Articles | Volume 11, issue 1
https://doi.org/10.5194/soil-11-233-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/soil-11-233-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Experimental drought and soil amendments affect grassland above- and belowground vegetation but not soil carbon stocks
Daniela Guasconi
CORRESPONDING AUTHOR
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Sara A. O. Cousins
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Stefano Manzoni
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Nina Roth
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Gustaf Hugelius
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
Biogeosciences, 22, 2691–2705, https://doi.org/10.5194/bg-22-2691-2025, https://doi.org/10.5194/bg-22-2691-2025, 2025
Short summary
Short summary
While laboratory studies have identified many drivers and their effects on the carbon emission pulse after rewetting of dry soils, a validation with field data is still missing. Here, we show that the carbon emission pulse in the laboratory and in the field increases with soil organic carbon and temperature, but their trends with pre-rewetting dryness and moisture increment at rewetting differ. We conclude that the laboratory findings can be partially validated.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Daniel Escobar, Stefano Manzoni, Jeimar Tapasco, Patrik Vestin, and Salim Belyazid
Biogeosciences, 22, 2023–2047, https://doi.org/10.5194/bg-22-2023-2025, https://doi.org/10.5194/bg-22-2023-2025, 2025
Short summary
Short summary
We studied carbon dynamics in afforested, drained peatlands using the ForSAFE-Peat model over two forest rotations. Our simulations showed that, while trees store carbon, significant soil carbon losses occur, particularly early on, indicating that forest growth may not fully offset these losses once carbon time dynamics are considered. This emphasises the need to consider both soil and harvested wood products when evaluating the climate impact of such systems.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025, https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) are related to photosynthesis, growth, and respiration and thus to vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species, and climate. Changes therein will affect tissue nitrogen concentrations and thus also vegetation carbon uptake.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Yi Xi, Philippe Ciais, Dan Zhu, Chunjing Qiu, Yuan Zhang, Shushi Peng, Gustaf Hugelius, Simon P. K. Bowring, Daniel S. Goll, and Ying-Ping Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-206, https://doi.org/10.5194/gmd-2024-206, 2025
Revised manuscript accepted for GMD
Short summary
Short summary
Including high-latitude deep carbon is critical for projecting future soil carbon emissions, yet it’s absent in most land surface models. Here we propose a new carbon accumulation protocol by integrating deep carbon from Yedoma deposits and representing the observed history of peat carbon formation in ORCHIDEE-MICT. Our results show an additional 157 PgC in present-day Yedoma deposits and a 1–5 m shallower peat depth, 43 % less passive soil carbon in peatlands against the convention protocol.
Boris Ťupek, Aleksi Lehtonen, Stefano Manzoni, Elisa Bruni, Petr Baldrian, Etienne Richy, Bartosz Adamczyk, Bertrand Guenet, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-3813, https://doi.org/10.5194/egusphere-2024-3813, 2024
Short summary
Short summary
We explored soil microbial respiration (Rh) kinetics of low-dose and long-term N fertilization in N-limited boreal forest in connection to CH₄, and N₂O fluxes, soil, and tree C sinks. The insights show that N fertilization effects C retention in boreal forest soils through modifying Rh sensitivities to soil temperature and moisture. The key findings reveal that N-enriched soils exhibited reduced sensitivity of Rh to moisture, which on annual level contributes to enhanced soil C sequestration.
Stefano Manzoni and M. Francesca Cotrufo
Biogeosciences, 21, 4077–4098, https://doi.org/10.5194/bg-21-4077-2024, https://doi.org/10.5194/bg-21-4077-2024, 2024
Short summary
Short summary
Organic carbon and nitrogen are stabilized in soils via microbial assimilation and stabilization of necromass (in vivo pathway) or via adsorption of the products of extracellular decomposition (ex vivo pathway). Here we use a diagnostic model to quantify which stabilization pathway is prevalent using data on residue-derived carbon and nitrogen incorporation in mineral-associated organic matter. We find that the in vivo pathway is dominant in fine-textured soils with low organic matter content.
Erik Schwarz, Samia Ghersheen, Salim Belyazid, and Stefano Manzoni
Biogeosciences, 21, 3441–3461, https://doi.org/10.5194/bg-21-3441-2024, https://doi.org/10.5194/bg-21-3441-2024, 2024
Short summary
Short summary
The occurrence of unstable equilibrium points (EPs) could impede the applicability of microbial-explicit soil organic carbon models. For archetypal model versions we identify when instability can occur and describe mathematical conditions to avoid such unstable EPs. We discuss implications for further model development, highlighting the important role of considering basic ecological principles to ensure biologically meaningful models.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Annett Bartsch, Aleksandra Efimova, Barbara Widhalm, Xaver Muri, Clemens von Baeckmann, Helena Bergstedt, Ksenia Ermokhina, Gustaf Hugelius, Birgit Heim, and Marina Leibman
Hydrol. Earth Syst. Sci., 28, 2421–2481, https://doi.org/10.5194/hess-28-2421-2024, https://doi.org/10.5194/hess-28-2421-2024, 2024
Short summary
Short summary
Wetness gradients and landcover diversity for the entire Arctic tundra have been assessed using a novel satellite-data-based map. Patterns of lakes, wetlands, general soil moisture conditions and vegetation physiognomy are represented at 10 m. About 40 % of the area north of the treeline falls into three units of dry types, with limited shrub growth. Wetter regions have higher landcover diversity than drier regions.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Benjamin M. C. Fischer, Laura Morillas, Johanna Rojas Conejo, Ricardo Sánchez-Murillo, Andrea Suárez Serrano, Jay Frentress, Chih-Hsin Cheng, Monica Garcia, Stefano Manzoni, Mark S. Johnson, and Steve W. Lyon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-404, https://doi.org/10.5194/hess-2020-404, 2020
Preprint withdrawn
Short summary
Short summary
We investigated in an upland rice experiment in Costa Rica whether mixing biochar (a charcoal) in soils could increase the resilience of rainfed agriculture to climate variability. We found that rice plants with biochar had access to larger stores of water more consistently and thus could withstand seven extra dry days relative to rice grown in non-treated soils. However, biochar can complement, but not necessarily replace, other water management strategies.
Cited articles
Ahmad, A. A., Fares, A., Paramasivam, S., Elrashidi, M. A., and Savabi, R. M.: Biomass and nutrient concentration of sweet corn roots and shoots under organic amendments application, J. Environ. Sci. Heal. B, 44, 742–754, https://doi.org/10.1080/03601230903163921, 2009.
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., and Shahzad, A. N.: Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review, Environ. Sci. Pollut. Res., 24, 12700–12712, https://doi.org/10.1007/s11356-017-8904-x, 2017.
Bai, Y. and Cotrufo, M. F.: Grassland soil carbon sequestration: Current understanding, challenges, and solutions, Science, 377, 603–608, https://doi.org/10.1126/science.abo2380, 2022.
Bardgett, R. D., Mommer, L., and De Vries, F. T.: Going underground: root traits as drivers of ecosystem processes, Trend. Ecol. Evol., 29, 692–699, https://doi.org/10.1016/j.tree.2014.10.006, 2014.
Barnard, R. L., Blazewicz, S. J., and Firestone, M. K.: Rewetting of soil: Revisiting the origin of soil CO2 emissions, Soil Biol. Biochem., 147, 107819, https://doi.org/10.1016/j.soilbio.2020.107819, 2020.
Beniston, J. W., DuPont, S. T., Glover, J. D., Lal, R., and Dungait, J. A. J.: Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems, Biogeochemistry 120, 37–49, https://doi.org/10.1007/s10533-014-9980-3, 2014.
Bista, D. R., Heckathorn, S. A., Jayawardena, D. M., Mishra, S., and Boldt, J. K.: Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses, Plants, 7, 28, https://doi.org/10.3390/plants7020028, 2018.
Bloom, A. J., Chapin, F. S., and Mooney, H. A.: Resource limitation in plants – an economic analogy, Annu. Rev. Ecol. Syst., 16, 363–392, https://doi.org/10.1146/annurev.es.16.110185.002051, 1985.
Borken, W., Muhs, A., and Beese, F.: Application of compost in spruce forests: effects on soil respiration, basal respiration and microbial biomass, Ecol. Manag., 159, 49–58, https://doi.org/10.1016/S0378-1127(01)00709-5, 2002.
Brown, S. and Cotton, M.: Changes in Soil Properties and Carbon Content Following Compost Application: Results of On-farm Sampling, Compost Sci. Util., 19, 87–96, https://doi.org/10.1080/1065657X.2011.10736983, 2011.
Canarini, A., Kiær, L. P., and Dijkstra, F. A.: Soil carbon loss regulated by drought intensity and available substrate: A meta-analysis, Soil Biol. Biochem., 112, 90–99, https://doi.org/10.1016/j.soilbio.2017.04.020, 2017.
Cleland, E., Lind, E., DeCrappeo, N., DeLorenze, E., Wilkins, R., Adler, P., Bakker, J. D., Brown, C. S., Davies, K. F., Esch, E., Firn, J., Gressard, S., Gruner, D. S., Hagenah, N., Harpole, W. S., Hautier, Y., Hobbie, S. E., Hofmockel, K. S., Kirkman, K., Knops, J., Kopp, C. W., La Pierre, K. J., MacDougall, A., McCulley, R. L., Melbourne, B. A., Moore, J. L., Prober, S. M., Riggs, C., Risch, A. C., Schuetz, M., Stevens, C., Wragg, P. D., Wright, J., Borer E. T., and Seabloom, E. W.: Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands, Ecosystems, 22, 1466–1477, https://doi.org/10.1007/s10021-019-00350-4, 2019.
Conant, R. T., Paustian, K., and Elliott, E. T.: Grassland management and conversion into grassland: effects on soil carbon, Ecol. Appl., 11, 343–355, https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2, 2001
Cotrufo, M., Soong, J., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776–779, https://doi.org/10.1038/ngeo2520, 2015.
DeLonge, M. S., Ryals, R., and Silver, W. L.: A Lifecycle Model to Evaluate Carbon Sequestration Potential and Greenhouse Gas Dynamics of Managed Grasslands, Ecosystems, 16, 962–979, https://doi.org/10.1007/s10021-013-9660-5, 2013.
Deng, L., Peng, C., Kim, D.-G., Li, J., Liu, Y., Hai, X., Liu, Q., Huang, C., Shangguan, Z., and Kuzyakov, Y.: Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems, Earth-Sci. Rev., 214, 103501, https://doi.org/10.1016/j.earscirev.2020.103501, 2021.
Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S., Emde, D., Seitz, D., and Chenu, C.: Carbon sequestration in soils and climate change mitigation – Definitions and pitfalls, Glob. Change Biol., 30, e16983, https://doi.org/10.1111/gcb.16983, 2024.
European Commission: Directorate-General for Health and Food Safety, From farm to fork: our food, our health, our planet, our future: the European Green Deal, Publications Office of the European Union, https://data.europa.eu/doi/10.2875/653604 (last access: 16 January 2025), 2020.
Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., and Fang, J.: Drought effect on plant biomass allocation: a meta-analysis, Ecol. Evol., 7, 11002–11010, https://doi.org/10.1002/ece3.3630, 2017.
Fenster, T. L. D., Torres, I., Zeilinger, A., Chu, H., and Oikawa, P.: Compost amendment to a grazed California annual grassland increases gross primary productivity due to a longer growing season, J. Geophys. Res.-Biogeo., 128, e2023JG007621, https://doi.org/10.1029/2023JG007621, 2023.
Fischer, B. M. C., Manzoni, S., Morillas, L., Garcia, M., Johnson, M., and Lyon, S. W.: Improving agricultural water use efficiency with biochar – A synthesis of biochar effects on water storage and fluxes across scales, Sci. Total Environ., 657, 853–862, https://doi.org/10.1016/j.scitotenv.2018.11.312, 2019.
Franco-Andreu, L., Gomez, I., Parrado, J., Garcia, C., Hernandez, T., and Tejada, M.: Soil biology changes as a consequence of organic amendments subjected to a severe drought, Land Degrad. Dev., 28, 897–905, https://doi.org/10.1002/ldr.2663, 2017.
Freschet, G. T., Valverde-Barrantes, O. J., Tucker, C. M., Craine, J. M., McCormack, M. L., Violle, C., Fort, F., Blackwood, C. B., Urban-Mead, K. R., Iversen, C. M., Bonis, A., Comas, L. H., Cornelissen, J. H. C., Dong, M., Guo, D., Hobbie, S. E., Holdaway, R. J., Kembel, S. W., Makita, N., Onipchenko, V. G., Picon-Cochard, C., Reich, P. B., Riva, E. G., Smith, S. W., Soudzilovskaia, N. A., Tjoelker, M. G., Wardle, D. A., and Roumet, C.: Climate, soil and plant functional types as drivers of global fine-root trait variation, J. Ecol., 105, 1182–1196, https://doi.org/10.1111/1365-2745.12769, 2017.
Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Grabowska-Polanowska, B., Kowalczyk, A., and Lochyński, P.: An overview of natural soil amendments in agriculture, Soil Till. Res., 225, 105462, https://doi.org/10.1016/j.still.2022.105462, 2023.
Garbowski, M., Brown, C. S., and Johnston, D. B.: Soil Amendment Interacts with Invasive Grass and Drought to Uniquely Influence Aboveground versus Belowground Biomass in Aridland Restoration, Restor. Ecol., 28, A13–A23, 2020.
Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., and Zheng, S.: Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes, Biogeochemistry, 51, 33–69, https://doi.org/10.1023/A:1006301010014, 2000.
Gebhardt, M., Fehmi, J. S., Rasmussen, C., and Gallery, R. E.: Soil amendments alter plant biomass and soil microbial activity in a semi-desert grassland, Plant Soil, 419, 53–70, https://doi.org/10.1007/s11104-017-3327-5, 2017.
Gravuer, K., Gennet, S., and Throop, H. L.: Organic amendment additions to rangelands: A meta-analysis of multiple ecosystem outcomes, Glob. Change Biol., 25, 1152–1170, https://doi.org/10.1111/gcb.14535, 2019.
Guasconi, D., Manzoni, S., and Hugelius, G.: Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands – a meta-analysis, Sci. Total Environ., 903, 166209, https://doi.org/10.1016/j.scitotenv.2023.166209, 2023.
Guasconi, D., Roth, N., Cousins, S. A. O., Manzoni, S., and Hugelius, G.: Soil physical, chemical and biological properties in two Swedish grasslands between 2019 and 2022, Dataset version 1, Bolin Centre Database [data set], https://doi.org/10.17043/guasconi-2025-soil-properties-1, 2025.
Guo, T., Weise, H., Fiedler, S., Lohmann, D., and Tietjen, B.: The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas, Ecol. Model., 379, 1–9, https://doi.org/10.1016/j.ecolmodel.2018.04.009, 2018.
Guswa, A. J.: Effect of plant uptake strategy on the water-optimal root depth: effect of plant uptake strategy on root, Water Resour. Res., 46, W09601, https://doi.org/10.1029/2010WR009122, 2010.
Haque, A. N. A., Uddin, M. K., Sulaiman, M. F., Amin, A. M., Hossain, M., Zaibon, S., and Mosharrof, M.: Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil, Agriculture, 11, 44, https://doi.org/10.3390/agriculture11010044, 2021.
Hasibeder, R., Fuchslueger, L., Richter, A., and Bahn, M.: Summer drought alters carbon allocation to roots and root respiration in mountain grassland, New Phytol., 205, 1117–1127, https://doi.org/10.1111/nph.13146, 2015.
Hayes, M. A., Jesse, A., Basam, T., Reef, R., Keuskamp, J. A., and Lovelock, C. E.: The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands, Plant Soil, 416, 193–204, 2017.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/nature06591, 2008.
Hirte, J., Walder, F., Hess, J., Büchi, L., Colombi, T., van der Heijden, M. G., and Mayer, J.: Enhanced root carbon allocation through organic farming is restricted to topsoils, Sci. Total Environ., 755, 143551, https://doi.org/10.1016/j.scitotenv.2020.143551, 2021.
IPCC: Intergovernmental Panel on Climate Change: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2023.
Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and Piñeiro, G.: The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls, Annu. Rev. Ecol. Evol. Syst., 48, 419–445, https://doi.org/10.1146/annurev-ecolsys-112414-054234, 2017.
Janzen, H. H.: The soil carbon dilemma: Shall we hoard it or use it?, Soil Biol. Biochem., 38, 419–424, https://doi.org/10.1016/j.soilbio.2005.10.008, 2006.
Johansson, A., Livsey, J., Guasconi, D., Hugelius, G., Lindborg, R., and Manzoni, S.: Long-term soil organic carbon changes after cropland conversion to grazed grassland in Southern Sweden, Soil Use Manag., 40, e13004, https://doi.org/10.1111/sum.13004, 2023.
Kallenbach, C. M., Conant, R. T., Calderón, F., and Wallenstein, M. D.: A novel soil amendment for enhancing soil moisture retention and soil carbon in drought-prone soils, Geoderma, 337, 256–265, https://doi.org/10.1016/j.geoderma.2018.09.027, 2019.
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, 2016.
Knapp, A. K. and Smith, M. D.: Variation among biomes in temporal dynamics of aboveground primary production, Science, 291, 481–484, https://doi.org/10.1126/science.291.5503.481, 2001.
Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L., Dukes, J. S., Fraser, L. H., Griffin‐Nolan, R. J., Hoover, D. L., Jentsch, A., Loik, M. E., Phillips, R. P., Post, A. K., Sala, O. E., Slette, I. J., Yahdjian, L., and Smith, M. D.: Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years, Glob. Change Biol., 23, 1774–1782, https://doi.org/10.1111/gcb.13504, 2017.
Kröel-Dulay, G., Mojzes, A., Szitár, K., Bhan, M., Batáry, P., Beier, C., Bilton, M., De Boeck, H. J., Dukes, J. S., Estiarte, M., Holub, P., Jentsch, A., Kappel Schmidt, I., Kreyling, J., Reinsch, S., Steenberg Larsen, K., Sternberg, M., Tielbörger, K., Tietema, A., Vicca, S., and Peñuelas, J.: Field experiments underestimate aboveground biomass response to drought, Nat. Ecol. Evol., 6, 540–545, https://doi.org/10.1038/s41559-022-01685-3, 2022.
Liu, J., Ma, X., Duan, Z., Jiang, J., Reichstein, M., and Jung, M.: Impact of temporal precipitation variability on ecosystem productivity, Wiley Interdisciplinary Review Water, 7, 1–22, https://doi.org/10.1002/wat2.1481, 2020.
Luo, G., Li, L., Friman, V.-P., Guo, J., Guo, S., Shen, Q., and Ling, N.: Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis, Soil Biol. Biochem., 124, 105–115, https://doi.org/10.1016/j.soilbio.2018.06.002, 2018.
Mackie, K. A., Zeiter, M., Bloor, J. M. G., and Stampfli, A.: Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment, Edited by Franciska de Vries, J. Ecol., 107, 937–949, https://doi.org/10.1111/1365-2745.13102, 2019.
Malik, M. A., Khan, K. S., and Marschner, P.: Fayyaz-ul-Hassan: Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments, J. Soil Sci. Plant Nut., 13, 955–66, https://doi.org/10.4067/s0718-95162013005000075, 2013.
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O'Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., and Winowiecki, L.: Soil carbon 4 per mille, Geoderma, 292, 59–86, https://doi.org/10.1016/j.geoderma.2017.01.002, 2017.
Moinet, G. Y. K., Hijbeek, R., van Vuuren, D. P., and Giller, K. E.: Carbon for soils, not soils for carbon, Glob. Change Biol., 29, 2384–2398, https://doi.org/10.1111/gcb.16570, 2023.
Moyano, F. E., Manzoni, S., and Chenu, C.: Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models, Soil Biol. Biochem., 59, 72–85, https://doi.org/10.1016/j.soilbio.2013.01.002, 2013.
Oladeji, O., Tian, G., Lindo, P., Kumar, K., Cox, A., Hundal, L., Zhang, H., and Podczerwinski, E.: Nitrogen release and plant available nitrogen of composted and un-composted biosolids, Water Environ. Res., 92, 631–640, https://doi.org/10.1002/wer.1260, 2020.
Paltineanu, C., Dumitru, S., Vizitiu, O., Mocanu, V., Lăcătusu, A.-R., Ion, S., and Domnariu, H.: Soil organic carbon and total nitrogen stocks related to land use and basic environmental properties – assessment of soil carbon sequestration potential in different ecosystems, Catena, 246, 108435, https://doi.org/10.1016/j.catena.2024.108435, 2024.
Paul, C., Bartkowski, B., Dönmez, C., Don, A., Mayer, S., Steffens, M., Weigl, S., Wiesmeier, M., Wolf, A., and Helming, K.: Carbon farming: Are soil carbon certificates a suitable tool for climate change mitigation?, J. Environ. Manag., 330, 117142, https://doi.org/10.1016/j.jenvman.2022.117142, 2023.
Poeplau, C., Begill, N., Liang, Z., and Schiedung, M.: Root litter quality drives the dynamic of native mineral-associated organic carbon in a temperate agricultural soil, Plant Soil, 491, 439–456, https://doi.org/10.1007/s11104-023-06127-y, 2023.
Poorter, H. and Nagel, O.: The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review, Funct. Plant Biol., 27, 1191, https://doi.org/10.1071/PP99173_CO, 2000.
Porporato, A., Vico, G., and Fay, P. A.: Superstatistics of hydro-climatic fluctuations and interannual ecosystem productivity, Geophys. Res. Lett., 33, L15402, https://doi.org/10.1029/2006GL026412, 2006.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 16 January 2025), 2022.
Rasse, D. P., Rumpel, C., and Dignac, M. F.: Is soil carbon mostly root carbon? Mechanisms for a specific stabilization, Plant Soil, 269, 341–356, https://doi.org/10.1007/s11104-004-0907-y, 2005.
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., and Bloodworth, H.: Effect of soil organic carbon on soil water retention, Geoderma, 116, 61–76, https://doi.org/10.1016/S0016-7061(03)00094-6, 2003.
Roth, N.: Grasslands in a changing climate – Summer drought and winter warming effects on grassland vegetation, Doctoral thesis, Stockholm University, ISBN: 978-91-8014-558-9, 2023.
Roth, N., Kimberley, A., Guasconi, D., Hugelius, G., and Cousins, S. A. O.: Floral resources in Swedish grasslands remain relatively stable under an experimental drought and are enhanced by soil amendments if regularly mown, Ecol. Solut. Evid., 4, e12231, https://doi.org/10.1002/2688-8319.12231, 2023.
Ryals, R. and Silver, W. L.: Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands, Ecol. Appl., 23, 46–59, https://doi.org/10.1890/12-0620.1, 2013.
Ryals, R., Hartman, M. D., Parton, W. J., DeLonge, M. S., and Silver, W. L.: Long-term climate change mitigation potential with organic matter management on grasslands, Ecol. Appl., 25, 531–545, https://doi.org/10.1890/13-2126.1, 2015.
Ryals, R., Eviner, V. T., Stein, C., Suding, K. N., and Silver, W. L.: Grassland compost amendments increase plant production without changing plant communities, Ecosphere, 7, e01270, https://doi.org/10.1002/ecs2.1270, 2016.
Ryser, P.: The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses, Funct. Ecol., 10, 717–723, https://doi.org/10.2307/2390506, 1996.
Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbágy, E., and Peters, D.: Legacies of precipitation fluctuations on primary production: theory and data synthesis, Philos. T. R. Soc. B, 367, 3135–3144, https://doi.org/10.1098/rstb.2011.0347, 2012.
Sanderman, J., Hengl, T., and Fiske, G. J.: Soil Carbon Debt of 12,000 Years of Human Land Use, P. Natl. Acad. Sci. USA, 114, 9575–9580, 2017.
Sarker, T. C., Zotti, M., Fang, Y., Giannino, F., Mazzoleni, S., Bonanomi, G., Cai, Y., and Chang, S. X.: Soil Aggregation in Relation to Organic Amendment: a Synthesis, J. Soil Sci. Plant Nutr., 22, 2481–2502, https://doi.org/10.1007/s42729-022-00822-y, 2022.
Schimel, J. P.: Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes, in: Annual Review of Ecology, Evolution, and Systematics, edited by: Futuyma, D. J., Annu. Rev. Ecol. Evol. S., 49, 409–432, https://doi.org/10.1146/annurev-ecolsys-110617-062614, 2018.
Sharma, S., Singh, P., Chauhan, S., and Choudhary, O. P.: Landscape position and slope aspects impacts on soil organic carbon pool and biological indicators of a fragile ecosystem in high-altitude cold arid region, J. Soil Sci. Plant Nutr., 22, 2612–2632, https://doi.org/10.1007/s42729-022-00831-x, 2022.
Shi, Z., Allison, S. D., He, Y., Levine, P. A., Hoyt, A. M., Beem-Miller, J., Zhu, Q., Wieder, W. R., Trumbore, S., and Randerson, J.: The age distribution of global soil carbon inferred from radiocarbon measurements, Nat. Geosci., 13, 555–559, https://doi.org/10.1038/s41561-020-0596-z, 2020.
Swedish Meteorological and Hydrological Institute: Normal årsmedeltemperatur, https://www.smhi.se/data/meteorologi/kartor/normal/arsmedeltemperatur-normal (last access: 16 January 2025), 2022.
Wang, Y., Shao, M., Sun, H., Fu, Z., Fan, J., Hu, W., and Fang, L.: Response of deep soil drought to precipitation, land use and topography across a semiarid watershed, Agr. Forest Meteorol., 282/283, 107866, https://doi.org/10.1016/j.agrformet.2019.107866, 2020.
Yahdjian, L. and Sala, O. E.: A rainout shelter design for intercepting different amounts of rainfall, Oecologia, 133, 95–101, https://doi.org/10.1007/s00442-002-1024-3, 2002.
Yang, F., Zhang, G.-L., Yang, J.-L., Li, D.-C., Zhao, Y.-G., Liu, F., Yang, R.-M., and Yang, F.: Organic matter controls of oil water retention in an alpine grassland and its significance for hydrological processes, J. Hydrol., 519, 3086–3093, https://doi.org/10.1016/j.jhydrol.2014.10.054, 2014.
Zhang, C. and Xi, N.: Precipitation Changes Regulate Plant and Soil Microbial Biomass Via Plasticity in Plant Biomass Allocation in Grasslands: A Meta-Analysis, Front. Plant Sci., 12, 614968, https://doi.org/10.3389/fpls.2021.614968, 2021.
Zhang, F., Quan, Q., Song, B., Sun, J., Chen, Y., Zhou, Q., and Niu, S.: Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow, Sci. Rep., 7, 15193, https://doi.org/10.1038/s41598-017-15580-6, 2017.
Zhong, M., Song, J., Zhou, Z., Ru, J., Zheng, M., Li, Y., Hui, D., and Wan, S.: Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe, Oecologia, 191, 697–708, https://doi.org/10.1007/s00442-019-04520-y, 2019.
Short summary
This study assesses the effects of experimental drought and soil amendment on soil and vegetation carbon pools at different soil depths. Drought consistently reduced soil moisture and aboveground biomass, while compost increased total soil carbon content and aboveground biomass, and effects were more pronounced in the topsoil. Root biomass was not significantly affected by the treatments. The contrasting response of roots and shoots improves our understanding of ecosystem carbon dynamics.
This study assesses the effects of experimental drought and soil amendment on soil and...