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Abstract: Weathering is widely used for pedogenesis and soil fertility studies, once it affects several soil attributes. 15 

Understanding the intensities of weathering can provide answers for environmental issues, soil and geosciences studies. 

Recently, there are available geotechnologies (such as geophysics and machine learning algorithms) that can be applied in 

soil science to provide pedosphere information. In this research, we performed a method to evaluate weathering intensity in a 

heterogeneous tropical area by proximal remote sensing data acquired by geophysical and satellite images respectively. The 

area is located in southwest Brazil, with 184 h and we sampled 79 sites (all with soil analysis) using toposequence 20 

knowledge. Afterwards, the principal component analysis and the ideal number of clusters was determined. Then, we 

determine and used the ideal number of clusters, weathering index, as input data in four modelling (prediction and 

spatialization) algorithms to infer different weathering intensities in soils formed from the same soil parent material. The 

results showed that the best model performance was for the random forest reaching 3 clusters as the ideal number. The 

surface pixel reflectance acquired from a Synthetic Soil Image, the terrain surface convexity and digital elevation model 25 

were the covariates that most contributed to modelling processes. The model’ specificity was greater than sensitivity. The 

East areas over diabase such as the Nitisol presented greater weathering intensity than the Nitisol over West diabase areas. 

The areas over siltite/metamorphosed siltite and Lixisols presented moderate weathering rates. The relief and topographic 

position strongly affected the weathering, once they controlled the hydric dynamics. The geophysical variables were related 

to soil attributes and weathering, which contributed to modelling and clusterization processes. The different weathering rates 30 

are mainly modulated by geomorphic processes that relief, topographic position, and the associated soil types control water 

dynamic at the landscape and directly affect the weathering intensities. 
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1 Introduction 

Weathering process can be understood as the spontaneous and irreversible responses of rocks, soils and sediments to the 35 

prevailing environmental conditions at (or near) the surface as opposed to those where these materials were originated 

(Carroll, 2012; Santos et al., 2019; White, 2018). The main controlling factors of weathering are: parent material 

characteristics, climate, relief, organisms and time (Borrelli et al., 2015, 2016; Carroll, 2012). Weathering processes involve 

simple mechanical disintegration and, chemical-mineralogical changes in rocks and minerals (Borrelli et al., 2014; Regmi et 

al., 2014; Scarciglia et al., 2016; Apollaro et al., 2019; Santos et al., 2018; Santos et al., 2019). 40 

Weathering mantle can reach varying depths in the pedosphere, depending on the characteristics of the weathered material, 

on the hydrological conditions and, on the biota activity (Ollier, 1984). On the other hand, the weathering rate refers to the 

amount of material chemically altered and/or removed per unit of time (Bland & Rolls, 2016). The intensity of weathering, 

in turn, controls the degree of alteration and, thus, the degree in which primary minerals are transformed into secondary, 

where an increase in the intensity of weathering results in an increase in the geochemical and geophysical changes of the 45 

weathered materials (Wilford, 2012). 

Soil weathering studies contribute to the understanding of the spatial variability of different soil types on the landscape 

(Jenny, 1994; Scarciglia et al., 2005; Yoo et al., 2009), landscape evolution and, geomorphic processes (Migoń, 2013a, 

2013b; Turkington et al., 2005), chemical and mineralogical composition of soils and sediments (Jackson and Sherman, 

1953; Prasetyo et al., 2016; Khelfaoui et al., 2020), concentration of chemical elements for plants (Schuessler et al., 2018; 50 

Porder, 2019), potentially toxic elements (Yu et al., 2012; Cabral Pinto et al., 2017), biogeochemical cycles (Torres et al., 

2016; Doetterl et al., 2018; Dynarski et al., 2019), land use and management (Kaushal et al., 2017; Linden and Delvaux, 

2019; Kim et al., 2020), chemical characteristics of the hydrosphere (Kumar et al., 2019; Tsering et al., 2019), as well as the 

relationship between pedosphere and other environmental spheres (hydrosphere, biosphere, lithosphere and atmosphere) 

(Buss et al., 2017). 55 

Many studies demonstrate the relationship between chemical weathering processes and geochemistry of hydrosphere and 

pedosphere, soil attributes, weathering profiles in specific locations and modeling studies (Gaillardet et al., 1999; Anderson 

et al., 2004; Lerman et al., 2007; Navarre-Sitchler and Brantley, 2007; Goddéris et al., 2009; Brantley et al., 2011; Maher, 

2011). In addition, Terra et al. (2018), using geotechnologies evaluated different rates of weathering and pedogenesis in soil 

profiles, analyzing changes in soil texture and mineralogical composition by spectroscopic methods.  60 

With the development of new geotechnologies and geophysical techniques, pedologists have studied the relationship 

between soil attributes, weathering and pedogenesis (Beamish, 2013; McFadden and Scott, 2013; Mello et al., 2020, 2021; 

Reinhardt and Herrmann, 2019; Schuler et al., 2011). Radiometric, magnetic and electric methods are the main ones used in 

geophysical surveys and soil science. 

Gamma-spectrometry is a radiometric method which consists of analyzing the concentration and behavior of uranium (U238), 65 

thorium (Th232) and potassium (K40) levels in soils, rocks and sediments (Minty, 1988). In addition to the characteristics of 
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the parent material, processes that occur in the landscape (e.g., weathering, pedogenesis, erosion and sediment deposition), 

associated with the pedogeochemical comportment of each radionuclide determine their concentration/distribution in the soil 

system (Dickson and Scott, 1997; Wilford and Minty, 2006). Studies undertaken by Dickson and Scott, (1997); Wilford and 

Minty, (2006); Malikova and Strakhovenko, (2017) and Ribeiro et al. (2018) demonstrated the relationship between 70 

uranium, thorium and potassium contents with soil attributes, weathering and pedogenetic processes. 

 Magnetic susceptibility (κ) is a magnetic method. It comprises the degree of magnetism of an given element (how much it 

can be magnetized) (Rochette et al., 1992). The magnetic susceptibility of the soils is related to their mineralogy, which in 

turn is related to parent material and pedogeochemistry environment for formation of secondary minerals, generally 

ferrimagnetic such as magnetite (sand fraction) and maghemite (clay fraction) (Ayoubi et al., 2018) and to a lesser extent in 75 

ferrihydrite and hematite (Valaee et al., 2016). Soil magnetic susceptibility can be applied to geological studies (Shenggao, 

2000), determination of soil clay/sand content and organic carbon content (Camargo et al., 2014; Jiménez et al., 2017), in 

soil surveying (Grimley et al., 2004) and in studying of pedogenetic and geomorphological processes (Sarmast et al., 2017; 

Mello et al., 2020). 

Apparent electrical conductivity is an electric method. When applied to the soil, it can be defined as the ability of the soil to 80 

conduct electric current. The amount of electric current that the soil is able to conduct is mainly in function of the amount 

and type of solutes in the soil solution. It is usually expressed in millisiemens per meter, with a minimum concentration of 

1dS/m equivalent to 10 meq/L (Richards, 1954). 

Originally, ECa was used as a measure of soil salinity and, nowadays, it is a technology used to estimate soils properties and 

their spatial variation (Corwin et al., 2003). The main factors that affect the ECa are: soil salinity, clay content and type, 85 

cation exchange capacity, mineralogy, pore size and distribution, temperature, soil moisture (McNeill, 1992; Rhoades et al., 

1999;  Bai et al., 2013; Cardoso and Dias, 2017). Several studies have demonstrated the relationship between soil ECa and 

its attributes  (Friedman, 2005; Sudduth et al., 2005; Chung et al., 2019; Grubbs et al., 2019; Nocco et al., 2019; Marta et al., 

2020). Besides, Son et al. (2010) and Zhu et al. (2016) have used (ECa) to assess the degree of soil weathering and study its 

pedogenesis, demonstrating the potential of the technique for pedological studies. 90 

However, to our knowledge, there is a scarcity of studies and information that use a combination of geophysical sensors with 

data from traditional soil analyzes, remote sensing and machine learning algorithms, for detailed studies to assess the 

intensity of weathering in tropical environments in different types of soils (Goydaragh et al., 2021). 

Given above, this research aimed to: i) model weathering index using combined data from geophysical sensors, satellite 

images and morphometry by different machine learning algorithms; ii) evaluate the importance of the covariates used in 95 

modeling (nested-leave-one-out-cross-validation method) and relate them to pedogeomorphological processes; iii) evaluate 

the quality of weathering index map obtained by remote and geophysical survey data; iv) evaluate if geophysical data is 

more efficient than remote sensing to predict the weathering indexes. Our main hypothesis is that geophysical sensors and 

satellite can detected how the different intensities of weathering affect, in different manners, the soil attributes and their 

composition in the same parent material. 100 
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We analyzed apparent discrepancies between weathering intensities and some chemical weathering indexes created by 

geophysical sensors and geochemical indices, chemical evaluation throughout machine learning algorithms. In addition, we 

focused on a more detailed description of chemical weathering in a complex study area in terms of relief and geology in a 

tropical environment. 

 105 

 

2 Material and methods 

2.1 Study area and soil samples 

The study area has 184 hectares and was located in the municipality of Raffard (22° 59' 39.3" S and 47° 38' 55.7"W), in São 

Paulo State, Brazil (Fig 1). The area was recently cultivated with sugar cane and, it was entirely located on a plowed field. 110 

The area is part of the hydrographic basin of the Capivari River, located in the Paulista Peripheric Depression (SE Brazil). 

The lithology of the area is composed by siltite and metasiltite from the Itararé Formation, diabase from the Serra Geral 

Formation and, alluvial sediments (Fig. 2a).  
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Figure 1. Study area location, site of the collection points and geophysical sensors (Geonics Ground Conductivity Meter - 115 

EM 38; Gamma-ray spectrometer - Radiation Solution - RS 230; Susceptibilimeter KT-10 Terraplus). Bing Image from © 

Microsoft. 

 

The maximum altitude was 567m and the minimum 474m with slope ranging from 0 to 35% (Fig. 2c and 2d). The climate 

of the region was classified according to Köppen system, as subtropical mesothermal (Cwa). The temperatures vary from 18 120 

Bing Image 
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°C to 22 °C (during winter on July and summer on February, respectively). The mean annual precipitation varies (1100 to 

1700 mm) (Alvares et al., 2013). 

Soil classification was carried out by an experienced pedologist. For that, 16 representative soil profiles were selected 

according to the topographic position and variations in relief. Subsequently, all soil profiles were described and classified 

following  IUSS Working Group WRB, (2015). Then, soil samples from all soil horizons were collected for physical-125 

chemical analysis. The main soil types classified in the area were: Cambisols, Phaeozems, Nitisols, Acrisols and Lixisols 

(IUSS Working Group WRB, 2015) (Fig. 2b). In addition to the soil samples collected in the profiles, soil samples were 

collected, via augering, for physical-chemical analysis at 79 points distributed according to figure 1. The samples were 

collected in the 0 - 20cm layer. (Fig. 1). 
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 130 

Figure 2. a) Geological compartments of landscape. b) Soil classes: CX: Haplic Cambisols, CY: Fluvic Cambisols, MT: 

Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic Acrisol, PVA: Rhodic Lixisol. The geological and Soil classes maps were 

adapted from Bazaglia Filho et. al. (2012). c) Digital Elevation Model: d) Slope.  

 

a) b)

c)

COORDINATE REFERENCE SYSTEM WGS 84

d)

https://doi.org/10.5194/soil-2022-17
Preprint. Discussion started: 9 June 2022
c© Author(s) 2022. CC BY 4.0 License.



8 

 

2.2. Laboratory analysis 135 

For granulometric analysis all soil samples were air dried, ground and passed through a 2 mm sieve. Then, soil clay, silt and 

sand content were quantified by densimeter method (Camargo et al., 1986) and textural classification were determined 

following the EMBRAPA (2011) methodology. 

For the extraction of aluminum, magnesium and calcium cations (Ca2+, Mg2+ and Al3+, respectively) a solution of 1 mol L− 1 

KCl was used according to EMBRAPA, (2011) method. To extract the potassium cation (K+), the Melich 1 extractor was 140 

used and, the quantification was performed by flame photometry. A solution of concentration 0.5 mol L−1 at pH 7 of calcium 

acetate was used to determine the potential acidity (H+ + Al3+), which was later quantified by titration with 0.025 mol L−1 

NaOH, following the Shoemaker, Mac lean and Pratt (SMP) method (Quaggio and Raij, 2001). 

The pH in water was determined by the electrode method following (EMBRAPA, 2011). The organic carbon content was 

quantified via oxidation with dichromate (0.167 mol L−1 K2Cr2O7), following the Walkley–Black method (Walkley and 145 

Black, 1934). The total iron content (Fe2O3), silicon dioxide (SiO2) and titanium dioxide (TiO2) were determined using the 

EMBRAPA, (2017) methodology. The other soils parameters such as base sum, base saturation, aluminium saturation and 

cation exchange capacity were calculated using the previous obtained analytical data (EMBRAPA, 2017). 

 

2.3. Weathering rates 150 

To some extend the chemical weathering reactions are controlled by the geochemical behaviour of major elements that 

composes rocks, soils and sediments (Loughnan, 1962). Thus, the chemical weathering indexes are developed using some of 

major elements, which quantify the depletion of mobile elements (e.g., those with lower ionic potential) with respect to the 

immobile elements (Harnois, 1988). Several chemical weathering indices utilize weathering observations of felsic and 

intermediate igneous rocks under moist, well-drained pedoenvironments, as well as in situ weathering profiles (Duzgoren-155 

Aydin and Aydin, 2003; Harnois, 1988; Nordt and Driese, 2010; Ruxton, 1968).  

Weathering indexes traditionally have been calculated using the molecular proportions between major elements expressed as 

oxides. In this sense, the weathering indexes were calculated following the methodology proposed by Jayawardena and 

Izawa, (1994), (Eq 1). 

 W1 = 
𝑆𝑖𝑂2

𝑇𝑖𝑂2
 𝑋 100 (1) 

2.4 Geophysical data collection 160 

2.4.1 Radiometric data (gamma-ray spectrometry) 
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The values of the uranium (eU), thorium (eTh) and potassium (K40) radionuclides were quantified using the portable gamma-

ray spectrometer (GM) equipment Radiation Solution RS 230 - Radiation Solution INC - Ontario – Canada (Fig. 1). The 

sensor is able to detect and quantify the radionuclides at a depth ranging from 30 to 60 cm, depending on the moisture and 

density of the soil (Wilford et al., 1997; Taylor et al., 2002; Beamish, 2015).   165 

Firstly, the sensor was automatically stabilized. The sensor was placed for two minutes in direct contact with the soil surface, 

in each sampling point (79), according to figure 1. The measurements were taken in the “assay-mode” of the highest 

precision for radionuclide quantification. The coordinates of each sampling point were recorded by a GPS connected to the 

gamma-spectrometer by Bluetooth. The sensor detected eU and eTh in parts per million (ppm) and, K40 in %. However, the 

eU and eTh contents were reported in mg kg-1.  170 

 

 

2.4.2 Magnetic susceptibility (κ) data 

Soil magnetic susceptibility κ values were collected using the sensor model KT10 - Terraplus (Fig. 1). This equipment is 

capable of measuring the κ values at a depth of to 2 cm below the soil surface. Before the measurements, the sensor was 175 

properly calibrated following the recommendations of Sales, (2021). The measurements were performed at the 79 collection 

points (Fig. 1), placing the entire sensor base in direct contact with the soil surface. The measurements were performed with 

the sensor in scanner mode, which provides the values of k more quickly and accurately (with precision 10−6 SI units, in m3 

kg−1). We performed three readings around each sampling point to reduce sensor noise and, the averages were used in our 

analysis. 180 

 

2.4.3 Apparent electrical conductivity (ECa) 

Soil ECa values were acquired using sensor conductivity meter Geonics EM38 (Geonics Ltd., Mississauga, Ontario, Canada) 

(McNeill, 1986) (Fig. 1). For this, first the sensor was properly calibrated according to Heil and Schmidhalter, (2019) 

recommendations. Measurements were taken with the sensor in a vertical position in direct contact with the soil surface at all 185 

79 collection points (Fig. 1). In this position the EM38 is able to provide soil ECa values down to an effective depth of 1.5 

meters. The collections were carried out in the dry season and during the same range of hours of the day to reduce the effects 

of soil moisture. In addition, all metal objects were kept away to avoid sensor noise. More details on sensor working 

principles, calibration and factors that affect soil ECa readings can be found in Geonics, (2002); Heil and Schmidhalter, 

(2019); Hendrickx and Kachanoski, (2002). 190 

It is important to highlight that there were noises for some sensors with extremely abnormal values at 8 reading points. These 

values were considered outliers and were not used in the analyses. Therefore, the total number of samples used were 71. 
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2.5 Generation of digital elevation model, slope and maps 

We obtained contour lines with 5 m contour interval, acquired from plan altimetric maps at 1:10,000 scale, obtained from the 195 

Campinas Geographic Institute (IGC). The lines were used to interpolate a digital elevation model (DEM) using the Topo to 

Raster function in ESRI ArcGIS 10.4. The DEM was exported with 30 m of spatial resolution. We decided to use the 

calculated DEM from a detailed database to enforce the smallest altitude variations presented in the study area, which are 

important for discussing the results. Although more accessible altitude information can be used to generate the DEM, such as 

the Shuttle Radar Topographic Mission (SRTM), the DEM derived from the contour lines expressed the relief in greater 200 

detail. Using the DEM data, 32 additional terrain attributes were created (see Table 1) using the R software (R Core Team, 

2015), including the “Rsaga” (Brenning, 2008) and “raster” (Hijmans and Van Etten, 2016) packages.  

 

Table 1. Terrain attributes generated from the digital elevation model 

Terrain attributes Abbreviations Brief description 

Aspect AS Slope orientation 

Convergence index CI Convergence/divergence index in relation to runoff 

Cross sectional curvature CSC Measures the curvature perpendicular to the down slope direction 

Diurnal anisotropic heating DAH Continuous measurement of exposure dependent energy 

Flow line curvature FLC Represents the projection of a gradient line to a horizontal plane 

General curvature GC The combination of both plan and profile curvatures 

Hill HI Analytical hill shading 

Hill index HIINDEX Analytical index hill shading 

Longitudinal curvature LC Measures the curvature in the down slope direction 

Maximal curvature MAXC Maximum curvature in local normal section 

Mid-slope position MSP Represents the distance from the top to the valley, ranging from 0 to 1 

Minimal curvature MINC Minimum curvature for local normal section 

Morphometric Protection Index MPI Measure of exposure/protection of a point from the surrounding relief 

Multiresolution index of ridge top 

flatness 
MRRTF Indicates flat positions in high altitude areas 

Multiresolution index of valley 

bottom flatness 
MRVBF Indicates flat surfaces at bottom of valley 

Normalized height NH Vertical distance between base and ridge of normalized slope 

Plan curvature PLANC 
Described as the curvature of the hypothetical contour line passing through 

a specific cell 

Profile curvature PROC Describes surface curvature in the direction of the steepest incline 
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Terrain attributes Abbreviations Brief description 

Real surface area RSA Actual calculation of cell area 

Slope S Represents local angular slope 

Slope height SH Vertical distance between base and ridge of slope 

Slope Index SI Represents a local angular slope index 

Solrad Diffuse1 SolDiffuse1 Insolation Diffuse for the month of January 

Solrad Diffuse2 SolDiffuse2 Insolation Diffuse for the month of July 

Solrad dur 1 SolDur1 Insolation Duration for the month of January 

Solrad dur 2 SolDur2 Insolation Duration for the month of July 

Solrad Direct1 SolDiret1 Insolation Direct of month January 

Solrad Direct2 SolDiret2 Insolation Direct of the month of July 

Solrad Ration1 SolRation1 
Ratio between direct Insolation and diffuse Insolation of the month of 

January 

Solrad Ration2 SolRation2 Ratio between direct Insolation and diffuse Insolation of the month of July 

Solrad Sunrise1 SolSunrise1 Mean sunrise time of month January 

Solrad Sunrise2 SolSunrise2 Mean sunrise time of month July 

Solrad Sunset1 SolSunset1 Mean sunset time of month January 

Solrad Sunset2 SolSunset2 Mean sunset time of month July 

Solrad total1 SolTotal1 Total Insolation for the month of January 

Solrad total2 SolTotal2 Total Insolation for the month of July 

Standardized height STANH Vertical distance between base and standardized slope index 

Surface specific points SSP Indicates differences between specific surface shift points 

Tangential curvature TANC Measured in the normal plane in a direction perpendicular to the gradient 

Terrain ruggedness index TRI Quantitative index of topography heterogeneity 

Terrain surface convexity TSC 
Ratio of the number of cells that have positive curvature to the number of 

all valid cells within a specified search radius 

Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes 

Total curvature TC General measure of surface curvature 

Topographic position index TPI Difference between a point elevation with surrounding elevation 

Valley depth VD Calculation of vertical distance at drainage base level 

Valley VA Calculation fuzzy valley using the Top Hat approach 

Valley Index VA Calculation fuzzy valley index using the Top Hat approach 

Vector ruggedness measure VRM Measures the variation in terrain roughness 
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Terrain attributes Abbreviations Brief description 

Topographic wetness index TWI 
Describes the tendency of each cell to accumulate water as a function of 

relief 

 205 

2.6 Synthetic Soil image (SYSI) 

The Synthetic Soil image (SYSI) concept was developed by Demattê et al., (2018). It consists on a multi-temporal bare soil 

surface images were retrieved from Landsat images during the dry season in Brazil (July to September) between 1984 and 

2018. During dry-season the cloud coverage and the soil moisture are reduced, providing higher absolute frequency of bare 

soil areas on the spectra. Basically the procedure to perform and obtain the SYSI were: i) creation of a database with Landsat 210 

5 or Sentinel-2 legacy data.; ii) filtering of the database to provide images season in the region; iii) insertion of a set of rules 

into the system to filter other objects besides soils; iv) each bare soil occurrence for each location along the time-series was 

used to calculate a Temporal Synthetic Spectral Reflectance (TESS) of the soil surface; v) aggregation of all TESS composes 

the Synthetic Soil Image (SYSI). This method is further detailed described at Demattê et al., (2018) and correspond to bare 

soil areas at the soil surface (layer A), designed as Geospatial Soil Sensing System method (GEOS3). 215 

2.7 Principal component analysis and clusterization  

Principal component analysis (PCA) was applied to the 7 parameters derived from geophysical sensors data, and the 

weathering indexes, for each of the 71 collection points. This analysis is a data linear orthogonal transformation, which 

generates a new set of orthogonal data, called principal components (Cps), which explains the variation of data (Chaplot and 

Cooper, 2015; Jambu, 1991; Matsuura et al., 2019). Principal components went through a dimensionality reduction process 220 

for data grouping. The ideal values of Cps were established by evaluating the eigenvalues, where these ideal values are those 

greater than 1 (>1) (Setiawan et al., 2020; Wang et al., 2018, 2015; Zuber et al., 2017). The ideal number of Cps were three, 

which were used in the next step.  

 For cluster analysis, the choice of the ideal number of clusters were performed, based on the homogeneity of the tested 

groups by statistical scott method (Scott and Symons, 1971). This procedure was performed in the R software, fviz_nbclust 225 

function of the “factoextra” package (Kassambara and Mundt, 2017). In this manner, three classes were established as the 

ideal number of clusters. These values were used concomitantly with the three Cps, generated in the previous step, for the 

definition of groups of similar values of geophysical sensor data, argilluviation and ferralitization indexes. These groups 

characterize themselves by present similar values within the groups, but different values between one group to another. This 

processing phase was performed by k-means grouping method, using the “kmeans” function in R software (R Core Team, 230 

2015). 

 The information from each sample within each of the three clusters (groups) was concatenated with their respective 

geographic coordinates. This result was used to extract the values of covariates (morphometric and geological data) at each 
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sampling point using the stack and extract functions, respectively, from the “raster” package in the R software (R Core 

Team, 2015). The values of each sample within each group were concatenated with the values of the covariates, forming the 235 

base database for entry in the removal by variance process. 

 

2.8 Modeling process 

In this research, we tested four machine learning algorithms in modelling process; Model Averaged Neural Network 

(avNNet), Partial Least Squares (PLS), k-Nearest Neighbors (KKNN) and Random Forest (RF). The ideal set of covariates 240 

were used in training the final model of each algorithm. The modelling process were performed in three phases: selection of 

covariates, training/testing and spatialization. The general framework is demonstrated in figure 3. 
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Figure 3. Methodological flowchart showing the sequence of methodologies applied for pedogenetic processes prediction 

using geophysical data. The most accurate model between AvNNet: Model Averaged Neural Network; pls: Partial Least 245 

Squares; kknn: k-Nearest Neighbors; RF: Random Forest, were selected to model and map the intensity of pedogenetic 

processes maps. 
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2.8.1 Selection of covariates 

The selection of covariates is a procedure that reduces the complexity of the final model (parsimony), reduces computational 

effort and processing time, and increases the performance of machine processing algorithms (Gomes et al., 2019; Hasri et al., 250 

2017; Seasholtz and Kowalski, 1993). This procedure is divided into three phases: (1) removal of low-variance covariates 

(low variance/close to zero), (2) high correlation removal, and (3) selection by the importance of the covariate. 

 Phase 1 (removal of low-variance covariates), the values of the covariates at the sampling points are evaluated for 

their sample variability. If a covariate presents a variance equal to zero or near zero, it is removed, as it does not contribute to 

the modeling and demands more processing time in the training of the algorithm. In this analysis, no covariate showed zero 255 

variance. Consequently, all covariates were used in the second phase of selection. The removal of non-variance covariates 

was performed using the “nearZeroVar” function from the Caret package (Kuhn et al., 2020) in R software (R Core Team, 

2015). 

 Phase 2 (high correlation removal), the focus of removal of covariates is made by the correlation between them. 

Two highly correlated covariates present similar information, one of which can be removed to reduce computational 260 

processing time in the next modeling phases (Darst et al., 2018). This procedure was performed by calculating the Spearman 

correlation for all covariates, separating pairs of covariates that obtained values greater than 95%. These pairs were evaluated 

in relation to the absolute sum of the correlations they have with all the other covariates used, and the covariates that 

obtained the highest value in this sum were eliminated. This phase was carried out using the “find correlation” function of 

the “Caret” package in the R software (Kuhn et al., 2020; R Core Team, 2015). In this step, 9 covariates were 265 

eliminated:"realsurfacearea","slope","solrad_direct1","curv_longitudinal","standardized_height","solrad_diffuse2","curv_cro

ss_secational","solrad_direct2","solrad_ration2". The covariates that were not removed by the previous step, were link 

together with the groups predefined by k-means.  

Phase 3 (removal by importance) is intended to remove those covariates that are less important for the prediction, thus 

creating a more parsimonious model to explain the phenomenon. In this phase we used the Recursive Feature Elimination 270 

method (RFE) (Kohavi and John, 1997). In this step the selection of the optimal subset of predictors was based on cross-

validation with 10 folds (repetedcv), 5 values of each of the internal hyperparameters of each tested algorithm (tuneLenght).  

 

2.8.2 Separation of training and test of samples  

The phase of separation, training and test was undertaken using the “nested-leave-one out-cross-validation” (“nested-275 

LOOCV”) method (Clevers et al., 2007; Honeyborne et al., 2016; Mello et al., 2022; Rytky et al., 2020). We would like to 

emphasize that the sample number of our database is relatively small (71) due to some field limitations. In these cases, 

nested-LOOCV is more suitable for performing modelling to which other validation/test methods (as holdout validation) 

would not be viable due to the low sample set in the test and/or training group (Ferreira et al., 2021). 
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 The nested-LOOCV method comprises a double loop process (inner and outer loops). In the inner loop, the training is 280 

performed using a data set of size n-1, using the leave-one-out-cross-validation (LOOCV) for the optimization of the final 

model. On the other hand, the outer loop corresponds to the test, which the remaining sample is predicted using the final 

model calculated in the inner loop. This prediction result is stored with the observed value of the remaining sample and later 

used to calculate the algorithm’s performance (Jung et al., 2020; Neogi and Dauwels, 2019). The two loops are run n times 

(n = total number of samples, in our case 71). All samples are inserted into the outer loop, where the values predicted by the 285 

final model of each algorithm are calculated with the predicted and observed values of each sample. Then, the final result of 

the machine learning algorithm's performance will be obtained by predicted and observed values stored in the external loop.  

 

2.8.3 Training and spatialization of clusters 

For training, all variables selected for each algorithm tested in the previous step were used. In this step, leave-one-out-cross-290 

validation (LOOCV) and 10 repetitions and, 5 values of each internal hyperparameters of each tested algorithm (tuneLength) 

were used. In the final part of the training, the sample that was not predicted was used for prediction and, the result was used 

to evaluate the model’s performance. The set of samples from the outer loop of the nested-LOOCV method were used for 

prediction. Five evaluation parameters were used: F-1 Score test (EQ 2), global precision of accuracy (EQ 3), mean 

sensitivity (EQ 4), mean specificity (EQ 5) and Kappa (EQ 6). 295 

The F1-score is a machine learning parameter that can be used to evaluate classification models (EQ 2). The F1-score test 

can be defined as the harmonic mean of Precision and Recall (Sasaki, 2007). It is used as a reliable parameter in machine 

learning techniques for unbalanced data (uneven class distribution). In this sense, it is used to evaluate binary classification 

systems, which classify examples into ‘positive’ or ‘negative’. Therefore, this score uses false positives and false negatives 

into account. 300 

 

F − 1 Score =  2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄                    (2) 

F − 1 Score =  (𝑇. 𝑃) [(𝑇. 𝑃)⁄ +
1

2
(𝐹. 𝑃 + 𝐹. 𝑁)] 

Where: 

T.P = True positive 305 

F.P = False positive 

F.N = False negative 

 

The accuracy indicates the overall performance of the final prediction model, evaluating the number of correct answers of 

the models, in other words, it indicates the probability that the studied and classified classes correspond to the true data, also 310 

presenting values ranging from 0 to 1. 
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Accuracy =  
∑ 𝑥𝑖 

𝑛
 𝑥 100                                                                             (3) 

 

Where: 315 

xi = sum of all diagonal elements of the confusion matrix 

n = total number of samples. 

 Mean sensitivity is the ability of models to predict the correct values of a class, while average specificity is the 

ability of models to correct values that are not contained in a class. 

 320 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =  
∑ (

𝑇𝑃
𝑇𝑃 +  𝐹𝑁

)𝑛
1

𝑛
                                                                                (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
∑ (

𝑇𝑁
𝑇𝑁 +  𝐹𝑃

)𝑛
1  

𝑛
                                                                               (5) 

Where:  

TP = number of true positives 

FP = false positives 325 

TP = false negatives 

n = number of existing classes. 

Kappa (K) indices provides a numerical measure and depicts the degree of agreement between the prediction of results and 

reference values. The kappa indices are used as the basis of the confusion matrix (Morales et al., 2018) (Eq. (4)). The value 

of K ranges from 0 (no agreement) to 1 (almost perfect) (Landis and Koch, 1977). 330 

 

 K =
𝑛 ∑ 𝑛𝑖𝑖

c
i=1 −  ∑  𝑛𝑖+ + 𝑛+𝑖

𝑐
𝑖=1

𝑛2 −  ∑ 𝑛𝑖
𝑐
𝑖=1 + 𝑛+𝑖

                                                              (6) 

Where:  

K = Kappa estimate;  

nii = the value in row i and column i (observed agreement); 335 

ni+ = sum of row i, and n + i is the sum of column i of the confusion matrix (product of the marginals, being the expected 

agreement);  

n = total number of samples; 

C = total number of classes.  

 340 

2.8.3 Generation of final maps and statistics 
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Selection by the RFE method was repeated 71 times with different training and testing samples. The generated result was 

analyzed, evaluating the performance parameters of the models (F1-Score test, Kappa, Accuracy, Sensitivity and Sensitivity 

of each tested algorithm). The prediction error of each algorithm was also analyzed, evaluating the coefficient of variation. 

Then, the final map was created by combining the 71 prediction maps generated for each algorithm tested. In addition, the 345 

mode value for each pixel of the final map was calculated.  

The prediction error map was elaborated, considering the number of times that each algorithm chose the mode value in each 

map pixel normalized by the number of final maps (%). 

The nonparametric Kruskal-Wallis test (5% significance) was performed to choose the best model and final map. In addition, 

in relation to accuracy, the Dunn's posthoc test was performed to verify statistical differences between the tested algorithms 350 

(5% significance). The best final map chosen by the previous statistical tests was used to extract the geophysical sensor data, 

weathering indexes values at the sampling points. 

 

3. Results and discussion 

3.1 Evaluation of model’s performance, uncertainty and variables importance 355 

The models showed varied performance in terms of F1-Score test, kappa, accuracy, sensitivity and specificity (Table 2). The 

best model performance for cluster modelling was RF for evaluating parameters (Table 2).  Therefore, the RF was selected 

for the clusters spatialization. Goydaragh et al., (2021) and  Assis et al., (2021) also reached satisfactory results using RF for 

the prediction of different weathering indices using X-ray Fluorescence and RF algorithm to predict weathered regolith 

thickness, respectively. The RF algorithm presented equivalent performances than other algorithms (Goh et al., 2021; Varga-360 

Szemes et al., 2021). In all tested algorithms the accuracy was not greater than 0.66 (Table 2). This probably is due to the 

small variation of samples or limited distribution of the data set, which reduces the prediction performance in the modelling. 

Classes with fewer samples tends to present more unstable prediction performances than those with more samples (Zhang 

and Hartemink, 2020). In addition, according to Johnston et al. (1997) and Lesch et al. 1992) limited number of sampling 

points or field distribution cannot represent appropriately the spatial variation of soil weathering which would result in low 365 

accuracy.  

 

 

 

 370 
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Table 2. Model performance in terms of F1-Score test, kappa, accuracy, sensitivity and specificity 

Parameter of 

performance 

Algorithms 

avNNet kknn pls RF 

F1-Score test 0.578 0.564 0.472 0.605 

Kappa 0.365 0.330 0.278 0.403 

Accuracy 0.634 0.0.606 0.606 0.648 

Sensitivity 0.566 0.555 0.489 0.596 

Specificity 0.781 0.770 0.752 0.797 

AvNNet: Model Averaged Neural Network; pls: Partial Least Squares; kknn: k-Nearest Neighbors; RF: Random Forest. 375 

 

The methodological approach optimized the modelling of clusters by applying different geophysical variables plus 

weathering indexes for assessing prediction uncertainty and spatialization (Table 2). The geophysical variables measured in 

this research are closely associated with weathering processes in more evolved soils, as demonstrated by Pozdnyakov (2008) 

Mello et al. (2020) and Mello et al. (2021). 380 

For RF algorithm, the sensitivity was 0.60 (Table 2). This means that values of sensitivity show moderate performance 

precision of correctly predict the clusters. Sensitivity corresponds to the observations of a class that were correctly classified 

as belonging to that class (Brungard et al., 2021). The moderate performance can be explained by different weathering rates 

within the study area and the tendency of models to be a generalist and predict areas homogeneously. In this way, some 

samples collected within that region are grouped into another class that the machine learning algorithm does not predict. In 385 

this sense, some collected points within the same cluster show results from different clusters.  

The specificity for RF was 0.80 (Table2). This indicates that values of sensitivity presented a satisfactory performance and 

correctly predict the clusters. Specificity is complementary to sensitivity and, it corresponds to the observations not in that 

class that was correctly classified as not RF algorithm was able to adequately estimate the values of the classes from the data 

collected in the field. For both, sensitivity and specificity our values are slightly lower than those found by Kodikara and 390 

McHenry, (2020) in which all models achieved 80% or higher sensitivity and specificity, to determine the physical and 

mineralogical properties of lunar soil using small soil dataset. 

The importance of covariates in predicting and spatializing clusters showed that the SYSI and terrain surface convexity 

(TSC) were the most important variables to cluster by RF model, contributing more than 75% to the decreasing of the mean 

accuracy, while the digital elevation model (DEM) contributed in 50%, (Fig. 4).  395 
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Figure 4. Variable importance of predictors. %N.M IncRMSE: Normalized Mean Increment of RMSE - how much in % 

each variable contribute in modelling process. 

 

The Synthetic Soil Image (SYSI) (Fig. 4) approach is able to identify and characterize soil texture (clay, silt and sand 400 

content) at the image level (Fongaro et al., 2018). In this sense, the silt/clay ratio are correlated to the weathering index once 

Ferralsols/Nitisols present low values, while Regosols/Cambisols present higher values due to their high and low degree of 

weathering respectively (Dos Santos et al., 2018). Also, the SYSI is strongly correlated with SiO2 and Al2O3 contents 

(Fioriob, 2013). Which is the basic information to calculate the ki (ki = SiO2/Al2O3 x 1.7) a tropical weathering index (Dos 

Santos et al., 2018). Despite these, Silvero et al., (2021) detected soil color using SYSI which is also related with soil 405 

mineralogical composition, mainly iron oxides related to the weathering index. Also, the SYSI has this ability because it has 

wavelengths from visible to NIR and SWIR where intensities could be related to some minerals (e.g. soil minerals, hematite, 

quartz, ilmenite, and others) (Demattê et al., 2018). The SiO2 to Al2O3 ratios are used to calculate other weathering indexes 

for Brazilian tropical soils (Dos Santos et al., 2018). Thus, SYSI brings strong physical information related to several soil 

properties and inference with soil weathering. 410 

Terrain surface convexity (TSC; Fig. 4) controls the amount of water that infiltrates and/or runs off the terrain surface (Burt 

and Butcher, 1985). Areas with null and/or negative values are prone to infiltration and, areas with positive values have 

reduced infiltration. These conditions associated with areas of free drainage (i.e., no impeded drainage) favor and increase 

the action of hydrolysis and, consequently, chemical weathering (Osher and Buol, 1998; Schaetzl and Anderson, 2005), 

which operates at different rates.  415 
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Digital elevation model (Fig. 4) is related to some relief variables (e. g., topographic wetness index, terrain ruggedness index 

and slope) and has a similar effect to terrain surface convexity in controlling water dynamic at the different landscape 

positions, which in turn controls the intensities of weathering processes (McBratney et al., 2003).  

 

3.2 Differences between clusters and the relationship with lithology, soil types and weathering rates 420 

The area over east diabase (cluster 3) showed greater intensity of weathering when compared to the area over west diabase 

(cluster 1) (Fig. 5). This indicates that weathering is operating at different intensities in the same lithology. The difference 

between the weathering intensities on both diabase areas is not expected, once the area is small and variations in the 

mineralogical composition of diabase are not expected (Mello et al., 2020). Our results disagree with those found by 

Banerjee and Chakrabarti, (2018), who explained the different weathering indexes by the selective weathering of the rock-425 

forming minerals in the weathered diabase. Nevertheless, Santos et al., (2021) stated that soil over diabase areas can be 

formed under environmental conditions that favoured more the weathering of primary minerals and neoformation of 

minerals in some particular area. In our study site, the condition that favoured the greater weathering of diabase primary 

minerals in cluster 3 (East diabase) compared to cluster 1 (Est diabase) (Fig. 5) probably were the differences in topographic 

position and some terrain attributes (Table 1). In addition, the diabase mineralogical composition (mostly composed of 430 

ferromagnesian minerals) favors high intensities of weathering under a tropical climate (Breemen and Buurman, 2003; 

Colman, 1982; Eggleton et al., 1987), such as diabase areas. 
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Figure 5. The figure shows the relationship between clusters - lithology – weathering intensities. A: Clusters indicating the 

intensity of weathering over the different lithologies: D - Diabase; MS - Metamorphosed siltite; S - Siltite: FS - Fluvial 435 

Sediments. B: Clusters indicating the intensity of weathering on the different types of soils: CX: Haplic Cambisols, CY: 

Fluvic Cambisols, MT: Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic Acrisol, PVA: Rhodic Lixisol. 
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The area over West and East siltites (clusters 1 and 2, respectively) showed significant differences in weathering rates (Fig. 

5). West siltite presented greater weathering rates compared to East siltite. This also indicates different weathering rates 440 

operating over siltite areas. The different in weathering intensity can also be attributed to the differences topographic 

position and some terrain attributes as slope and terrain ruggedness index (Table 1), once significant mineralogical 

variations in siltite are not expected in such small areas. West siltite lies over a flatter topographical position and in a lower 

part of the landscape which favors infiltration, hydrolysis and, thus, higher intensities of chemical weathering processes, 

fueled by higher water activities and the dilute weathering solutions. On the other hand, East siltite are located on highest 445 

position of the steepest relief which hampers water infiltration. In addition, under extreme weathering conditions (cluster 1 – 

West siltite) the relationship between Titanium and other elements like Aluminium and Silicon in the upper  parts of soil 

profiles (i.e., most weathered) tends to show an increase in Titanium contents due to preferential removal of Al-rich phases 

(Young and Nesbitt, 1998). As a result, the relationship used to calculate the weathering index (W1 = SiO2/TiO2 * 100; Eq. 

(1)) is altered and reflected in clusterization processes. 450 

East Rhodic Nitisol (cluster 3) showed a higher weathering index (more weathered soil) when compared to west Rhodic 

Nitisol (cluster 1; less weathered soil) and an intermediate weathering index over cluster 2 (moderated weathered soil) (Fig. 

5). These differences also indicate that the weathering is probably operating at different rates in these soils. The 

rock/saprolite transformation is replaced upwards by weathering (Fritsch and Fitzpatrick 1994), under favorable 

environmental conditions, such as free drainage, high pluviosity, rich iron parent material and flat relief position 455 

(Schwertmann, 1988; Breemen and Buurman, 1998). All these environmental conditions are found and are homogeneous 

over the Rhodic Nitisol area, except topographic position and terrain attributes. East Rhodic Nitisol is located at a more flat 

and high landscape position compared to West Rhodic Nitisol. The environmental condition on West Rhodic Nitisol favors 

water infiltration, hydrolyses and, thus, silica and basic cations removal. In this sense, variation in topographic position and 

terrain attributes can explain the variation in weathering index in terms of soil. 460 

The Rhodic and Xanthic Lixisols (clusters 1 and 2) presented different weathering intensities (Fig. 5). The West Rhodic 

Lixisols (cluster 1) showed the highest weathering intensities, whereas the East Xanthic and Rhodic Lixisols showed the 

lower weathering intensities (Fig. 5). The explanation is related to the argilluviation processes in these types of soils, which 

is intensified according to weathering rates (Schaetzl and Anderson, 2005).  

The statistical analysis (Kruskal-Wallis test) (Table 3) support our results and discussion above.  For weathering, there were 465 

differences between clusters 1, 2 and, class 3. In practical and interpretative aspects, the highest weathering intensities 

occurred in ascending order: clusters 2, 1 and 3, respectively, over the different lithologies and soil types associated, (Fig. 5). 

 

 

 470 
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Table 3. Statistical analysis for the three clusters, for the weathering plus geophysical variables by the Kruskal-Wallis 

Clusters eU (ppm) eTh (ppm) K40 Magnetic susceptibility ECa Weathering Index 

1 2.85 a 7.61 a 0.45 a 17.32 a 5.81 a 1021.7 a 

2 2.54 ab 5.04 b 0.22 b 6.33 b 7.29 a 2236.9 b 

3 2.08 b 6.75 ab 0.28 ab 74.27 c -46.6 b 574.5 c 

 

3.3 The influence of pedogeomorphology and geophysical variables on clusterization 

Figure 6 demonstrates how clusters are distributed on the landscape under the influence of relief (i.e., slope and topographic 475 

position). Relief acts directly on weathering by controlling water infiltration and dynamics on (and within) the soil; i.e., 

surface runoff and infiltration rates (Jackson, 1957; Schaetzl and Anderson, 2005). 
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Figure 6. A and B: The figures demonstrated the relationship between pedogeomorphology and clusters for different 480 

weathering intensities. The variation of the weathering intensity indicated by the clusters on the different topographic 

positions in the landscape and relief features under different views. Soil classes: D: Diabase, MS: Metamorphosed siltite, S: 

Siltite. CX: Haplic Cambisols, CY: Fluvic Cambisols, MT: Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic Acrisol, PVA: 

Rhodic Lixisol. 
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 485 

 

For the weathering intensities over East and West diabase, as well as for the Rhodic Nitisol over this lithology, the single 

difference among pedoenvironmental variables were in the terrain attribute (terrain surface convexity and topographic 

position associated to DEM; Fig. 6). For the higher weathering rates (cluster 3; Fig. 6), the East areas are located at the 

hilltop and at a flat relief, which favors water infiltration, leaching and a more efficient hydrolysis, and thus, a more intense 490 

chemical weathering. As a result, silica is removed throughout soil profile (i.e., desilication) leading to the residual 

concentration of kaolinite (monosialitization) (Samotoin and Bortnikov, 2011) and residual concentration of iron oxides 

(ferralitization) (Ker et al., 2015), corroborating the greater weathering rates. For cluster 1, over diabase east (Fig. 6), there is 

a slight slope, which causes a reduction in water infiltration, chemical weathering and consequently, in desilication. The 

diabase West area and Rhodic Nitisol (cluster 1) are located at low topographic positions (Fig. 6), but a slope slightly greater 495 

than the relief on cluster 3, which in turn affects the terrain surface convexity and slope. Therefore, the infiltration and 

chemical weathering are reduced, and consequently, the weathering intensities which explains the lower values for the 

weathering indexes over this area. 

The Rhodic Lixisols over West siltite (cluster 1) presented the higher weathering intensities, when compared to Rhodic / 

Xanthic Lixisols (cluster 2) (Fig. 6). The greater weathering intensities for areas over cluster 1 are related to the flat relief 500 

and low topographic position. The combination of these terrain attributes favors a greater water inflow from the highest parts 

of the landscape and more water infiltration. As a result, both weathering and leaching (i.e., removal of soluble elements) are 

intensified (Breemen and Buurman, 2003; Dalsgaard et al., 1981; Schaetzl and Anderson, 2005). On the other hand, the 

Rhodic / Xanthic Lixisols over Est siltite (cluster 2) presented the lower weathering rates. This area is located at a hill slope 

in the landscape. Our results agree with Modenesi, (1983) who stated that in hillslopes weathering is more related to 505 

morphogenetic dynamics. Steep slopes increase the rate of surface erosion and decrease the rate of infiltration and lateral 

subsurface water flow (Schaetzl and Anderson, 2005), which reduces the chemical weathering. 

Weathering also affected the geophysical parameters (κ, eU, eTh, K40 and ECa) in different ways, resulting in differences 

according to the intensity of this process in more evolved and weathered soil types (Rhodic Nitisols, Rhodic and Xanthic 

Lixisols) (Fig. 5 - Table 3).  510 

For κ (Table 3), weathering in Rhodic Nitisols determine the distribution of ferrimagnetic minerals in the soil profile, due to 

the residual accumulation of iron oxides (Driessen et al., 2001), which directly affects κ (Mello et al., 2020). Indeed, mafic 

igneous rocks such as diabase, are rich in ferrimagnetic minerals (Aydin et al., 2007), which through weathering, release iron 

into the soil profile (Cervi et al., 2019; De Jong et al., 2000). Under drainage free and hot environments, iron reprecipitates 

as ferrimagnetic minerals (Grimley and Vepraskas, 2000; Maxbauer et al., 2016), which are also good weathering degree 515 

indicators. 

The radionuclides eU, eTh, K40 contents (Table 3) are affected by weathering (Mello et al., 2021; Wilford, 2012; Wilford et 

al., 1997). During weathering in Rhodic Nitisols over diabase areas, originating from mafic parent materials on stable 
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geomorphic surfaces, flat relief and deeply weathered soils, the K40 is leached and eU and eTh are adsorbed by clay and iron 

oxides in the nitic B horizon (Dickson and Scott, 1997; Viscarra Rossel et al., 2014). Similarly, in Rhodic and Xanthic 520 

Lixisols (Est siltite - cluster 2) (Table 3) weathering and argilluviation lead to a clay accumulation at the B horizon (argic 

horizon). As a result, there is a greater adsorption of eU and eTh onto clay minerals in the argic horizon (Dickson and Scott, 

1997; Syed, 1999; Vandenhove et al., 2007; Santos-Francés et al., 2018). 

Weathering affects soil ECa values (Table 3). Chemical weathering processes (in association with pedogenetic processes) 

affects different soil attributes (e.g., texture, CEC, porosity, bulk density and water retention). These attributes govern the 525 

ECa values (Mcneill, 1992; Rhoades et al., 1999a; Sudduth et al., 2001). Intense weathering leads to ferralitization in Rhodic 

Nitisol (Fig. 5) resulting in the development of a good structure and porosity and depth soils (Breemen,  and Buurman, 

2003), where the ECa values reflect the greater effective soil depth (Peralta et al., 2013). On the other hand, weathering 

associated to parent material and relief characteristcs leads to argilluviation in Rhodic and Xanthic Lixisols (Fig. 5) results in 

accumulation of clay in soil subsurface, changing hidraulic conductivity and soil depth , which strongly affect ECa values 530 

Taylor et al., (2009), due to keep more humidity and íons in soil solution. In addition, the higher clay content result in high 

specific surface area of the clays, basic cation and water retention and consequently high ECa values (Corwin and Lesch, 

2005; Fritz et al., 1999; Hepper et al., 2006; Osher and Buol, 1998; Saidian et al., 2015).  

 

4. Conclusions 535 

The RF algorithm presented the satisfactory and better performance to model the clusters corresponding to the different 

intensities weathering in terms of F1-score, kappa, accuracy, sensibility and sensitivity. This algorithm was able to 

satisfactorily identify different intensities of weathering, using as input data geophysical soil variables, calculated weathering 

indexes and terrain attributes. The nested-LOOCV methods proved to be adequate for modeling weathering intensity, 

associated with geophysical sensors for a small dataset and, nested-LOOCV was a robust method to evaluate the algorithm’s 540 

performance, allowing the optimisation and increasing the efficiency of training and testing of models. 

The environmental geophysical variables used (κ, eU, eTh, K40 and ECa) were related and affected by weathering, which 

effectively contributed to modelling and clusterization processes to identify different weathering intensities. 

The SYSI, TSC and DEM were the most important variables to modelling and identifying the different weathering 

intensities. This suggests that the different weathering intensities are mainly modulated by geomorphic processes, which 545 

affect soil surface reflectance once the other soil-forming factors are the same. 

Our analysis by geophysical data and machine learning algorithm revealed that the weathering is operating at different 

intensities both on the diabase/Rhodic-Nitisols and the siltite/metasiltite – Rhodic and Xanthic Lixisols areas. At the former, 

highest intensities of the process occur on Nitisol in the east area and the smaller intensities occur on Nitisol in the west area. 

At the latter, the highest intensities occur in the west Xanthic Lixisols and, the lowest intensities of that processes occur on 550 

the Rhodic and Lixisols in the east area. 
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Relief and topographic position controls water dynamic at the landscape and directly affects the weathering intensities. This 

was evidenced in the same soil types, originated from the same parent material, however, allocated in different positions at 

the landscape. 

The different weathering intensities have applicability in understanding geomorphic processes and weathering at various 555 

spatial and temporary scales in the landscape and also in mapping of soil attributes. However, it is important to highlight that 

the characteristics of the input dataset in the models can be a limitation for the technique. The use of a greater number of 

associated and additional covariates, (e.g., landscape position and climate), has the potential to improve the estimation of the 

weathering intensities. 

 560 
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