Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-457-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-457-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization
Jun Murase
CORRESPONDING AUTHOR
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Kannika Sajjaphan
CORRESPONDING AUTHOR
Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Chatprawee Dechjiraratthanasiri
Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Ornuma Duangngam
Center of Thai-French Cooperation on Higher Education and Research (DORAS Center), Kasetsart University, Bangkok, 10900, Thailand
Rawiwan Chotiphan
Sithiporn Kridakara Research Station, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Prachuap Khiri Khan, 77170, Thailand
Wutthida Rattanapichai
Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Wakana Azuma
Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
Makoto Shibata
Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
Poonpipope Kasemsap
Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Daniel Epron
Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
Graduate School of Agricultural Science, Kyoto University, Kyoto, 606-8501, Japan
Related authors
Daniel Epron, Rawiwan Chotiphan, Zixiao Wang, Ornuma Duangngam, Makoto Shibata, Sumonta Kumar Paul, Takumi Mochidome, Jate Sathornkich, Wakana A. Azuma, Jun Murase, Yann Nouvellon, Poonpipope Kasemsap, and Kannika Sajjaphan
Biogeosciences, 22, 4013–4033, https://doi.org/10.5194/bg-22-4013-2025, https://doi.org/10.5194/bg-22-4013-2025, 2025
Short summary
Short summary
The rapid expansion of rubber cultivation constitutes a significant land-use change in Southeast Asia. Despite fertilization being a common practice in rubber plantations, its impact on soil methane (CH4) dynamics has remained poorly understood. Our study demonstrates that fertilization not only reduces soil CH4 consumption but also increases CH4 production, transforming rubber plantations from a net CH4 sink to a source. Implementing rational fertilization could enhance atmospheric CH4 removal.
Rosa M. Poch, Lucia H. C. dos Anjos, Rafla Attia, Megan Balks, Adalberto Benavides-Mendoza, Martha M. Bolaños-Benavides, Costanza Calzolari, Lydia M. Chabala, Peter C. de Ruiter, Samuel Francke-Campaña, Fernando García Préchac, Ellen R. Graber, Siosiua Halavatau, Kutaiba M. Hassan, Edmond Hien, Ke Jin, Mohammad Khan, Maria Konyushkova, David A. Lobb, Matshwene E. Moshia, Jun Murase, Generose Nziguheba, Ashok K. Patra, Gary Pierzynski, Natalia Rodríguez Eugenio, and Ronald Vargas Rojas
SOIL, 6, 541–547, https://doi.org/10.5194/soil-6-541-2020, https://doi.org/10.5194/soil-6-541-2020, 2020
Short summary
Short summary
Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment. In the face of global crises like the COVID-19 pandemic, a sustainable soil management strategy is essential to ensure food security based on more diverse, locally oriented, and resilient food production systems through improving access to land, sound land use planning, sustainable soil management, enhanced research, and investment in education and extension.
Daniel Epron, Rawiwan Chotiphan, Zixiao Wang, Ornuma Duangngam, Makoto Shibata, Sumonta Kumar Paul, Takumi Mochidome, Jate Sathornkich, Wakana A. Azuma, Jun Murase, Yann Nouvellon, Poonpipope Kasemsap, and Kannika Sajjaphan
Biogeosciences, 22, 4013–4033, https://doi.org/10.5194/bg-22-4013-2025, https://doi.org/10.5194/bg-22-4013-2025, 2025
Short summary
Short summary
The rapid expansion of rubber cultivation constitutes a significant land-use change in Southeast Asia. Despite fertilization being a common practice in rubber plantations, its impact on soil methane (CH4) dynamics has remained poorly understood. Our study demonstrates that fertilization not only reduces soil CH4 consumption but also increases CH4 production, transforming rubber plantations from a net CH4 sink to a source. Implementing rational fertilization could enhance atmospheric CH4 removal.
Sumonta Kumar Paul, Keisuke Yuasa, Masako Dannoura, and Daniel Epron
EGUsphere, https://doi.org/10.5194/egusphere-2025-3449, https://doi.org/10.5194/egusphere-2025-3449, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study used a machine learning approach to scale soil CH4 fluxes over time in a topographically complex mountain forest. Within the landscape, predicted upland CH4 fluxes varied significantly across topographic positions, with the greater uptake on ridges and slopes than in the plain and foot slopes. Recent past precipitations significantly influenced seasonal CH4 uptake. Our findings highlight the role of topography and the potential of remote sensing and machine learning to map CH4 fluxes.
Rosa M. Poch, Lucia H. C. dos Anjos, Rafla Attia, Megan Balks, Adalberto Benavides-Mendoza, Martha M. Bolaños-Benavides, Costanza Calzolari, Lydia M. Chabala, Peter C. de Ruiter, Samuel Francke-Campaña, Fernando García Préchac, Ellen R. Graber, Siosiua Halavatau, Kutaiba M. Hassan, Edmond Hien, Ke Jin, Mohammad Khan, Maria Konyushkova, David A. Lobb, Matshwene E. Moshia, Jun Murase, Generose Nziguheba, Ashok K. Patra, Gary Pierzynski, Natalia Rodríguez Eugenio, and Ronald Vargas Rojas
SOIL, 6, 541–547, https://doi.org/10.5194/soil-6-541-2020, https://doi.org/10.5194/soil-6-541-2020, 2020
Short summary
Short summary
Humanity depends on the existence of healthy soils, both for the production of food and for ensuring a healthy, biodiverse environment. In the face of global crises like the COVID-19 pandemic, a sustainable soil management strategy is essential to ensure food security based on more diverse, locally oriented, and resilient food production systems through improving access to land, sound land use planning, sustainable soil management, enhanced research, and investment in education and extension.
Cited articles
Aini, F. K., Hergoualc'h, K., Smith, J. U., Verchot, L., and Martius, C.: How does replacing natural forests with rubber and oil palm plantations affect soil respiration and methane fluxes?, Ecosphere, 11, e03284, https://doi.org/10.1002/ecs2.3284, 2020.
Amaral, J. A. and Knowles, R.: Inhibition of methane consumption in forest soils by monoterpenes, J. Chem. Ecol., 24, 723–734, https://doi.org/10.1023/a:1022398404448, 1998.
Aronson, E. L. and Helliker, B. R.: Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis, Ecology, 91, 3242–3251, https://doi.org/10.1890/09-2185.1, 2010.
Bender, M. and Conrad, R.: Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions, J. Geophys. Res.-Atmos., 99, 16531–16540, 1994.
Benstead, J. and King, G. M.: The effect of soil acidification on atmospheric methane uptake by a Maine forest soil1, FEMS Microbiol. Ecol., 34, 207–212, https://doi.org/10.1111/j.1574-6941.2001.tb00771.x, 2001.
Bodelier, P. L. E.: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils, Curr. Opin. Environ. Sustain., 3, 379–388, https://doi.org/10.1016/j.cosust.2011.06.002, 2011.
Bodelier, P. L. E. and Laanbroek, H. J.: Nitrogen as a regulatory factor of methane oxidation in soils and sediments, FEMS Microbiol. Ecol., 47, 265–277, https://doi.org/10.1016/s0168-6496(03)00304-0, 2004.
Borken, W., Davidson, E. A., Savage, K., Sundquist, E. T., and Steudler, P.: Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil, Soil Biol. Biochem., 38, 1388–1395, https://doi.org/10.1016/j.soilbio.2005.10.011, 2006.
Bras, N., Plain, C., and Epron, D.: Potential soil methane oxidation in naturally regenerated oak-dominated temperate deciduous forest stands responds to soil water status regardless of their age – an intact core incubation study, Ann. For. Sci., 79, 29, https://doi.org/10.1186/s13595-022-01145-9, 2022.
Bremner, J. M.: Nitrogen-Total, in: Methods of Soil Analysis, SSSA Book Series, edited by: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., and Sumner, M. E., Soil Science Society of America, Madison, Wisconsin, USA, 1085–1121,https://doi.org/10.2136/sssabookser5.3.c37, 1996.
Chambon, B., Dao, X. L., Tongkaemkaew, U., and Gay, F.: What determine smallholders' fertilization practices during the mature period of rubber plantations in Thailand?, Exp. Agric., 54, 824–841, https://doi.org/10.1017/S0014479717000400, 2018.
Epron, D., Mochidome, T., Tanabe, T., Dannoura, M., and Sakabe, A.: Variability in stem methane emissions and wood methane production of different tree species in a cold temperate mountain forest, Ecosystems, 26, 784–799, https://doi.org/10.1007/s10021-022-00795-0, 2023.
Epron, D., Chotiphan, R., Wang, Z., Duangngam, O., Shibata, M., Paul, S. K., Mochidome, T., Sathornkich, J., Azuma, W. A., Murase, J., Nouvellon, Y., Kasemsap, P., and Sajjaphan, K.: Fertilization turns a rubber plantation from sink to methane source, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-2, 2025.
Feng, H., Guo, J., Peng, C., Ma, X., Kneeshaw, D., Chen, H., Liu, Q., Liu, M., Hu, C., and Wang, W.: Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink, Geoderma, 429, 116239, https://doi.org/10.1016/j.geoderma.2022.116239, 2023.
Feng, H. L., Guo, J. H., Han, M. H., Wang, W. F., Peng, C. H., Jin, J. X., Song, X. Z., and Yu, S. Q.: A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems, Forest Ecol. Manag., 455, 117702, https://doi.org/10.1016/j.foreco.2019.117702, 2020.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D., Mauritsen, T., Palmer, M., Watanabe, M., Wild, M., and Zhang, H.: Chapter 7: The Earth's energy budget, climate feedbacks, and climate sensitivity, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, https://doi.org/10.25455/wgtn.16869671, 2021.
Geng, J., Cheng, S., Fang, H., Yu, G., Li, X., Si, G., He, S., and Yu, G.: Soil nitrate accumulation explains the nonlinear responses of soil CO2 and CH4 fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest, Ecol. Indic., 79, 28–36, https://doi.org/10.1016/j.ecolind.2017.03.054, 2017.
Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R., and Veldkamp, E.: Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations, Biogeosciences, 12, 5831–5852, https://doi.org/10.5194/bg-12-5831-2015, 2015.
Ishizuka, S., Tsuruta, H., and Murdiyarso, D.: An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia, Global Biogeochem. Cy., 16, 22-21–22-11, https://doi.org/10.1029/2001GB001614, 2002.
Jäckel, U., Schnell, S., and Conrad, R.: Microbial ethylene production and inhibition of methanotrophic activity in a deciduous forest soil, Soil Biol. Biochem., 36, 835–840, 2004.
Kanpanon, N., Kasemsap, P., Thaler, P., Kositsup, B., Gay, F., Lacote, R., and Epron, D.: Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis), Tree Physiol., 35, 1166–1175, https://doi.org/10.1093/treephys/tpv070, 2015.
Koehler, B., Corre, M. D., Steger, K., Well, R., Zehe, E., Sueta, J. P., and Veldkamp, E.: An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N2O, CO2 and CH4 and N2O isotopic signatures down to 2-m depth, Biogeochem., 111, 695–713, https://doi.org/10.1007/s10533-012-9711-6, 2012.
Lang, R., Blagodatsky, S., Xu, J., and Cadisch, G.: Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest, Agr. Ecosy. Environ., 240, 314–328, https://doi.org/10.1016/j.agee.2017.02.032, 2017.
Lang, R., Goldberg, S., Blagodatsky, S., Piepho, H.-P., Harrison, R. D., Xu, J., and Cadisch, G.: Converting forests into rubber plantations weakened the soil CH4 sink in tropical uplands, Land Degrad. Dev., 30, 2311–2322, https://doi.org/10.1002/ldr.3417, 2019.
Lang, R., Goldberg, S. D., Blagodatsky, S., Piepho, H.-P., Hoyt, A. M., Harrison, R. D., Xu, J., and Cadisch, G.: Mechanism of methane uptake in profiles of tropical soils converted from forest to rubber plantations, Soil Biol. Biochem., 145, 107796, https://doi.org/10.1016/j.soilbio.2020.107796, 2020.
Lim, J., Wehmeyer, H., Heffner, T., Aeppli, M., Gu, W., Kim, P. J., Horn, M., and Ho, A.: Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture, FEMS Microbiol. Ecol., 100, fiae008, https://doi.org/10.1093/femsec/fiae008, 2024.
Liu, C.-A., Nie, Y., Zhang, J.-L., Tang, J.-W., Rao, X., and Siddique, K. H. M.: Response of N, P, and metal ions in deep soil layers to long-term cultivation of rubber and rubber-based agroforestry systems, Sci. Total Environ., 946, 174340, https://doi.org/10.1016/j.scitotenv.2024.174340, 2024.
Liu, L. and Greaver, T. L.: A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission, Ecol. Lett., 12, 1103–1117, https://doi.org/10.1111/j.1461-0248.2009.01351.x, 2009.
Maurer, D., Kolb, S., Haumaier, L., and Borken, W.: Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils, Soil Biol. Biochem., 40, 3014–3020, https://doi.org/10.1016/j.soilbio.2008.08.023, 2008.
Mochizuki, Y., Koba, K., and Yoh, M.: Strong inhibitory effect of nitrate on atmospheric methane oxidation in forest soils, Soil Biol. Biochem., 50, 164–166, https://doi.org/10.1016/j.soilbio.2012.03.013, 2012.
Reay, D., Nedwell, D., McNamara, N., and Ineson, P.: Effect of tree species on methane and ammonium oxidation capacity in forest soils, Soil Biol. Biochem., 37, 719–730, https://doi.org/10.1016/j.soilbio.2004.10.004, 2005.
Satakhun, D., Gay, F., Chairungsee, N., Kasemsap, P., Chantuma, P., Thanisawanyangkura, S., Thaler, P., and Epron, D.: Soil CO2 efflux and soil carbon balance of a tropical rubber plantation, Ecol. Res., 28, 969–979, https://doi.org/10.1007/s11284-013-1079-0, 2013.
Schnell, S. and King, G. M.: Responses of methanotrophic activity in soils and cultures to water stress, Appl. Environ. Microbiol., 62, 3203–3209, 1996.
Singh, A. K., Liu, W. J., Zakari, S., Wu, J. E., Yang, B., Jiang, X. J., Zhu, X. A., Zou, X., Zhang, W. J., Chen, C. F., Singh, R., and Nath, A. J.: A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation, Sci. Total Environ., 796, 148948, https://doi.org/10.1016/j.scitotenv.2021.148948, 2021.
Täumer, J., Kolb, S., Boeddinghaus, R. S., Wang, H., Schöning, I., Schrumpf, M., Urich, T., and Marhan, S.: Divergent drivers of the microbial methane sink in temperate forest and grassland soils, Glob. Change Biol., 27, 929–940, https://doi.org/10.1111/gcb.15430, 2021.
Verchot, L. V., Davidson, E. A., Cattânio, J. H., and Ackerman, I. L.: Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia, Ecosystems, 3, 41–56, https://doi.org/10.1007/s100210000009, 2000.
Walkiewicz, A. and Brzezińska, M.: Interactive effects of nitrate and oxygen on methane oxidation in three different soils, Soil Biol. Biochem., 133, 116–118, https://doi.org/10.1016/j.soilbio.2019.03.001, 2019.
Walkiewicz, A., Brzezińska, M., and Bieganowski, A.: Methanotrophs are favored under hypoxia in ammonium-fertilized soils, Biol. Fert. Soils, 54, 861–870, https://doi.org/10.1007/s00374-018-1302-9, 2018.
Walkley, A. J. and Black, I. A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37, 29–38, https://doi.org/10.1097/00010694-193401000-00003, 1934.
Werner, C., Zheng, X., Tang, J., Xie, B., Liu, C., Kiese, R., and Butterbach-Bahl, K.: N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China, Plant Soil, 289, 335–353, https://doi.org/10.1007/s11104-006-9143-y, 2006.
Xu, X., Yuan, B., and Wei, J.: Vertical distribution and interaction of ethylene and methane in temperate volcanic forest soils, Geoderma, 145, 231–237, https://doi.org/10.1016/j.geoderma.2008.03.010, 2008.
Zhou, W., Zhu, J., Ji, H., Grace, J., Sha, L., Song, Q., Liu, Y., Bai, X., Lin, Y., Gao, J., Fei, X., Zhou, R., Tang, J., Deng, X., Yu, G., Zhang, J., Zheng, X., Zhao, J., and Zhang, Y.: Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils, Agr. Forest Meteorol., 304–305, 108391, https://doi.org/10.1016/j.agrformet.2021.108391, 2021.
Short summary
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter soil methane oxidation. An experiment in Thailand shows that fertilization significantly suppresses methane oxidation in rubber plantation soils, affecting depths up to 60 cm. Without fertilization, deeper soil layers (below 10 cm) actively oxidize methane. These findings suggest that fertilization negatively impacts the methane uptake capacity of deep-layer soils in rubber plantations.
Tropical forest soils are vital for methane uptake, but deforestation and agriculture can alter...