Articles | Volume 11, issue 2
https://doi.org/10.5194/soil-11-793-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-793-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High biodegradability of water-soluble organic carbon in soils at the southern margin of the boreal forest
Yuqi Zhu
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Chao Liu
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
Rui Liu
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Hanxi Wang
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Xiangwen Wu
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Zihao Zhang
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Shuying Zang
CORRESPONDING AUTHOR
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Xiaodong Wu
CORRESPONDING AUTHOR
Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
Cryosphere Research Station on Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730020, China
Related authors
No articles found.
Jianting Zhao, Lin Zhao, Zhe Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
The Cryosphere, 19, 4211–4236, https://doi.org/10.5194/tc-19-4211-2025, https://doi.org/10.5194/tc-19-4211-2025, 2025
Short summary
Short summary
We used the Moving-Grid Permafrost Model (MVPM) to simulate the permafrost thermal regime in West Kunlun (55,669 km², NW Qinghai–Tibet Plateau), driven by remote-sensing-based land surface temperature (LST; 1980–2022). The model showed high accuracy and stability. Despite ongoing warming (+0.40 °C per decade), permafrost extent remained stable, reflecting delayed deep responses. The permafrost thermal regime reveals altitude- and soil-dependent responses to climate change and offers valuable insights into thermal states in data-scarce regions.
Tonghua Wu, Changwei Xie, Xiaofan Zhu, Jie Chen, Wu Wang, Ren Li, Amin Wen, Dong Wang, Peiqing Lou, Chengpeng Shang, Yune La, Xianhua Wei, Xin Ma, Yongping Qiao, Xiaodong Wu, Qiangqiang Pang, and Guojie Hu
Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, https://doi.org/10.5194/essd-14-1257-2022, 2022
Short summary
Short summary
We presented an 11-year time series of meteorological, active layer, and permafrost data at the Mahan Mountain relict permafrost site in northeastern Qinghai-Tibet Plateau. From 2010 to 2020, the increasing rate of active layer thickness was 1.8 cm-year and the permafrost temperature showed slight changes. The release of those data would be helpful to understand the impacts of climate change on permafrost in relict permafrost regions and to validate the permafrost models and land surface models.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Cited articles
Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B., and Balser, A. W.: Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost, Journal of Geophysical Research: Biogeosciences, 119, 2049–2063, https://doi.org/10.1002/2014jg002678, 2014.
Aber, J. D.: Nitrogen cycling and nitrogen saturation in temperate forest ecosystems, Trends in Ecology & Evolution, 7, 220–224, https://doi.org/10.1016/0169-5347(92)90048-G, 1992.
Aber, J. D., Ollinger, S. V., and Driscoll, C. T.: Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition, Ecological Modelling, 101, 61–78, https://doi.org/10.1016/S0304-3800(97)01953-4, 1997.
Adamczyk, B.: How do boreal forest soils store carbon?, BioEssays, 43, 2100010, https://doi.org/10.1002/bies.202100010, 2021.
Anumol, T., Sgroi, M., Park, M., Roccaro, P., and Snyder, S. A.: Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates, Water Research, 76, 76–87, https://doi.org/10.1016/j.watres.2015.02.019, 2015.
Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M. N., and Parra-Saldívar, R.: Soil carbon sequestration – An interplay between soil microbial community and soil organic matter dynamics, Science of The Total Environment, 815, https://doi.org/10.1016/j.scitotenv.2022.152928, 2022.
Bockheim, J. G.: Permafrost distribution in the southern circumpolar region and its relation to the environment: A review and recommendations for further research, Permafrost and Periglacial Processes, 6, 27–45, https://doi.org/10.1002/ppp.3430060105, 2006.
Bockheim, J. G. and Hinkel, K. M.: The Importance of “Deep” Organic Carbon in Permafrost-Affected Soils of Arctic Alaska, Soil Science Society of America Journal, 71, 1889–1892, https://doi.org/10.2136/sssaj2007.0070N, 2007.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the dominant driver of central Canadian boreal forest carbon balance, Nature, 450, 89–92, https://doi.org/10.1038/nature06272, 2007.
Bottomley, P. J., Angle, J. S., and Weaver, R. W. (Eds.): Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties, John Wiley & Sons, https://doi.org/10.2136/sssabookser5.2, 2020.
Bowden, W. B., Gooseff, M. N., Balser, A., Green, A., Peterson, B. J., and Bradford, J.: Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems, Journal of Geophysical Research: Biogeosciences, 113, https://doi.org/10.1029/2007jg000470, 2008.
Brown, J., Sidlauskas, F. J., and Delinski, G.: Circum-arctic map of permafrost and ground ice conditions, U.S. Geological Survey, https://doi.org/10.3133/cp45, 1997.
Bucka, F. B., Felde, V. J. M. N. L., Peth, S., and Kögel-Knabner, I.: Complementary effects of sorption and biochemical processing of dissolved organic matter for emerging structure formation controlled by soil texture, Journal of Plant Nutrition and Soil Science, 187, 51–62, https://doi.org/10.1002/jpln.202200391, 2023.
Burd, K., Estop-Aragonés, C., Tank, S. E., Olefeldt, D., and Naeth, M. A.: Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season, Canadian Journal of Soil Science, 100, 503–515, https://doi.org/10.1139/cjss-2019-0154, 2020.
Chavez-Vergara, B., Merino, A., Vázquez-Marrufo, G., and García-Oliva, F.: Organic matter dynamics and microbial activity during decomposition of forest floor under two native neotropical oak species in a temperate deciduous forest in Mexico, Geoderma, 235–236, 133–145, https://doi.org/10.1016/j.geoderma.2014.07.005, 2014.
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter, Environmental Science & Technology, 37, 5701–5710, https://doi.org/10.1021/es034354c, 2003.
Corvasce, M., Zsolnay, A., D'Orazio, V., Lopez, R., and Miano, T. M.: Characterization of water extractable organic matter in a deep soil profile, Chemosphere, 62, 1583–1590, https://doi.org/10.1016/j.chemosphere.2005.07.065, 2006.
Cory, R. M., Crump, B. C., Dobkowski, J. A., and Kling, G. W.: Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic, Proceedings of the National Academy of Sciences, 110, 3429–3434, https://doi.org/10.1073/pnas.1214104110, 2013.
Drake, T. W., Wickland, K. P., Spencer, R. G. M., McKnight, D. M., and Striegl, R. G.: Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw, Proceedings of the National Academy of Sciences, 112, 13946–13951, https://doi.org/10.1073/pnas.1511705112, 2015.
Dutta, K., Schuur, E. A. G., Neff, J. C., and Zimov, S. A.: Potential carbon release from permafrost soils of Northeastern Siberia, Global Change Biology, 12, 2336–2351, https://doi.org/10.1111/j.1365-2486.2006.01259.x, 2006.
Fellman, J. B., D'Amore, D. V., Hood, E., and Boone, R. D.: Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska, Biogeochemistry, 88, 169–184, https://doi.org/10.1007/s10533-008-9203-x, 2008.
Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P., and Lamoureux, S. F.: Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter, Nature Communications, 11, 4500, https://doi.org/10.1038/s41467-020-18331-w, 2020.
Frías, J., Ribas, F., and Lucena, F.: Comparison of methods for the measurement of biodegradable organic carbon and assimilable organic carbon in water, Water Research, 29, 2785–2788, https://doi.org/10.1016/0043-1354(95)00074-U, 1995.
Gao, Z. Y., Niu, F. J., Wang, Y. B., Lin, Z. J., and Wang, W.: Suprapermafrost groundwater flow and exchange around a thermokarst lake on the Qinghai-Tibet Plateau, China, Journal of Hydrology, 593, 125882, https://doi.org/10.1016/j.jhydrol.2020.125882, 2021.
Gress, S. E., Nichols, T. D., Northcraft, C. C., and Peterjohn, W. T.: Nutrient Limitation in Soils Exhibiting Differing Nitrogen Availabilities: What Lies Beyond Nitrogen Saturation?, Ecology, 88, 119–130, https://doi.org/10.1890/0012-9658(2007)88[119:Nlised]2.0.Co;2, 2007.
Guggenberger, G. and Zech, W.: Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances?, Science of The Total Environment, 152, 37–47, https://doi.org/10.1016/0048-9697(94)90549-5, 1994.
He, C., Chen, W.-M., Chen, C.-M., and Shi, Q.: Molecular transformation of dissolved organic matter in refinery wastewaters: Characterized by FT-ICR MS coupled with electrospray ionization and atmospheric pressure photoionization, Petroleum Science, 20, 590–599, https://doi.org/10.1016/j.petsci.2022.09.035, 2023.
Heffernan, L., Kothawala, D. N., and Tranvik, L. J.: Review article: Terrestrial dissolved organic carbon in northern permafrost, The Cryosphere, 18, 1443–1465, https://doi.org/10.5194/tc-18-1443-2024, 2024.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnology and Oceanography, 53, 955–969, https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Helton, A. M., Wright, M. S., Bernhardt, E. S., Poole, G. C., Cory, R. M., and Stanford, J. A.: Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem, Journal of Geophysical Research: Biogeosciences, 120, 693–706, https://doi.org/10.1002/2014JG002832, 2015.
Henneron, L., Balesdent, J., Alvarez, G., Barré, P., Baudin, F., Basile-Doelsch, I., Cécillon, L., Fernandez-Martinez, A., Hatté, C., and Fontaine, S.: Bioenergetic control of soil carbon dynamics across depth, Nature Communications, 13, https://doi.org/10.1038/s41467-022-34951-w, 2022.
Hu, G., Fang, H., Liu, G., Zhao, L., Wu, T., Li, R., and Wu, X.: Soil carbon and nitrogen in the active layers of the permafrost regions in the Three Rivers' Headstream, Environmental Earth Sciences, 72, 5113–5122, https://doi.org/10.1007/s12665-014-3382-7, 2014.
Huang, W., Deng, X., Lin, Y., and Jiang, Q. O.: An Econometric Analysis of Causes of Forestry Area Changes in Northeast China, Procedia Environmental Sciences, 2, 557–565, https://doi.org/10.1016/j.proenv.2010.10.060, 2010.
Jiang, H., Apps, M. J., Peng, C., Zhang, Y., and Liu, J.: Modelling the influence of harvesting on Chinese boreal forest carbon dynamics, Forest Ecology and Management, 169, 65–82, https://doi.org/10.1016/s0378-1127(02)00299-2, 2002.
Jones, D. and Willett, V.: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil, Soil Biology and Biochemistry, 38, 991–999, https://doi.org/10.1016/j.soilbio.2005.08.012, 2006.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biology and Biochemistry, 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E.: Biodegradation of soil-derived dissolved organic matter as related to its properties, Geoderma, 113, 273–291, https://doi.org/10.1016/s0016-7061(02)00365-8, 2003a.
Kalbitz, K., Schwesig, D., Schmerwitz, J., Kaiser, K., Haumaier, L., Glaser, B., Ellerbrock, R., and Leinweber, P.: Changes in properties of soil-derived dissolved organic matter induced by biodegradation, Soil Biology and Biochemistry, 35, 1129–1142, https://doi.org/10.1016/s0038-0717(03)00165-2, 2003b.
Kaplan, L. A. and Newbold, J. D.: Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor, Water Research, 29, 2696–2706, https://doi.org/10.1016/0043-1354(95)00135-8, 1995.
Kasischke, E. S., Christensen, N. L., and Stocks, B. J.: Fire, Global Warming, and the Carbon Balance of Boreal Forests, Ecological Applications, 5, 437–451, https://doi.org/10.2307/1942034, 1995.
Khan, E., Babcock, R. W., Suffet, I. H., and Stenstrom, M. K.: Method development for measuring biodegradable organic carbon in reclaimed and treated wastewaters, Water Environment Research, 70, 1025–1032, https://doi.org/10.2175/106143098x123354, 1998.
Kirk, P. L.: Kjeldahl Method for Total Nitrogen, Analytical Chemistry, 22, 354–358, https://doi.org/10.1021/ac60038a038, 1950.
Kothawala, D. N., Stedmon, C. A., Muller, R. A., Weyhenmeyer, G. A., Kohler, S. J., and Tranvik, L. J.: Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey, Glob. Change Biol., 20, 1101–1114, https://doi.org/10.1111/gcb.12488, 2014.
Koven, C. D., Lawrence, D. M., and Riley, W. J.: Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics, Proceedings of the National Academy of Sciences, 112, 3752–3757, https://doi.org/10.1073/pnas.1415123112, 2015.
Kurashev, D. G., Manasypov, R. M., Raudina, T. V., Krickov, I. V., Lim, A. G., and Pokrovsky, O. S.: Dissolved organic matter quality in thermokarst lake water and sediments across a permafrost gradient, Western Siberia, Environmental Research, 252, https://doi.org/10.1016/j.envres.2024.119115, 2024.
Li, H., Van den Bulcke, J., Wang, X., Gebremikael, M. T., Hagan, J., De Neve, S., and Sleutel, S.: Soil texture strongly controls exogenous organic matter mineralization indirectly via moisture upon progressive drying – Evidence from incubation experiments, Soil Biology and Biochemistry, 151, 108051, https://doi.org/10.1016/j.soilbio.2020.108051, 2020.
Li, K.-Y., Zhao, Y.-Y., Yuan, X.-L., Zhao, H.-B., Wang, Z.-H., Li, S.-X., and Malhi, S. S.: Comparison of Factors Affecting Soil Nitrate Nitrogen and Ammonium Nitrogen Extraction, Communications in Soil Science and Plant Analysis, 43, 571–588, https://doi.org/10.1080/00103624.2012.639108, 2012.
Li, X.-M., Chen, Q.-L., He, C., Shi, Q., Chen, S.-C., Reid, B. J., Zhu, Y.-G., and Sun, G.-X.: Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities, Environmental Science & Technology, 53, 50–59, https://doi.org/10.1021/acs.est.8b04673, 2018.
Liang, G., Stefanski, A., Eddy, W. C., Bermudez, R., Montgomery, R. A., Hobbie, S. E., Rich, R. L., and Reich, P. B.: Soil respiration response to decade-long warming modulated by soil moisture in a boreal forest, Nature Geoscience, 17, 905–911, https://doi.org/10.1038/s41561-024-01512-3, 2024.
Logozzo, L. A., Martin, J. W., McArthur, J., and Raymond, P. A.: Contributions of Fe(III) to UV–Vis absorbance in river water: a case study on the Connecticut River and argument for the systematic tandem measurement of Fe(III) and CDOM, Biogeochemistry, 160, 17–33, https://doi.org/10.1007/s10533-022-00937-5, 2022.
Lv, J., Han, R., Luo, L., Zhang, X., and Zhang, S.: A Novel Strategy to Evaluate the Aromaticity Degree of Natural Organic Matter Based on Oxidization-Induced Chemiluminescence, Environmental Science & Technology, 54, 4171–4179, https://doi.org/10.1021/acs.est.9b07499, 2020.
Lv, S., Liu, R., Guo, Z., and Wang, S.: Characteristics of soil aggregate distribution and organic carbon mineralization in quinoa fields with different soil textures in the northern of the Yinshan Mountains in inner Mongolia, Frontiers in Environmental Science, 12, https://doi.org/10.3389/fenvs.2024.1494983, 2024.
Ma, Q., Jin, H., Yu, C., and Bense, V. F.: Dissolved organic carbon in permafrost regions: A review, Science China Earth Sciences, 62, 349–364, https://doi.org/10.1007/s11430-018-9309-6, 2019.
Mann, P. J., Spencer, R. G. M., Hernes, P. J., Six, J., Aiken, G. R., Tank, S. E., McClelland, J. W., Butler, K. D., Dyda, R. Y., and Holmes, R. M.: Pan-Arctic Trends in Terrestrial Dissolved Organic Matter from Optical Measurements, Frontiers in Earth Science, 4, https://doi.org/10.3389/feart.2016.00025, 2016.
Margesin, R.: Permafrost soils, Springer Science & Business Media, https://doi.org/10.1007/978-3-540-69371-0, 2008.
Marschner, B. and Kalbitz, K.: Controls of bioavailability and biodegradability of dissolved organic matter in soils, Geoderma, 113, 211–235, https://doi.org/10.1016/s0016-7061(02)00362-2, 2003.
Mehring, A., Lowrance, R., Helton, A., Pringle, C., Thompson, A., Bosch, D., and Vellidis, G.: Interannual drought length governs dissolved organic carbon dynamics in blackwater rivers of the western upper Suwannee River basin, Journal of Geophysical Research: Biogeosciences, 118, 1636–1645, https://doi.org/10.1002/2013JG002415, 2013.
Mentges, M. I., Reichert, J. M., Rodrigues, M. F., Awe, G. O., and Mentges, L. R.: Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils, Geoderma, 263, 47–59, https://doi.org/10.1016/j.geoderma.2015.08.042, 2016.
Michalzik, B., Tipping, E., Mulder, J., Lancho, J. F. G., Matzner, E., Bryant, C. L., Clarke, N., Lofts, S., and Esteban, M. A. V.: Modelling the production and transport of dissolved organic carbon in forest soils, Biogeochemistry, 66, 241–264, https://doi.org/10.1023/b:Biog.0000005329.68861.27, 2003.
Moore, T. R.: Dissolved organic carbon in a northern boreal landscape, Global Biogeochemical Cycles, 17, https://doi.org/10.1029/2003gb002050, 2003.
Mu, C. C., Abbott, B. W., Wu, X. D., Zhao, Q., Wang, H. J., Su, H., Wang, S. F., Gao, T. G., Guo, H., Peng, X. Q., and Zhang, T. J.: Thaw Depth Determines Dissolved Organic Carbon Concentration and Biodegradability on the Northern Qinghai-Tibetan Plateau, Geophysical Research Letters, 44, 9389–9399, https://doi.org/10.1002/2017gl075067, 2017.
Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M.: Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy, Marine Chemistry, 108, 40–58, https://doi.org/10.1016/j.marchem.2007.10.003, 2008.
Neff, J. C. and Asner, G. P.: Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model, Ecosystems, 4, 29–48, https://doi.org/10.1007/s100210000058, 2001.
Nelson, D. W. and Sommers, L. E.: Total Carbon, Organic Carbon, and Organic Matter, Methods of Soil Analysis, 961–1010, https://doi.org/10.2136/sssabookser5.3.c34, 1996.
Ohlson, M., Dahlberg, B., Økland, T., Brown, K. J., and Halvorsen, R.: The charcoal carbon pool in boreal forest soils, Nature Geoscience, 2, 692–695, https://doi.org/10.1038/ngeo617, 2009.
Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex, Journal of Geophysical Research: Biogeosciences, 117, https://doi.org/10.1029/2011jg001819, 2012.
Olefeldt, D., Persson, A., and Turetsky, M. R.: Influence of the permafrost boundary on dissolved organic matter characteristics in rivers within the Boreal and Taiga plains of western Canada, Environmental Research Letters, 9, https://doi.org/10.1088/1748-9326/9/3/035005, 2014.
Öquist, M. G., Bishop, K., Grelle, A., Klemedtsson, L., Köhler, S. J., Laudon, H., Lindroth, A., Ottosson Löfvenius, M., Wallin, M. B., and Nilsson, M. B.: The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation, Environmental Science & Technology Letters, 1, 315–319, https://doi.org/10.1021/ez500169j, 2014.
Panneer Selvam, B., Laudon, H., Guillemette, F., and Berggren, M.: Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils, Journal of Geophysical Research: Biogeosciences, 121, 829–840, https://doi.org/10.1002/2015jg003228, 2016.
Panneer Selvam, B., Lapierre, J.-F., Guillemette, F., Voigt, C., Lamprecht, R. E., Biasi, C., Christensen, T. R., Martikainen, P. J., and Berggren, M.: Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat, Scientific Reports, 7, 45811, https://doi.org/10.1038/srep45811, 2017.
Paré, M. C. and Bedard-Haughn, A.: Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic, Global Change Biology, 19, 1126–1140, https://doi.org/10.1111/gcb.12125, 2013.
Park, M. and Snyder, S. A.: Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM), Chemosphere, 193, 530-537, https://doi.org/10.1016/j.chemosphere.2017.11.069, 2018.
Pei, J., Li, J., Luo, Y., Rillig, M. C., Smith, P., Gao, W., Li, B., Fang, C., and Nie, M.: Patterns and drivers of soil microbial carbon use efficiency across soil depths in forest ecosystems, Nature Communications, 16, https://doi.org/10.1038/s41467-025-60594-8, 2025.
Peng, R., Liu, H., Anenkhonov, O. A., Sandanov, D. V., Korolyuk, A. Y., Shi, L., Xu, C., Dai, J., and Wang, L.: Tree growth is connected with distribution and warming-induced degradation of permafrost in southern Siberia, Global Change Biology, 28, 5243–5253, https://doi.org/10.1111/gcb.16284, 2022.
Pengerud, A., Cécillon, L., Johnsen, L. K., Rasse, D. P., and Strand, L. T.: Permafrost Distribution Drives Soil Organic Matter Stability in a Subarctic Palsa Peatland, Ecosystems, 16, 934–947, https://doi.org/10.1007/s10021-013-9652-5, 2013.
Perveen, N., Ayub, M., Shahzad, T., Siddiq, M. R., Memon, M. S., Barot, S., Saeed, H., and Xu, M.: Soil carbon mineralization in response to nitrogen enrichment in surface and subsurface layers in two land use types, PeerJ, 7, e7130, https://doi.org/10.7717/peerj.7130, 2019.
Peuravuori, J. and Pihlaja, K.: Preliminary Study of Lake Dissolved Organic Matter in Light of Nanoscale Supramolecular Assembly, Environmental Science & Technology, 38, 5958–5967, https://doi.org/10.1021/es040041l, 2004.
Ping, C. L., Jastrow, J. D., Jorgenson, M. T., Michaelson, G. J., and Shur, Y. L.: Permafrost soils and carbon cycling, SOIL, 1, 147–171, https://doi.org/10.5194/soil-1-147-2015, 2015.
Qu, W., Li, J., Han, G., Wu, H., Song, W., and Zhang, X.: Effect of salinity on the decomposition of soil organic carbon in a tidal wetland, Journal of Soils and Sediments, 19, 609–617, https://doi.org/10.1007/s11368-018-2096-y, 2018.
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.: Distribution of Permafrost in China: An Overview of Existing Permafrost Maps, Permafrost and Periglacial Processes, 23, 322–333, https://doi.org/10.1002/ppp.1756, 2012.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. A., and Zender, C. S.: The impact of boreal forest fire on climate warming, Science, 314, 1130–1132, https://doi.org/10.1126/science.1132075, 2006.
Raudina, T. V., Loiko, S. V., Lim, A. G., Krickov, I. V., Shirokova, L. S., Istigechev, G. I., Kuzmina, D. M., Kulizhsky, S. P., Vorobyev, S. N., and Pokrovsky, O. S.: Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, 2017.
Reynolds, S.: The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems, Journal of Hydrology, 11, 258–273, 1970.
Roehm, C. L., Giesler, R., and Karlsson, J.: Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex, Journal of Geophysical Research, 114, https://doi.org/10.1029/2008jg000863, 2009.
Roth, V.-N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall, T., Griffiths, R. I., Mellado-Vázquez, P. G., Mommer, L., Oram, N. J., Weigelt, A., Dittmar, T., and Gleixner, G.: Persistence of dissolved organic matter explained by molecular changes during its passage through soil, Nature Geoscience, 12, 755–761, https://doi.org/10.1038/s41561-019-0417-4, 2019.
Scaglia, B. and Adani, F.: Biodegradability of soil water soluble organic carbon extracted from seven different soils, Journal of Environmental Sciences, 21, 641–646, https://doi.org/10.1016/s1001-0742(08)62319-0, 2009.
Schirrmeister, L., Kunitsky, V., Grosse, G., Wetterich, S., Meyer, H., Schwamborn, G., Babiy, O., Derevyagin, A., and Siegert, C.: Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on north-east Siberian Arctic coastal lowlands and islands – A review, Quaternary International, 241, 3–25, https://doi.org/10.1016/j.quaint.2010.04.004, 2011.
Schuur, E. A. G., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V., Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schädel, C., Strauss, J., Treat, C., and Turetsky, M.: Permafrost and climate change: Carbon cycle feedbacks from the warming Arctic, Annual Review of Environment and Resources, 47, 343–371, https://doi.org/10.1146/annurev-environ-012220-011847, 2022.
Semenov, P., Pismeniuk, A., Kil, A., Shatrova, E., Belova, N., Gromov, P., Malyshev, S., He, W., Lodochnikova, A., Tarasevich, I., Streletskaya, I., and Leibman, M.: Characterizing Dissolved Organic Matter and Other Water-Soluble Compounds in Ground Ice of the Russian Arctic: A Focus on Ground Ice Classification within the Carbon Cycle Context, Geosciences, 14, https://doi.org/10.3390/geosciences14030077, 2024.
Sgroi, M., Anumol, T., Roccaro, P., Vagliasindi, F. G. A., and Snyder, S. A.: Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter, Water Research, 145, 667–677, https://doi.org/10.1016/j.watres.2018.09.018, 2018.
Shao, M., Zhang, S., Niu, B., Pei, Y., Song, S., Lei, T., and Yun, H.: Soil texture influences soil bacterial biomass in the permafrost-affected alpine desert of the Tibetan plateau, Frontiers in Microbiology, 13, https://doi.org/10.3389/fmicb.2022.1007194, 2022a.
Shao, P., Han, H., Sun, J., Yang, H., and Xie, H.: Salinity Effects on Microbial Derived-C of Coastal Wetland Soils in the Yellow River Delta, Frontiers in Ecology and Evolution, 10, https://doi.org/10.3389/fevo.2022.872816, 2022b.
Shi, L., Dech, J. P., Yao, H., Zhao, P., Shu, Y., and Zhou, M.: The effects of nitrogen addition on dissolved carbon in boreal forest soils of northeastern China, Scientific Reports, 9, https://doi.org/10.1038/s41598-019-44796-x, 2019.
Song, X., Wang, G., Ran, F., Huang, K., Sun, J., and Song, C.: Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest, Geoderma, 357, https://doi.org/10.1016/j.geoderma.2019.113975, 2020.
Sparks, D. L., Page, A. L., Helmke, P. A., and Loeppert, R. H.: Methods of soil analysis, part 3: Chemical methods, John Wiley & Sons, https://doi.org/10.2136/sssabookser5.3, 2020.
Spencer, R. G. M., Mann, P. J., Dittmar, T., Eglinton, T. I., McIntyre, C., Holmes, R. M., Zimov, N., and Stubbins, A.: Detecting the signature of permafrost thaw in Arctic rivers, Geophysical Research Letters, 42, 2830–2835, https://doi.org/10.1002/2015gl063498, 2015.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability, Earth-Science Reviews, 172, 75–86, https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Sun, B., Li, Y., Song, M., Li, R., Li, Z., Zhuang, G., Bai, Z., and Zhuang, X.: Molecular characterization of the composition and transformation of dissolved organic matter during the semi-permeable membrane covered hyperthermophilic composting, Journal of Hazardous Materials, 425, https://doi.org/10.1016/j.jhazmat.2021.127496, 2022.
Takaki, Y., Hattori, K., and Yamashita, Y.: Factors Controlling the Spatial Distribution of Dissolved Organic Matter With Changes in the Ratio From the Upper to Lower Reaches of the Ishikari River, Japan, Frontiers in Earth Science, 10, https://doi.org/10.3389/feart.2022.826907, 2022.
Thurman, E. M.: Organic Geochemistry of Natural Waters, Springer Science & Business Media, https://doi.org/10.1007/978-94-009-5095-5, 1985.
Uhlířová, E., Šantrůčková, H., and Davidov, S. P.: Quality and potential biodegradability of soil organic matter preserved in permafrost of Siberian tussock tundra, Soil Biology and Biochemistry, 39, 1978–1989, https://doi.org/10.1016/j.soilbio.2007.02.018, 2007.
Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-2015, 2015.
Vos, C., Don, A., Prietz, R., Heidkamp, A., and Freibauer, A.: Field-based soil-texture estimates could replace laboratory analysis, Geoderma, 267, 215–219, https://doi.org/10.1016/j.geoderma.2015.12.022, 2016.
Walker, S. A., Amon, R. M. W., and Stedmon, C. A.: Variations in high-latitude riverine fluorescent dissolved organic matter: A comparison of large Arctic rivers, Journal of Geophysical Research: Biogeosciences, 118, 1689–1702, https://doi.org/10.1002/2013jg002320, 2013.
Walz, J., Knoblauch, C., Böhme, L., and Pfeiffer, E.-M.: Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils – Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter, Soil Biology and Biochemistry, 110, 34–43, https://doi.org/10.1016/j.soilbio.2017.03.001, 2017.
Ward, C. P. and Cory, R. M.: Chemical composition of dissolved organic matter draining permafrost soils, Geochimica et Cosmochimica Acta, 167, 63–79, https://doi.org/10.1016/j.gca.2015.07.001, 2015.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environmental Science & Technology, 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003a.
Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37, 4702–4708, https://doi.org/10.1021/es030360x, 2003b.
Werdin-Pfisterer, N. R., Kielland, K., and Boone, R. D.: Buried organic horizons represent amino acid reservoirs in boreal forest soils, Soil Biology and Biochemistry, 55, 122–131, https://doi.org/10.1016/j.soilbio.2012.06.012, 2012.
Wickland, K. P., Neff, J. C., and Aiken, G. R.: Dissolved Organic Carbon in Alaskan Boreal Forest: Sources, Chemical Characteristics, and Biodegradability, Ecosystems, 10, 1323–1340, https://doi.org/10.1007/s10021-007-9101-4, 2007.
Wild, B., Schnecker, J., Alves, R. J., Barsukov, P., Barta, J., Capek, P., Gentsch, N., Gittel, A., Guggenberger, G., Lashchinskiy, N., Mikutta, R., Rusalimova, O., Santruckova, H., Shibistova, O., Urich, T., Watzka, M., Zrazhevskaya, G., and Richter, A.: Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil, Soil Biology and Biochemistry, 75, 143–151, https://doi.org/10.1016/j.soilbio.2014.04.014, 2014.
Wu, M. H., Chen, S. Y., Chen, J. W., Xue, K., Chen, S. L., Wang, X. M., Chen, T., Kang, S. C., Rui, J. P., Thies, J. E., Bardgett, R. D., and Wang, Y. F.: Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation, Proceedings of the National Academy of Sciences of the United States of America, 118, e2025321118, https://doi.org/10.1073/pnas.2025321118, 2021.
Yang, J., Zhan, C., Li, Y., Zhou, D., Yu, Y., and Yu, J.: Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China, Science of The Total Environment, 642, 946–953, 10.1016/j.scitotenv.2018.06.121, 2018.
Yano, Y., McDowell, W. H., and Aber, J. D.: Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition, Soil Biology and Biochemistry, 32, 1743–1751, https://doi.org/10.1016/S0038-0717(00)00092-4, 2000.
Zhang, R. V., Zabolotnik, S. I., and Zabolotnik, P. S.: Assessment of the thermal effect of large industrial buildings on permafrost foundation soils in Yakutsk, Research in Cold and Arid Regions, 15, 262–267, https://doi.org/10.1016/j.rcar.2023.12.001, 2023.
Zhang, Y., Liu, X., Li, P., Xiao, L., Zhou, S., Wang, X., and Wang, R.: Critical factors in soil organic carbon mineralization induced by drying, wetting and wet-dry cycles in a typical watershed of Loess Plateau, Journal of Environmental Management, 362, 121313, https://doi.org/10.1016/j.jenvman.2024.121313, 2024.
Zhong, S. N., Li, B., Hou, B. W., Xu, X. M., Hu, J. Y., Jia, R., Yang, S. Q., Zhou, S. G., and Ni, J. R.: Structure, stability, and potential function of groundwater microbial community responses to permafrost degradation on varying permafrost of the Qinghai-Tibet Plateau, Science of the Total Environment, 875, 162693, https://doi.org/10.1016/j.scitotenv.2023.162693, 2023.
Zhou, X., Ma, A., Chen, X., Zhang, Q., Guo, X., and Zhuang, G.: Climate Warming-Driven Changes in the Molecular Composition of Soil Dissolved Organic Matter Across Depth: A Case Study on the Tibetan Plateau, Environmental Science & Technology, 57, 16884–16894, https://doi.org/10.1021/acs.est.3c04899, 2023.
Zou, T. and Yoshino, K.: Environmental vulnerability evaluation using a spatial principal components approach in the Daxing'anling region, China, Ecological Indicators, 78, 405–415, https://doi.org/10.1016/j.ecolind.2017.03.039, 2017.
Short summary
Water-soluble organic carbon (WSOC) is crucial in boreal forests, but its behavior across soil depths is poorly understood. Our study found that shallow soils contain complex WSOC molecules with high biodegradability, while deeper soils have simpler molecules that are also highly biodegradable. These results reveal the significant role of WSOC in carbon cycling across soil layers, improving our understanding of carbon dynamics in boreal ecosystems impacted by climate change.
Water-soluble organic carbon (WSOC) is crucial in boreal forests, but its behavior across soil...