194, https://doi.org/10.1016/j.soilbio.2024.109438, 2024a. 
                    
                
                        
                        He, L. B., Sun, X. Y., Li, S. Y., Zhou, W. Z., Yu, J. T., Zhao, G. Y., Chen, Z., Bai, X. T., and Zhang, J. S.: Depth effects on bacterial community altitudinal patterns and assembly processes in the warm-temperate montane forests of China, Science of the Total Environment, 914, https://doi.org/10.1016/j.scitotenv.2024.169905, 2024b. 
                    
                
                        
                        He, M., Fang, K., Chen, L. Y., Feng, X. H., Qin, S. Q., Kou, D., He, H. B., Liang, C., and Yang, Y. H.: Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands, Global Change Biology, 28, 936–949, https://doi.org/10.1111/gcb.15969, 2022. 
                    
                
                        
                        Hou, Z. N., Wang, R. H., Chang, S., Zheng, Y., Ma, T. T., Xu, S. Q., Zhang, X. J., Shi, X., Lu, J., Luo, D. Q., Wang, B., Du, Z. L., and Wei, Y. Q.: The contribution of microbial necromass to soil organic carbon and influencing factors along a variation of habitats in alpine ecosystems, Science of the Total Environment, 921, https://doi.org/10.1016/j.scitotenv.2024.171126, 2024. 
                    
                
                        
                        Hu, J. X., Du, M. L., Chen, J., Tie, L. H., Zhou, S. X., Buckeridge, K. M., Cornelissen, J. H. C., Huang, C. D., and Kuzyakov, Y.: Microbial necromass under global change and implications for soil organic matter, Global Change Biology, 29, 3503–3515, https://doi.org/10.1111/gcb.16676, 2023. 
                    
                
                        
                        Hu, P. L., Zhang, W., Chen, H. S., Xu, L., Xiao, J., Luo, Y. Q., and Wang, K. L.: Lithologic control of microbial-derived carbon in forest soils, Soil Biology & Biochemistry, 167, https://doi.org/10.1016/j.soilbio.2022.108600, 2022. 
                    
                
                        
                        Hu, Y., Fu, L., Ao, G., Ji, C., Zeng, H., and Zhu, B.: Climate, plant and microorganisms jointly influence soil organic matter fractions in temperate grasslands, The Science of the Total Environment, 958, 178133, https://doi.org/10.1016/j.scitotenv.2024.178133, 2025. 
                    
                
                        
                        Hua, H., Qian, C., Xue, K., Jörgensen, R. G., Keiluweit, M., Liang, C., Zhu, X. F., Chen, J., Sun, Y. S., Ni, H. W., Ding, J. X., Huang, W. G., Mao, J. D., Tan, R. X., Zhou, J. Z., Crowther, T. W., Zhou, Z. H., Zhang, J. B., and Liang, Y. T.: Reducing the uncertainty in estimating soil microbial- derived carbon storage, Proceedings of the National Academy of Sciences of the United States of America, 121, https://doi.org/10.1073/pnas.2401916121, 2024. 
                    
                
                        
                        Huang, L. X., Gao, Y., Wang, D. F., Cui, X. J., Zhang, H. M., Yuan, J. M., and Gao, M. M.: Natural grassland restoration exhibits enhanced carbon sequestration and soil improvement potential in northern sandy grasslands of China: An empirical study, Catena, 246, https://doi.org/10.1016/j.catena.2024.108396, 2024. 
                    
                
                        
                        Indorf, C., Dyckmans, J., Khan, K. S., and Joergensen, R. G.: Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates, Biology and Fertility of Soils, 47, 387–396, https://doi.org/10.1007/s00374-011-0545-5, 2011. 
                    
                
                        
                        Ji, B., Xie, Y.-Z., He, J.-L., Wang, Z.-J., and Jiang, Q.: Carbon sequestration characteristics of typical temperate natural grasslands in Ningxia, China, The Journal of Applied Ecology, 31, 3657–3664, https://doi.org/10.13287/j.1001-9332.202011.010, 2020. 
                    
                
                        
                        Ji, X. L., Wu, D., Yan, Y. G., Guo, W., and Li, K.: Interpreting regional ecological security from perspective of ecological networks: a case study in Ningxia Hui Autonomous Region, China, Environmental Science and Pollution Research, 30, 65412–65426, https://doi.org/10.1007/s11356-023-26997-0, 2023. 
                    
                
                        
                        Jia, J., Feng, X. J., He, J. S., He, H. B., Lin, L., and Liu, Z. G.: Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland, Soil Biology & Biochemistry, 104, 141–151, https://doi.org/10.1016/j.soilbio.2016.10.018, 2017. 
                    
                
                        
                        Jiang, M. D., Li, H. L., Zhang, W., Liu, J. B., and Zhang, Q.: Effects of climate change and grazing on the soil organic carbon stock of alpine wetlands on the Tibetan Plateau from 2000 to 2018, Catena, 238, https://doi.org/10.1016/j.catena.2024.107870, 2024. 
                    
                
                        
                        Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015. 
                    
                
                        
                        Li, D. J., Liu, J., Chen, H., Zheng, L., and Wang, K. L.: Soil gross nitrogen transformations in responses to land use conversion in a subtropical karst region, Journal of Environmental Management, 212, 1–7, https://doi.org/10.1016/j.jenvman.2018.01.084, 2018. 
                    
                
                        
                        Li, J., Zhang, Q., Li, Y., Liu, Y., Xu, J., and Di, H.: Effects of long-term mowing on the fractions and chemical composition of soil organic matter in a semiarid grassland, Biogeosciences, 14, 2685–2696, https://doi.org/10.5194/bg-14-2685-2017, 2017. 
                    
                
                        
                        Li, N., Zhao, N., Xu, S. X., Wang, Y. L., Wei, L., Zhang, Q., Guo, T. Q., and Wang, X. A.: Accumulation of microbial necromass carbon and its contribution to soil organic carbon in artificial grasslands of various vegetation types, European Journal of Soil Biology, 119, https://doi.org/10.1016/j.ejsobi.2023.103573, 2023. 
                    
                
                        
                        Li, Y., Wang, B. R., Zhang, Y. H., Ao, D., Feng, C. L., Wang, P., Bai, X. J., and An, S. S.: Afforestation increased the microbial necromass carbon accumulation in deep soil on the Loess Plateau, Journal of Environmental Management, 349, https://doi.org/10.1016/j.jenvman.2023.119508, 2024. 
                    
                
                        
                        Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative assessment of microbial necromass contribution to soil organic matter, Global Change Biology, 25, 3578–3590, https://doi.org/10.1111/gcb.14781, 2019. 
                    
                
                        
                        Liao, C., Men, X., Wang, C., Chen, R., and Cheng, X. L.: Nitrogen availability and mineral particles contributed fungal necromass to the newly formed stable carbon pool in the alpine areas of Southwest China, Soil Biology & Biochemistry, 173, https://doi.org/10.1016/j.soilbio.2022.108788, 2022. 
                    
                
                        
                        Liao, J. J., Yang, X., Dou, Y. X., Wang, B. R., Xue, Z. J., Sun, H., Yang, Y., and An, S. S.: Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland, Journal of Environmental Management, 344, https://doi.org/10.1016/j.jenvman.2023.118536, 2023. 
                    
                
                        
                        Liu, H. Y., Mi, Z. R., Lin, L., Wang, Y. H., Zhang, Z. H., Zhang, F. W., Wang, H., Liu, L. L., Zhu, B. A., Cao, G. M., Zhao, X. Q., Sanders, N. J., Classen, A. T., Reich, P. B., and He, J. S.: Shifting plant species composition in response to climate change stabilizes grassland primary production, Proceedings of the National Academy of Sciences of the United States of America, 115, 4051–4056, https://doi.org/10.1073/pnas.1700299114, 2018. 
                    
                
                        
                        Liu, X. F., Tian, Y., Heinzle, J., Salas, E., Kwatcho-Kengdo, S., Borken, W., Schindlbacher, A., and Wanek, W.: Long-term soil warming decreases soil microbial necromass carbon by adversely affecting its production and decomposition, Global Change Biology, 30, https://doi.org/10.1111/gcb.17379, 2024. 
                    
                
                        
                        Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Quero, J. L., García-Gómez, M., Gallardo, A., Ulrich, W., Bowker, M. A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitán, J., Gutiérrez, J. R., Huber-Sannwald, E., Jankju, M., Mau, R. L., Miriti, M., Naseri, K., Ospina, A., Stavi, I., Wang, D. L., Woods, N. N., Yuan, X., Zaady, E., and Singh, B. K.: Increasing aridity reduces soil microbial diversity and abundance in global drylands, Proceedings of the National Academy of Sciences of the United States of America, 112, 15684–15689, https://doi.org/10.1073/pnas.1516684112, 2015. 
                    
                
                        
                        Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G., and Griffiths, R. I.: Land use driven change in soil pH affects microbial carbon cycling processes, Nat. Commun., 9, https://doi.org/10.1038/s41467-018-05980-1, 2018. 
                    
                
                        
                        Min, K. K., Lynch, L., Zheng, T. T., Chen, F. S., and Liang, C.: Factors driving microbial biomass and necromass relationships display ecosystem-dependent responses, European Journal of Soil Science, 75, https://doi.org/10.1111/ejss.13555, 2024. 
                    
                
                        
                        Mou, Z. J., Kuang, L. H., He, L. F., Zhang, J., Zhang, X. Y., Hui, D. F., Li, Y., Wu, W. J., Mei, Q. M., He, X. J., Kuang, Y. W., Wang, J., Wang, Y. Q., Lambers, H., Sardans, J., Peñuelas, J., and Liu, Z. F.: Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests, Catena, 207, https://doi.org/10.1016/j.catena.2021.105707, 2021. 
                    
                
                        
                        Roberts, P., Bol, R., and Jones, D. L.: Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling, Soil Biology & Biochemistry, 39, 3081–3092, https://doi.org/10.1016/j.soilbio.2007.07.001, 2007. 
                    
                
                        
                        Rocci, K. S., Lavallee, J. M., Stewart, C. E., and Cotrufo, M. F.: Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis, Science of the Total Environment, 793, https://doi.org/10.1016/j.scitotenv.2021.148569, 2021. 
                    
                
                        
                        Shao, P. S., Lynch, L., Xie, H. T., Bao, X. L., and Liang, C.: Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils, Soil Biology & Biochemistry, 153, https://doi.org/10.1016/j.soilbio.2020.108112, 2021. 
                    
                
                        
                        Shen, A. H., Shi, Y., Mi, W. B., Yue, S. L., She, J., Zhang, F. H., Guo, R., He, H. Y., Wu, T., Li, H. X., and Zhao, N.: Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia, China, Journal of Arid Land, 16, 725–737, https://doi.org/10.1007/s40333-024-0076-1, 2024. 
                    
                
                        
                        Sokol, N. W., Sanderman, J., and Bradford, M. A.: Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry, Global Change Biology, 25, 12–24, https://doi.org/10.1111/gcb.14482, 2019a. 
                    
                
                        
                        Sokol, N. W., Kuebbing, S. E., Karlsen-Ayala, E., and Bradford, M. A.: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon, New Phytologist, 221, 233–246, https://doi.org/10.1111/nph.15361, 2019b. 
                    
                
                        
                        Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., Hungate, B. A., Koch, B. J., Stone, B. W., Sullivan, M. B., Zablocki, O., Pett-Ridge, J., and Consortium, L. S. M.: Life and death in the soil microbiome: how ecological processes influence biogeochemistry, Nature Reviews Microbiology, 20, 415–430, https://doi.org/10.1038/s41579-022-00695-z, 2022. 
                    
                
                        
                        Soong, J. L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., and Richter, A.: Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling, Global Change Biology, 26, 1953–1961, https://doi.org/10.1111/gcb.14962, 2020. 
                    
                
                        
                        Spohn, M., Klaus, K., Wanek, W., and Richter, A.: Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling, Soil Biology & Biochemistry, 96, 74–81, https://doi.org/10.1016/j.soilbio.2016.01.016, 2016. 
                    
                
                        
                        Spohn, M., Müller, K., Höschen, C., Mueller, C. W., and Marhan, S.: Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration, Global Change Biology, 26, 1926-1935, https://doi.org/10.1111/gcb.14937, 2020. 
                    
                
                        
                        Tao, F., Huang, Y. Y., Hungate, B. A., Manzoni, S., Frey, S. D., Schmidt, M. W. I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L. F., Lehmann, J., Wang, Y. P., Houlton, B. Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T. D., Lu, X. J., Shi, Z., Viatkin, K., Vargas, R., Yigini, Y., Omuto, C., Malik, A. A., Peralta, G., Cuevas-Corona, R., Di Paolo, L. E., Luotto, I., Liao, C. J., Liang, Y. S., Saynes, V. S., Huang, X. M., and Luo, Y. Q.: Microbial carbon use efficiency promotes global soil carbon storage, Nature, 618, https://doi.org/10.1038/s41586-023-06042-3, 2023. 
                    
                
                        
                        Villarino, S. H., Pinto, P., Jackson, R. B., and Piñeiro, G.: Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions, Science Advances, 7, https://doi.org/10.1126/sciadv.abd3176, 2021. 
                    
                
                        
                        Wang, B. R., An, S. S., Liang, C., Liu, Y., and Kuzyakov, Y.: Microbial necromass as the source of soil organic carbon in global ecosystems, Soil Biology & Biochemistry, 162, https://doi.org/10.1016/j.soilbio.2021.108422, 2021a. 
                    
                
                        
                        Wang, B. R., Liang, C., Yao, H. J., Yang, E., and An, S. S.: The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration, Catena, 207, https://doi.org/10.1016/j.catena.2021.105622, 2021b. 
                    
                
                        
                        Wang, B. R., Huang, Y. M., Li, N., Yao, H. J., Yang, E., Soromotin, A., Kuzyakov, Y., Cheptsov, V., Yang, Y., and An, S. S.: Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling, Soil Biology & Biochemistry, 167, https://doi.org/10.1016/j.soilbio.2022.108607, 2022a. 
                    
                
                        
                        Wang, C., Qu, L. R., Yang, L. M., Liu, D. W., Morrissey, E., Miao, R. H., Liu, Z. P., Wang, Q. K., Fang, Y. T., and Bai, E.: Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon, Global Change Biology, 27, 2039–2048, https://doi.org/10.1111/gcb.15550, 2021c. 
                    
                
                        
                        Wang, S. C., Wang, Z. Q., Heinonsalo, J., Zhang, Y. X., and Liu, G.: Soil organic carbon stocks and dynamics in a mollisol region: A 1980s–2010s study, Science of the Total Environment, 807, https://doi.org/10.1016/j.scitotenv.2021.150910, 2022b. 
                    
                
                        
                        Wang, X., Liang, C., Dini-Andreote, F., Zhou, S., and Jiang, Y.: Impacts of trophic interactions on carbon accrual in soils, Trends in Microbiology, https://doi.org/10.1016/j.tim.2024.10.009, 2024a. 
                    
                
                        
                        Wang, X. X., Zhou, L. Y., Fu, Y. L., Jiang, Z., Jia, S. X., Song, B. Q., Liu, D. Q., and Zhou, X. H.: Drought-induced changes in rare microbial community promoted contribution of microbial necromass C to SOC in a subtropical forest, Soil Biology & Biochemistry, 189, https://doi.org/10.1016/j.soilbio.2023.109252, 2024b. 
                    
                
                        
                        Wu, M. Y., Chen, L., Chen, S. G., Chen, Y. L., Ma, J. P., Zhang, Y. Q., Pang, D. B., and Li, X. B.: Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands, Journal of Environmental Management, 373, https://doi.org/10.1016/j.jenvman.2024.123675, 2025. 
                    
                
                        
                        Xue, Z.-J., Qu, T.-T., Liu, C.-H., Liu, X.-K., Wang, R., Wang, N., Zhou, Z.-C., and Dong, Z.-B.: Contribution of microbial necromass to soil organic carbon formation during litter decomposition under incubation conditions, The Journal of Applied Ecology, 34, 1845–1852, https://doi.org/10.13287/j.1001-9332.202307.004, 2023. 
                    
                
                        
                        Yang, Y., Wang, B.-R., Dou, Y.-X., Xue, Z.-J., Sun, H., Wang, Y.-Q., Liang, C., and An, S.-S.: Advances in the research of transformation and stabilization of soil organic carbon from plant and microbe, The Journal of Applied Ecology, 35, 111–123, https://doi.org/10.13287/j.1001-9332.202401.011, 2024. 
                    
                
                        
                        Zhang, X.-F., Zheng, S.-M., Xia, Y.-H., Hu, Y.-J., Su, Y.-R., and Chen, X.-B.: Responses of Soil Organic Carbon Fractions to Land Use Types in Hilly Red Soil Regions, China, Huan jing ke xue = Huanjing kexue, 41, 1466–1473, https://doi.org/10.13227/j.hjkx.201908218, 2020. 
                    
                
                        
                        Zhang, X. J., Wang, D. N., Ma, K. X., Sun, D., Yang, F. L., and Lin, H. L.: Spatiotemporal evolution of soil water erosion in Ningxia grassland based on the RUSLE-TLSD model, Environmental Research, 236, https://doi.org/10.1016/j.envres.2023.116744, 2023. 
                    
                
                        
                        Zhang, Y., Cheng, C. X., Wang, Z. H., Hai, H. X., and Miao, L. L.: Spatiotemporal Variation and Driving Factors of Carbon Sequestration Rate in Terrestrial Ecosystems of Ningxia, China, Land, 14, https://doi.org/10.3390/land14010094, 2025. 
                    
                
                        
                        Zhang, Y.-H., Li, Y., Zhou, Y., Chen, Y.-J., and An, S.-S.: Changes of soil nutrients and organic carbon fractions in Caragana korshinskii forests with different restoration years in mountainous areas of southern Ningxia, China, The Journal of Applied Ecology, 35, 639–647, https://doi.org/10.13287/j.1001-9332.202403.018, 2024. 
                    
                
                        
                        Zhang, Z. F., Pan, Y. P., Liu, Y., and Li, M.: High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments, Applied and Environmental Microbiology, 87, https://doi.org/10.1128/aem.00928-21, 2021. 
                    
                
                        
                        Zhao, Q. Z., Shi, P., Li, P., Li, Z. B., Min, Z. Q., Sun, J. M., Cui, L. Z., Niu, H. B., Zu, P. J., and Cao, M. H.: Effects of vegetation restoration on soil organic carbon in the Loess Plateau: A meta-analysis, Land Degradation & Development, 34, 2088–2097, https://doi.org/10.1002/ldr.4591, 2023. 
                    
                
                        
                        Zhao, Y. D., Li, D. S., and Zhou, J. X.: Microbial necromass as a critical driver of soil organic carbon accumulation in Qinghai-Tibet Plateau under climate warming: A meta-analysis, Geoderma Regional, 40, https://doi.org/10.1016/j.geodrs.2024.e00903, 2025. 
                    
                
                        
                        Zhou, H., Yan, Y. J., Dai, Q. H., He, Z. J., and Yi, X. S.: Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions, Forests, 14, https://doi.org/10.3390/f14020344, 2023. 
                    
                
                        
                        Zhou, Y., Li, Y.-Y., Li, N., Li, H.-J., Zhang, Y.-H., An, S.-S., and Wang, B.-R.: Contribution of soil microbial necromass carbon to soil organic carbon in grassland under precipitation change and its influencing factors in loess hilly region, Northwest China, The Journal of Applied Ecology, 35, 2592–2598, https://doi.org/10.13287/j.1001-9332.202409.011, 2024. 
                    
                
                        
                        Zhu, X. F., Jackson, R. D., DeLucia, E. H., Tiedje, J. M., and Liang, C.: The soil microbial carbon pump: From conceptual insights to empirical assessments, Global Change Biology, 26, 6032–6039, https://doi.org/10.1111/gcb.15319, 2020.  
                    
                
                        
                        Zhu, X. F., Min, K. K., Feng, K., Xie, H. T., He, H. B., Zhang, X. D., Deng, Y., and Liang, C.: Microbial necromass contribution to soil carbon storage via community assembly processes, Science of the Total Environment, 951, https://doi.org/10.1016/j.scitotenv.2024.175749, 2024. 
                    
                Short summary
            Fungal necromass carbon (FNC) contribution to mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) was higher than bacterial necromass carbon (BNC). In 0–20 cm, FNC and BNC contributed more to MAOC, their contributions shifted toward POC in 20–100 cm. Microbial necromass carbon was affected by total nitrogen, mean annual rainfall, and electrical conductance in 0–20, while affected by available potassium, SOC, and mean annual temperature in 20–100.
            Fungal necromass carbon (FNC) contribution to mineral-associated organic carbon (MAOC) and...
            
         
 
             
             
            