

1 **Network complexity of rubber plantations is lower than tropical forests for soil**
2 **bacteria but not fungi**

3 Guoyu Lan^{a,b*}, Chuan Yang^{a,b}, Zhixiang Wu^{a,b}, Rui Sun^{a,b}, Bangqian Chen^{a,b}, Xicai
4 Zhang^{a,b}

5 a. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences,
6 Danzhou City, Hainan Province, 571737, P. R. China;

7 b. Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of
8 Agriculture and Rural Affairs, Danzhou City, Hainan Province, 571737, P. R.
9 China

10 **Running title:** Forest conversion alters soil microbial networks

11

12 *Correspondence

13 Dr. Guoyu LAN

14 Tel: +86-898-23301800

15 Fax: +86-898-23300315

16 E-mail: langyri@163.com

17

18 **Abstract:**

19 Soil microbial communities play a crucial role in ecosystem functioning. Past
20 research has examined the effects of forest conversion on soil microbial composition
21 and diversity, but it remains unknown how networks within these communities
22 respond to forest conversion such as when tropical rainforests are replaced with
23 rubber plantations. Microbial network is viewed as a critical indicator of soil health
24 and quality, and consists of two parts: nodes and edges. In this study, we used the data
25 from Illumina sequencing and metagenome shotgun sequencing to analyze bacterial
26 and fungal community network structure in a large number of soil samples from
27 tropical rainforest and rubber plantation sites in Hainan Island, China. Our results
28 showed only about 5-10% shared network edges (i.e., links between species A and B
29 not only existing in rubber plantation, but also in rainforest) were observed in both
30 bacterial and fungal communities, which indicates that forest conversion altered soil
31 microbial network structure. Meanwhile, the keystone OTU in the communities
32 between rubber plantations and rainforest forest were also completely different, which
33 further proved the above point of view. More edges and more negative correlations of
34 soil bacterial-fungal network were observed in rubber plantation sites (dry season:
35 4284 total edges, 844 negative; rainy season: 7257 total, 1744 negative) than in
36 rainforest sites (dry season: 3650 total, 149 negative; rainy season: 6018 total, 489
37 negative) demonstrated that soil bacterial-fungal network structure were more
38 complex and stable in rubber plantation than in rainforest. For bacteria, a larger
39 number of network edges among bacterial networks in samples from tropical
40 rainforest compared to samples from rubber plantations indicates that rainforest
41 bacterial networks were more complex than rubber plantation. However, rubber
42 plantations soil fungal networks showed higher links, suggesting that forest
43 conversion increased fungal network complexity. More edges of network and more
44 links between species and functions were observed in rainy season than in dry season
45 indicating seasonal change had a strong effect on network and function. Further

46 analysis shows soil pH, potassium (AK), total nitrogen (TN) had more links with
47 species of some phyla. In conclusion, forest conversion results in an increase in soil
48 pH, and a decrease in AK and TN, and these changes as well as seasonal variations
49 had a great impact on soil microbial composition, network structure and function.

50 **Copyright statements:** The copyright statement will be included by Copernicus, if
51 applicable.

52 **Keyword:** Tropical rainforest, Rubber plantations, Networks, Soil microbial
53 community, Forest conversion

54

55 **1. Introduction**

56 Soil microbiome is the generic term of massive microorganisms and complex soil
57 environment and it is highly diverse and comprises up to one quarter of Earth's
58 diversity (Wagg et al., 2019). Soil microbes play a critical role in the maintenance of
59 soil quality and function, and they represent the majority of biodiversity in terrestrial
60 ecosystems (Philippot et al., 2013). A number of studies have investigated the impact
61 of the conversion of tropical forests to rubber plantations on soil microbial
62 composition and diversity (Schneider et al., 2015; Kerfahi et al., 2016, Lan et al.,
63 2017a; 2017b; 2017c; Lan et al., 2020a; 2020b; 2020c). Studies conducted in
64 Indonesia (Schneider et al. 2015), Malaysia (Kerfahi et al. 2016) and South China
65 (Lan et al. 2017a; Lan et al. 2017b; Lan et al. 2017c) have found significant
66 differences between rubber plantations and tropical forests, specifically that the
67 diversity of soil bacteria was higher in rubber plantations than in rainforest. Compared
68 to primary forests, agricultural systems tend to have higher bacterial richness but
69 lower fungal richness (Lan et al., 2017a; Cai et al., 2018; Tripathi et al., 2012; Kerfahi
70 et al., 2016). Compared to Eucalyptus plantations, rubber plantations have higher
71 diversity of both bacteria and fungi (Ma et al., 2019). Song et al. (2019) reported that
72 tropical forest conversion to rubber plantation results in reduced fungal microbial
73 community network complexity, while there are few studies on the impact of forest
74 conversion on soil bacterial community network structure and the drivers leading to
75 the changes of network structure.

76 The soil microbial network is viewed as a critical indicator of soil health and
77 quality (Kuperman et al., 2014). Microbial network consists of two parts: nodes and
78 edges. Nodes indicate microbes, such as OTU or species, and they can also indicate
79 environmental variables we interested, such as soil pH. Edges (or links) indicate
80 significant correlations between nodes. The number of links related to a node is the
81 node's degree (Röttjers and Faust, 2018). Usually, the more links of the network has,
82 the more complex the community is. Similarly, the higher the degree of a node (OTU

83 or species), the more important the species is to the network structure (Berry and
84 Widder, 2014). In recent years, microbial network analysis has been used to identify
85 keystone taxa (Banerjee et al., 2018) and provide comprehensive insight into the
86 microbial community structure and assembly (Fuhrman, 2019). The complexity of
87 network structure is understood by calculating the number of edges, and the keystone
88 species of the community are found by estimating the degree of species. The stability
89 of the microbial community is determined by calculating the ratio of positive and
90 negative correlation of the network because a large proportion of positive correlation
91 for microbial community are deemed to be unstable (Coyte et al., 2015).

92 Previous work has shown that agricultural intensification can reduce microbial
93 network complexity (Banerjee et al., 2019). Logging alters soil fungal network in
94 tropical rainforests, i.e., a better-organized fungal community in the select cut stands
95 when compared with the primary stands (Chen et al., 2019). Soil bacterial networks
96 are less stable under drought than fungal networks (De Vries et al., 2018). While the
97 exact drivers of microbial network structure still remain unknown. Previous study
98 showed that soil nutrients, such as soil phosphorus content, and soil pH, are the main
99 drivers for the network structure of microbial community (Banerjee et al., 2019).
100 Seasonal variation also affects the network structure by changing the keystone species
101 of the community because a keystone species might be present only in a specific
102 season or time period (Banerjee et al., 2018).

103 Hainan *Island* is home to a large area of tropical rainforest rich in biodiversity. It is
104 a part of the Indian-Malay rainforest system *at the northern edge of the world's*
105 *rainforest distribution*. However, rubber plantations now account for almost a quarter
106 of the total extent of vegetated areas on Hainan Island (Lan et al., 2020a). Previous
107 study conducted in Hainan Island showed forest conversion from rainforest to rubber
108 plantations resulted in shifts in bacterial composition from the Proteobacteria to
109 Chloroflexi, and fungal composition from Basidiomycota to Ascomycota (Lan et al.,
110 2020a). Research also shows microbial (including bacteria and fungi) diversity was

111 higher in rainforest soils than in rubber plantation (Lan et al., 2020a). Therefore we
112 hypothesize that (1) Due to forest conversion from rainforest to rubber plantations
113 results in changes in dominant phyla of microbes in soils, the network structure and
114 related keystone species also changed accordingly. (2) Soil bacterial-fungal network
115 structure were less complex but more stable in rubber plantation than in rainforest due
116 to high species diversity leads to complex network structure and unstable microbiome
117 communities (Coyte et al., 2015). (3) Soil bacterial network in rubber plantation is
118 less complex than rainforest because intensive cropping reduces the complexity of
119 bacterial network although the richness is increased (Karimi et al., 2019).(4) Due to
120 returning litter to the field and applying organic fertilizer in rubber plantation, soil
121 fungal network structure in rubber plantation sites is more complex than in rainforest
122 because organic farming showed a much more complex fungal network than
123 conventional or no-tillage farm systems (Banerjee et al., 2019). By testing these
124 hypotheses, we want to clarify the drivers and mechanisms of microbial community
125 assembly that link forest conversion to differences in soil microbial network structure.
126 This study will provide critical information for understanding and managing
127 microbial communities in tropical forests of China and elsewhere.

128 **2. Methods**

129 **2.1 Study site**

130 This study was conducted on Hainan Island ($18^{\circ}10' - 20^{\circ}10'N$ and $108^{\circ}37' - 111^{\circ}03'E$),
131 south China. The total area of Hainan Island is about $34,000 \text{ km}^2$ (Lopez et al., 2009).
132 Hainan Island is the largest island within the Indo-Burma Biodiversity Hotspot in
133 tropical Asia (Francisco-Ortega et al., 2010) and has a tropical monsoon climate.
134 Hainan Island has a warm and humid climate all year round, with an average annual
135 temperature of $22-26^{\circ}\text{C}$. Rainfall is abundant, ranging from 1,000 mm to 2,600 mm
136 yearly, with an average annual precipitation of 1,639 mm. The rainy season occurs
137 from May to October, with a total precipitation of about 1500 mm, accounting for
138 70-90% of the total annual precipitation. Only 10-30% of the total annual

139 precipitation falls within the dry season, from November to April. The central part of
140 Hainan Island is mountainous and contains old-growth tropical rainforests and
141 monsoon forests. Rubber plantations are found on the plateaus surrounding the
142 central mountainous zone.

143 **2.2 Soil sampling**

144 The tropical rainforests in Hainan are mainly distributed in Bangwangling, Diaoloshan,
145 Wuzhishan, Yinggeling and Jianfengling. Therefore, we selected a tropical rainforest in
146 each of these sites as our study objectives. There are about 530, 000 hectares of rubber
147 plantations in Hainan Island. Five rubber plantations were selected in Wanning,
148 Ledong, Danzhou, Haikou, Qiongzhong, and these five rubber plantation locate in the
149 east, south, west, north and middle of Hainan, respectively. (Figure S1). We selected
150 25-30 years old rubber trees (i.e., mature rubber plantations) as our study objectives.
151 Management practices, such as latex harvest and the application of fertilizers, are used
152 in rubber plantations. Usually, compound fertilizer (1-1.5 kg per tree) and organic
153 fertilizers (20-25 kg per tree) were applied once or twice a year. More information on
154 the study sites is provided in Table S1. Before soil sampling, we sterilized the soil drill
155 with 75% alcohol. After the removal of the litter layer, by using a 5-cm diameter steel
156 drill, top soil (0 to 20 cm) was collected, then homogenized and passed through a
157 2-mm mesh sieve. For each site, thirteen soil samples were collected, thus there were a
158 total of 130 samples collected between the rubber plantations and tropical rainforest.
159 Soil sampling was performed twice in 2018, once in January (dry season) and once in
160 July (rainy season). Thus, there were a total of 260 soil samples (130 per forest type).
161 Soil samples were divided into two parts: one was used to analyze soil water contents,
162 soil pH, total nitrogen, total phosphorus (TP), total potassium (TK), nitrate nitrogen
163 (NN), ammonium nitrogen (AN), available phosphorus (AP), potassium (AK). Soil
164 water content (%) was measured gravimetrically. Soil pH was measured in a soil/water
165 suspension (1: 2.5, w/w) using a pH meter. TN was determined using a micro-Kjeldahl
166 digestion followed by steam distillation. TP and TK were measured following

167 digestion with NaOH. NN and AN were determined by steam distillation and
168 indophenol-blue colorimetry, respectively. Soil samples were extracted with NaHCO₃
169 and the extract was then used to measure available soil phosphorus AP via
170 molybdate-blue colorimetry. To measure soil AK, soil was extracted with
171 ammoniumacetate and then the extract was loaded onto an atomic absorption
172 spectrometer with ascorbic acid as a reductant (Chen et al., 2019). Soil properties of the
173 rubber plantation and rainforest sites are shown in Table S2. The other was stored in
174 ultra-low temperature (- 80 °C) refrigerator for later DNA extraction.

175 **2.3 DNA extraction and PCR amplification**

176 Microbial DNA was extracted from 0.5 g of soil using the E.Z.N.A.® Soil DNA Kit
177 (Omega Bio-tek, Norcross, GA, U.S.) following the manufacturer's protocol. The
178 fungal ITS1 hypervariable region was amplified using the PCR primers ITS1F
179 (5'-CTTGGTCATTAGAGGAAGTAA-3') and ITS2R
180 (5'-GCTGCGTTCTTCATCGATGC-3') (Adams et al., 2013). For bacteria and
181 archaea, the V4 hypervariable region of the bacterial 16S rRNA gene was amplified
182 using the PCR primers 515FmodF (5'-GTGYCAGCMGCCGCGTAA-3') and
183 806RmodR (5'-GGACTACNVGGGTWTCTAAT-3') (Walters et al., 2016; Sampson
184 et al., 2016). The PCR reactions were conducted using the following approach: an
185 initial 3 min denaturation at 95°C; followed by 27 cycles of 30s at 95°C, 30s of
186 annealing at 55°C, and 45s of elongation at 72°C; and a 10 min final extension at
187 72°C.

188 **2.4 Illumina MiSeq sequencing**

189 Amplicons were extracted from 2% agarose gels, purified using the AxyPrep DNA
190 Gel Extraction Kit (Axygen Biosciences, Union City, CA, U.S.) and quantified using
191 a QuantiFluor™ -ST Fluorometer (Promega, U.S.). Purified amplicons were pooled in
192 an equimolar solution and then sequenced (paired-end, 2 × 250 bp) on an Illumina
193 MiSeq platform according to standard protocols.

194 Metagenomic shotgun sequencing libraries were prepared and then sequenced by
195 Majorbio, Inc. (Shanghai, China) using the Illumina HiSeq 2000 platform. The NR
196 gene catalog was aligned against the Kyoto Encyclopedia of Genes and Genomes
197 (KEGG) database using BLAST (Version 2.2.28+) and then functionally annotated
198 using KOBAAS 2.0 according to previously described methods (Qin et al., 2010)

199 **2.5 Bioinformatics and data analysis**

200 Raw fastq files were demultiplexed and quality-filtered using QIIME (Caporaso et al.,
201 2010) (version 1.17). Operational Taxonomic Units (OTUs) were clustered with a
202 97% similarity cut-off using UPARSE (Edgar, 2013), and chimeric sequences were
203 identified and removed using UCHIME. Using the RDP Classifier, the phylogenetic
204 affiliation of each 16S rRNA gene and ITS gene sequence was determined using a
205 confidence threshold of 70% with the SILVA 16S rRNA database and UNITE
206 database, respectively (Amato et al., 2013). The relative abundance was determined
207 for each taxon (Good, 1953), and the Shannon and Simpson diversity indices were
208 calculated based on re-sampled sequence data using MOTHUR (Schloss et al.,
209 2009). For each site, the relative abundance of different taxa (Good, 1953) and the
210 Shannon diversity index were calculated based on re-sampled sequence data using
211 MOTHUR (Schloss et al., 2009). The raw reads were deposited into the NCBI
212 Sequence Read Archive (SRA) database (Accession Number: SRP108394,
213 SRP278296, SRP278319).

214 **2.6 Statistical analysis**

215 For the co-occurrence network analyses, to make the analyses simple, we only use the
216 top 300 most abundant bacterial and fungal OTUs to analyze the network structure of
217 the two forest types, and these OTUs are approximately equal to OTUs with relative
218 abundance greater than 0.05% (Jiao et al., 2016). The networks of each habitat during
219 each sampling period (rainforest and rubber plantations in dry season and rainy
220 season) were constructed with 65 samples each. We also performed the

221 bacterial-fungal community network analysis to investigate soil microbial network
222 complexity of rubber plantation and rainforest across seasons. Interactions consisted
223 of Spearman's rank correlations and co-occurrence networks were constructed using
224 only significant correlations of $\rho > 0.6$ ($P < 0.01$) (Barberan et al. 2012), because
225 this cutoff includes a range of interactions strengths (De Vries et al., 2018). The
226 networks were then visualized in R using the *igraph* package. To reveal the
227 distribution pattern of correlation coefficients, the frequency of the coefficients of $\rho >$
228 0.3 ($P < 0.01$) were plotted. The Network Analyzer tool in Cytoscape (version 3.4.0)
229 was used to calculate network topology parameters including number of nodes, edges,
230 degree, betweenness, closeness. The number of shared edge and unique edge as well
231 as keystone OTU were calculated to evaluate whether the network structure has
232 changed. Shared network edge is the link (edge) between species A and species B not
233 only existing in rubber plantation network, but also in rainforest network. Unique
234 edge is the link only existing in rubber plantation or rainforest. The number of shared
235 edges and unique edges which were calculated using *igraph* and visualized by using
236 Venn diagrams. Keystone OTU are known to be important for ecosystem structure
237 and function and were selected on the basis of high network degree, high closeness
238 centrality, and low betweenness centrality as defined by Berry and Widder (2014). To
239 evaluate the proportional influence of each phylum on bacterial and fungal network
240 structure, node degrees of each phylum were calculated and bar plots were created.
241 Correlation coefficients between species and functions were calculated based on
242 metagenomics data. Here we used the top 50 most abundant species and top 50
243 KEGG functions (pathway level 3). Then the species and function correlation network
244 was constructed on the Major bio cloud platform (<https://cloud.majorbio.com/>). To
245 reveal the relationship between microbial taxon and environment variables, two-way
246 correlation networks were also constructed on the Major bio cloud platform. The
247 topological role of each node in a network was assessed by the Z_i and P_i values, where
248 Z_i represents the nodes connectivity within a module, and P_i measures the degree of a
249 node connected with other modules (Roger and Amaral, 2005). All species can be

250 divided into four groups according to the simplified criteria (Olesen et al., 2007),
251 namely peripherals ($Z_i < 2.5$ and $P_i < 0.62$), connectors ($P_i > 0.62$), module hubs ($Z_i >$
252 2.5) and network hubs ($Z_i > 2.5$ and $P_i > 0.62$). The Z_i and P_i values were calculated
253 using GIANT package of Cytoscape. The Z_i - P_i plot was created with *ggplot2* in R.

254 **3. Results**

255 **3.1 Bacterial and fungal networks**

256 Our results showed that the bacterial-fungal community network were more complex
257 in rubber plantation (4284 edges in dry season, 7257 in rainy season) than in
258 rainforest (3650 in dry season, 6507 in rainy season), and more complex in rainy
259 season than in dry season (Figure 1). Most nodes of bacterial networks (Figure 2) and
260 fungal networks (Figure 3) varied with forest type in both the dry season and rainy
261 season. For bacterial networks, there were 2559 and 2501 edges in tropical rainforest
262 and rubber plantation in dry season respectively, but these two networks only shared
263 262 edges, accounting only about 10% the total edges (Figure 4A-B). Similarly, these
264 networks only shared 519 edges during the rainy season. For fungal networks, there
265 were only 4 and 5 shared edges (i.e., no more than 5% of the total edges) in dry
266 season and rainy season, respectively (Figure 4C-D).

267 The number of edges of bacterial and fungal networks were almost equivalent
268 during the dry season. However, in rainy season, there were more edges in the
269 bacterial network in tropical rainforest than in the rubber plantation (Table 1 & Figure
270 4B). For the network structure of the fungal community, more edges were observed in
271 rubber plantations in rainy season (Table 1 & Figure 4D). Similarly, there were no
272 significant differences in both bacterial and fungal network degree between tropical
273 rainforest sites and rubber plantations in the dry season (Figure 5A, C). In the rainy
274 season, rainforest sites had higher bacterial network degree, while rubber plantations
275 showed higher fungal network degree (Figure 5B, D). For bacterial networks, more
276 nodes (OTUs) with high degree (rubber plantation had 2 nodes with degree greater

277 than 75, rainforest had 8 such nodes) of rainforest were observed during the rainy
278 season (Figure S2B). For fungal networks, 15 nodes of higher degree (degree greater
279 than 25) were observed in rubber plantations, however, only 7 such nodes existed for
280 rainforest sites (Figure S2D). These results indicate rubber plantation fungal network
281 structure was more complex than tropical rainforest during the rainy season, but that
282 the reverse was true for bacteria.

283 When considering the ratio of positive to negative correlation coefficients, the
284 bacterial-fungal community network revealed that rubber plantations (844 edges in
285 dry season, 1744 edges in rainy season) have more negative links than rainforest (149
286 edges in dry season, 489 edges in rainy season) indicating network of rubber
287 plantation was more stable than rainforest (Figure 1). More correlations (greater than
288 0.3, $P < 0.01$) were also calculated to investigate the ratio of positive to negative
289 correlation and the results showed that negative correlations between bacterial and
290 fungal OTUs of rubber plantations were consistently stronger than for tropical
291 rainforest in both dry season and rainy season (Figure 6).

292 **3.2 Keystone taxa**

293 The module hubs and network hubs have been commonly identified as keystone taxa
294 in network. However, for both the bacterial and fungal communities, neither tropical
295 rainforest nor rubber plantation networks possessed module hubs and network hubs
296 (Figure S3-S4). The keystone taxa of bacteria were very different between rubber
297 plantations and tropical rainforest sites in both the dry season and rainy season. For
298 bacteria, there were more keystone taxa in tropical rainforest sites than in rubber
299 plantations in both the dry season and rainy season indicating that the tropical
300 rainforest networks had higher complexity. We found that some groups of
301 Acidobacteria are keystone taxa in tropical rainforest sites but disappeared after forest
302 conversion. There were more Actinobacteria bacteria in rubber plantations than in
303 tropical rainforest sites (Table S3).

304 For fungi, more keystone taxa were observed in rubber plantations than in tropical
305 rainforest sites during both the dry season and rainy season, indicating the rubber
306 plantation networks were more complex. Most keystone taxa belong to Ascomycota
307 suggesting member of this group are very import for network structure. In addition to
308 forest conversion, seasonal changes also affect the keystone taxa of the fungal
309 community network. There were more Basidiomycota OTUs in the dry season, but
310 more Ascomycota in rainy season (Table S4).

311 **3.3 Influencing factors of microbial composition and network structure**

312 Two-ways correlation network analysis of the 300 most abundant OTUs and
313 environmental variables revealed elevations (106 degree), AK (104), soil pH (86)
314 were main drivers of bacterial community composition (Figure S5A). For fungi,
315 elevation had the highest degree (61), followed by AK (51) (Figure S5B).
316 Relationship between OTU abundance and soil pH revealed the soil pH negatively
317 correlated with species of Acidobacteria, but positively correlated with species of
318 Chloroflexi and species of Ascomycota (Figure S6). AK positively correlated with
319 species of Planctomycetes Verrucomicrobia and Basidiomycota, however negatively
320 correlated with Chloroflexi and Ascomycota. In words, AK, soil pH were important
321 driver for microbial composition.

322 Total degree of each phylum were used to reveal the influence of each phylum on
323 network structure (Figure 7). For bacteria, Proteobacteria, Actinobacteria and
324 Acidobacteria had a large influence on network structure. Acidobacteria and
325 Planctomycetes contributed more to rainforest networks than rubber plantation
326 networks. However, Actinobacteria and Chloroflexi showed the opposite. For fungi,
327 Ascomycota and Basidiomycota had large influence of network structure. Both
328 Ascomycota and Basidiomycota had stronger influence on rainforest networks than
329 rubber plantation networks. The influence of Ascomycota was stronger during the
330 rainy season than in the dry season, indicating seasonal change also had impact on
331 fungal community networks. Degree of each phylum of bacterial and fungal network

332 also revealed seasonal change had effects on network degree (Figure S7).

333 **3.4 Interaction between species and functions**

334 Two-way network analysis of the 50 most abundant species (all belong to bacteria
335 groups, metageomic data) and the 50 most abundant KEGG functions revealed the
336 **interaction between microbial composition and functions**. The results showed that **soil**
337 **network structure in at rainforests sites** (460 edges in dry season, 1750 in rainy season)
338 **was more complex than rubber plantations** (223 in dry season, 451 in rainy season)
339 **(Figure 8)** indicating that more links between microbial species and functions were
340 **observed in soils of rainforest sites**. Both rubber plantations and rainforest networks
341 were more complex in the rainy season than in dry season. We also found that
342 metabolism was the most important function in soil microbial network. Surprisingly,
343 species of Actinobacteria negatively correlated function in rubber plantations.

344 **4. Discussion**

345 **4.1 Forest conversion reduces soil bacterial network complex**

346 Land-use changes increasingly threaten biodiversity, particularly in tropical forests
347 (Gibson et al., 2011). However, we still have little understanding of how soil
348 networks response to forest conversion, such when rainforests are converted to rubber
349 plantations. Our results showed that forest conversion had large effects on both soil
350 bacterial and fungal networks. More edges (Table 1) and higher degree (Figure 4) of
351 tropical rainforest bacterial networks were observed, especially during the rainy
352 season, which indicates that the rainforest bacterial network was more complex than
353 the rubber plantation network. This consistent with previous observations that soil
354 bacterial networks were more complex in natural systems than in crop soil (Karimi et
355 al., 2019). Further study showed that soil networks become more connected as nature
356 restoration progresses (Morriën et al., 2017). The observed decrease in network
357 complexity and cohesion supports the hypothesis that cropping may enhance the
358 isolation of bacterial taxa (Karimi et al., 2019), which results in lower connection of

359 the network. In addition, at the microscale, the structure of tilled soils is more
360 homogeneous, and the soil pores are less connected than in soils under without tillage
361 (Pagliai et al., 2004), such as rainforest soil. In nature, soil ecosystems are highly
362 heterogeneous since soil microbial biodiversity hot spots can form spatial and
363 temporally within soil aggregates (Bach et al., 2018). This spatial heterogeneity likely
364 plays an important role for the interactions among microbes and the mechanisms by
365 which more complex and diverse communities drive various nutrient cycling
366 processes on small spatial scales (Wagg et al., 2018).

367 A large number of studies employing microbial network analysis have enriched
368 our understanding of microbial co-occurrence patterns in various soil ecosystems,
369 however, very little is known of whether differences in the structure of microbial
370 networks have consequences for microbiome functioning (Wagg et al., 2018). Our
371 results demonstrated that more species related with metabolism in natural system than
372 in the agricultural system, especially in the rainy season. This is in line with a
373 previous study conducted in Sumatra, Indonesia, which found that the transformation
374 of forest to rubber results in a 10-16% decrease in community metabolism (Barnes et
375 al., 2014). Fewer interactions between microbial species (most of them are bacteria)
376 and functions in rubber plantations demonstrated that forest conversion reduced soil
377 bacterial network complex.

378 **4.2 Forest conversion [increased](#) soil fungal network complexity**

379 Surprisingly, rainforest bacterial networks were characterized by fewer edges (Table 1)
380 and lower degree (Figure 4), which means that rubber plantation bacterial networks
381 were more complex than the native forest. Our results were not consistent with a
382 [study conducted in Xishuangbanna \(Song et al., 2019\)](#) which showed that tropical
383 [forest conversion reduced fungal network complex](#), but consistent with previous
384 observations which found that fungal community networks were better organized
385 disturbed forest compared to primary forest (Chen et al., 2019). Banerjee et al.
386 (2019)'s observation showed that organic agricultural fields harbored much more

387 complex fungal networks with many more keystone taxa than conventional managed
388 fields. Forest conversion resulted in shifts in fungal composition from Basidiomycota
389 to Ascomycota (Figure S8), as seen in previous investigations (Lan et al., 2020a; Lan
390 et al., 2020b). Previous work showed that Basidiomycota species show higher drought
391 sensitivity than Ascomycota species (Taniguchi et al., 2018), this would result in a
392 shift in richness and abundance of Basidiomycota species (Figure S8). Many
393 Basidiomycota species are capable of long-distance dispersal (Egidi et al. 2019, Geml
394 et al., 2012), which may result in a decrease in fungal network. This possibly
395 explained why Ascomycota OTUs contribute more to the network structure than
396 Basidiomycota (Figure 6). Overall, reduction in abundance and richness of
397 Basidiomycota species led to an increase in fungal links in rubber plantations.

398 **4.3 Forest conversion enhanced the stability of soil network**

399 Microbial community's ability to resist and recover from disturbances were defined as
400 stability of communities (De Vries and Ashley, 2013). The positive to negative ratio of
401 network links indicates the balance between facilitative and inhibitive relationships
402 within a network (Karimi et al., 2017). Theoretical studies, for example, predict that
403 ecological networks that consist of weak interactions are more stable than those with
404 strong interactions (Neutel et al., 2002, Coyte et al., 2015), and that
405 compartmentalization and presence of negative interactions increase the stability of
406 networks under disturbances (Coyte et al., 2015, Rooney et al., 2006, Stouffer &
407 Bascompte 2011). In our study, more negative correlations were detected in rubber
408 plantation, indicating the network structure of rubber plantation soils was more stable
409 than rainforest soils (De Vries et al., 2018). **Forest conversion from rainforest to**
410 **rubber plantations resulted in shifts in bacterial composition from Proteobacteria to**
411 **Chloroflexi, and fungal composition from Basidiomycota to Ascomycota (Lan et al.,**
412 **2020a).** Proteobacteria and Basidiomycota belong to copiotrophic microorganism,
413 while Chloroflexi and Ascomycota belong to oligotrophic microorganism (Yang et al.,
414 2019; Lan et al., 2020a). This indicated forest conversion resulted in shifts in soil

415 microbial composition from *k*-strategists tend to be *r*-strategists (De Vries et al.,
416 2013). R-strategists are quickly-growing and less resistant but more resilient to
417 disturbances. However, growth is not the only mechanism that could maintain
418 community stability because the response of microorganisms to disturbance are very
419 complex.

420 **4.4 Main drivers for soil microbial composition and network structure**

421 Forest conversion results in the loss of plant diversity, plant biomass and increasing
422 soil pH (Lan et al., 2017a, 2017b). Rubber plantations had a significantly higher pH,
423 which explains the relative decrease in the abundance of Acidobacteria (Lan et al.,
424 2017a). Our results demonstrate that keystone taxa of soil microbes change after
425 forest conversion (Table 1). We found that many OTUs of Acidobacteria fit our
426 criteria as keystone species for rainforest sites, which is consistent with previous
427 findings (Banerjee et al., 2018). Unexpectedly, OTU11388 and OTU11373, both
428 Acidobacteria, were observed in rainforest soils in both the dry and rainy seasons,
429 indicating Acidobacteria were very important for rainforest soil bacterial networks
430 (Figure 6 and table S3). Higher AK concentration resulted in a higher abundance and
431 more taxa of of Actinobacteria (Figure 9), which suggests that Actinobacteria
432 contributed more in rubber plantation than in rainforest (Figure 6). Indeed, forest
433 conversion reduced the abundance of Actinobacteria OTUs (Figure S9). Due to the
434 human disturbance in rubber plantations, the soil will inevitably be slightly polluted
435 with herbicides and domestic garbage. Previous study showed member of
436 Actinobacteria were observed in contaminated soil (Jiao et al., 2016).

437 Forest conversion also increases land use intensity (Brinkmann et al., 2019),
438 including the application of fertilizer and herbicide. Herbicide application also caused
439 significant decreases in root colonization and spore biomass of arbuscular
440 mycorrhizal fungi in tropical agriculture (Zaller et al., 2014). Soil nutrient
441 concentration shows a decline around the roots of rubber plantations compared to
442 those from rainforests (Sahner et al., 2015). Our observation is no exception, for

443 instance, AK and TN concentration was significant lower in rubber plantation than in
444 samples from rainforest sites (Table S2). Higher concentration of AK reasonably
445 explained the higher contribution of Basidiomycota on the network structure (Figure
446 8B) due to AK positive association with Basidiomycota.

447 Spatiotemporal heterogeneity can be a major driver of the abundance and
448 distribution of keystone taxa in soil which is a highly heterogeneous and multifaceted
449 environment (Mills et al., 1993, Power et al., 1996; Mouquet et al., 2013). Seasonal
450 variability determines the structural and compositional properties of microbiomes in
451 an environment, and as such, a keystone species might be present only in a specific
452 season or time period (Banerjee et al., 2018). It was interesting that more bacterial
453 OTUs were identified as connectors during the rainy season than in the dry season.
454 Connectors have been characterized as generalists (Olesen et al., 2007), and
455 generalists drive covariation among communities in a network (Chen et al., 2019).
456 Previous observation demonstrated that some keystone taxa that were found in the dry
457 season disappeared during the rainy season (Lan et al., 2018). Seasonal changes
458 possibly explained the keystone taxa was observed in rainy season but not in dry
459 season.

460 **4.5 Possible impact of forest conversion on microbial community function**

461 Forest conversion results in a decrease in abundance of Proteobacteria and increase of
462 Actinobacteria. Most species of Proteobacteria was positively correlated with
463 metabolic function, while most of Actinobacteria was negatively associated with
464 metabolic function (Figure 8). Therefore, the changes in the abundance of these two
465 phyla results in a reduction of microbial community function after forest conversion.
466 Due to metabolic function of a specific species usually affected by environmental
467 conditions (Louca et al., 2018), some species are not correlated with any function in the
468 dry season, but correlated with metabolic function in the rainy season, indicating there
469 some microorganisms do not participate in the metabolic process in dry season,

470 especially for the rubber plantations. In conclusion, forest conversion as well as
471 seasonal variation had a great impact on soil microbial community functions.

472 **5. Summary**

473 Our knowledge about land-use impacts on soil ecosystems is mostly limited to
474 biodiversity and ecosystem functions, leaving uncertainty about how soil networks
475 change after forest conversion. This study is the most comprehensive report on
476 changes in network structure that occur when tropical rainforests are converted into
477 rubber forest. Our study showed that forest conversion altered both bacterial and
478 fungal soil networks, reduced bacterial network complexity and enhanced fungal
479 network complexity, especially during the rainy season. One possible reason maybe
480 that forest conversion changed soil pH and other soil properties, which altered
481 bacterial composition, subsequent network structure as well as functions. Our study
482 demonstrates the impact **on** forest conversion for soil network structure, which has
483 important implications for ecosystem functions, **such as metabolic function**, and
484 health of soil ecosystems in tropical regions.

485

486 **Code availability**

487 Not applicable

488 **Authors' contributions**

489 Guoyu Lan: Conceptualization, Methodology, Writing, Reviewing and Editing;
490 Chuan Yang, Rui Sun, Bangqian Chen, Xicai Zhang and Zhixiang Wu: Investigation

491 **Competing interests**

492 The authors declared that they have no conflicts of interest to this study.

493 **Disclaimer**

494 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional

495 claims in published maps and institutional affiliations.

496 **Acknowledgements**

497 We thank Dr. Tim Treuer for his assistance with English language and grammatical
498 editing.

499 **Financial support**

500 This work was supported by Finance Science and Technology Project of Hainan
501 Province (ZDYF2019145); National Natural Science Foundation of China
502 (31770661); High level Talents Project of Hainan Natural Science Foundation
503 (320RC733); the Earmarked Fund for China Agriculture Research System
504 (CARS-33-ZP3)

505

506 **References**

507 Adams RI, Miletto M, Taylor JW, Bruns T D. Dispersal in microbes: fungi in indoor
508 air are dominated by outdoor air and show dispersal limitation at short distances,
509 *ISME J.*, 7(7):1262-1273, 2013

510 Amato, K.R., Yeoman, C.J., Kent, A., Carbonero, F., Righini, N., Estrada, A.E.,
511 Gaskins, H.R., Stumpf, R.M., Yildirim, S., Torralba, M., Gillis, M., Wilson,
512 B.A., Nelson, K.E., White, B.A., Leigh, S.R., Habitat degradation impacts
513 primate gastrointestinal microbiomes, *ISME J.*, 7: 1344-1353, 2013

514 Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S.
515 Greatest soil microbial diversity found in micro-habitats, *Soil Biol. Biochem.*,
516 118: 217-226, 2018

517 Banerjee, S., Schlaeppi, K., van der Heijden, M.G.A. Keystone taxa as drivers of
518 microbiome structure and functioning, *Nat. Rev. Microbiol.*, 16: 567-576, 2018;

519 Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T.,
520 Charles, R., van der Heijden, M.G.A. Agricultural intensification reduces
521 microbial network complexity and the abundance of keystone taxa in roots,
522 *ISME J.* 2019; 13:1722-1736.

523 Barberan, A., Bates, S.T., Casamayor, E.O., Fierer, N. Using network analysis to
524 explore co-occurrence patterns in soil microbial communities, *ISME J.*,
525 6:343-351,2012

526 Barnes, A. D. Jochum, M., Mumme, S., Haneda, N. F., Farajallah, A., Widarto, T. H.
527 & Brose, U. Consequences of tropical land use for multitrophic biodiversity and
528 ecosystem functioning, *Nat Commun.*, 5: 5351, 2014

529 Berry D, Widder S. Deciphering microbial interactions and detecting keystone species
530 with co-occurrence networks, *Front Microbiol.*, 5:1–14, 2014;.

531 Brinkmann N., Schneider D. , Sahner J., Ballauff J., Edy N., Barus H., Irawan B., Budi
532 S.W., Qaim M., Danie R., Polle, A.. Intensive tropical land use massively shifts
533 soil fungal communities, *Sci. Rep.*, 9:3403, 2019

534 Cai, Z.Q., Zhang, Y. H, Yang, C., Wang, S. Land-use type strongly shapes community
535 composition, but not always diversity of soil microbes in tropical China, *Catena*
536 165: 369-380, 2018;

537 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello,
538 E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., QIIME allows analysis
539 of high-throughput community sequencing data, *Nat. Methods*, 7: 335-336, 2010

540 Chen, J., Xu, H., He, D., Li, Y.D., Luo, T.S., Yang, H.G., Lin, M.X., 2019. Historical
541 logging alters soil fungal community composition and network in a tropical
542 rainforest, *For. Ecol. Manage.*, 433 (5): 228-239, 2019

543 Coyte, K. Z., Schluter, J. Foster, K. R. The ecology of the microbiome: networks,
544 competition, and stability, *Science*, 350: 663-666, 2015;

545 **De Vries, Ashley, S. Controls on soil microbial community stability under climate
546 change. *Front.Microbiol.*, 4: 265, 2013**

547 De Vries, V. F. T., Griffiths, R. I., Mark, B., Hayley, C., Mariangela, G., Soon, G. H.,
548 et al. Soil bacterial networks are less stable under drought than fungal networks,
549 *Nature Commun.* 9(1): 3033, 2018

550 Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon
551 reads, *Nat. Methods* 10:996-998, 2013

552 Egidi, E., Delgado-Baquerizo, M., Plett, J.M., Wang, J. Eldridge, D. J., Bardgett, R.D.,
553 Maestre, F.T., Singh, B.K. A few Ascomycota taxa dominate soil fungal
554 communities worldwide. *Nat. Commun.* 10: 2369, 2019;

555 Francisco-Ortega, J., Wang, Z.S., Wang, F.G., Xing, F.W., Liu, H., Xu, H., Xu, W.X.,
556 Luo, Y.B., Song, X.Q., Gale, S., Boufford, D.E., Maunder, M., An, S.Q., Seed
557 plant endemism on Hainan Island: a framework for conservation actions, *Bot.*
558 *Rev.* 76: 346-376, 2010

559 **Fuhrman, J. A. Microbial community structure and its functional implications. *Nature*
560 459: 193-199, 2009**

561 Galicia, L., García-Oliva, F. The effects of C, N and P additions on soil microbial
562 activity under two remnant tree species in a tropical seasonal pasture, *Appl. Soil
563 Ecol.* 2004; 26:(1) 31-39

564 Geml, J., Timling, I., Robinson, C. H., Lennon, N., Nusbaum, H.C., Brochmann,
565 C.; Noordeloos, M.E.; Taylor, D. L. An arctic community of symbiotic fungi
566 assembled by dispersers: phylogenetic diversity of ectomycorrhizal
567 basidiomycetes in Svalbard based on soil and sporocarp DNA, *J. Biogeogr.*, 39:
568 74-88, 2012;

569 Gibson L., Lee, T. M., Koh, L. P., Brook, B.W., Gardner, T.A., Barlow, J., Peres,
570 C.A., Bradshaw, C. J. A., Laurance, W.F., Lovejoy T.E., Sodhi, N.S. Primary
571 forests are irreplaceable for sustaining tropical biodiversity, *Nature*, 478,
572 378-381, 2011

573 Good, I. L. 1953. The population frequencies of species and the estimation of

574 population parameters, *Biometrika*, 40: 237-264, 1953

575 Jiao, S., Liu, Z.S., Lin, Y.B., Yang, J., Chen, W.M., Wei, G.H. Bacterial communities
576 in oil contaminated soils: biogeography and co- occurrence patterns. *Soil Biol.*
577 *Biochem.* 98:64-73, 2016

578 Karimi, B., Dequiedt, S., Terrat, S., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C.,
579 Bispo, A., Prévost-Bouré, N.C., Ranjard, L. Biogeography of soil bacterial
580 networks along a gradient of cropping intensity. *Sci. Rep.*, 9(1) 3812, 2019.

581 Karimi, B., Dequiedt, S., Terrat, Sébastien, Jolivet, C. , Arrouays, D. , & Wincker, P. ,
582 Cruaud C., Bispo A., Prévost-Bouré N. C., Ranjard L. Biogeography of soil
583 bacterial networks along a gradient of cropping intensity, *Sci Rep.*, 9(1): 3812,
584 2019

585 Karimi, B., Maron, P.A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D.,
586 Ranjard, L. Microbial diversity and ecological networks as indicators of
587 environmental quality, *Environ. Chem. Lett.*, 15: 265-281, 2017

588 Kerfahi, D., Tripathi, B.M., Dong, K., Go, R., Adams, J.M. Rainforest conversion to
589 rubber plantation may not result in lower soil diversity of bacteria fungi and
590 nematodes, *Microb. Ecol.*, 72: 359-371, 2016

591 Kuperman, R.G., Siciliano, S.D., Römbke, J., Oorts, K., Deriving site-specific soil
592 clean-up values for metals and metalloids: rationale for including protection of
593 soil microbial processes, *Integr. Environ. Assess. Manage.*, 10 (3):388-400, 2014

594 Lan, G.Y., Li, Y., Wu, Z.X., Xie, G.S. Impact of tropical forest conversion on soil
595 bacterial diversity in tropical region of China, *Eur. J. Soil Biol.*, 83: 91-97, 2017c

596 Lan, G.Y., Li, Y.W., Jatoi, M.T., Tan, Z.H., Wu, Z.X., Xie, G.S. Change in soil
597 microbial community compositions and diversity following the conversion of
598 tropical forest to rubber plantations in Xishuangbanan southwest China, *Trop.*
599 *Conserv. Sci.*, 10: 1-14, 2017b

600 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie GS. Soil bacterial diversity impacted by
601 conversion of secondary forest to rubber or eucalyptus plantations—a case study
602 of Hainan Island, south China, *For Sci.*, 63:87-93, 2017a

603 Lan, G.Y., Li, Y.W., Lesueur, D., Wu, Z.X., Xie, G.S. Seasonal changes impact soil
604 bacterial communities in a rubber plantation on Hainan Island China, *Sci. Total*
605 *Environ.*, 626c: 826-834, 2018

606 Lan, G.Y., Wu, Z.X., Li, Y.W., Chen, B.Q. The drivers of soil bacterial communities
607 in rubber plantation at local and geographic scales, *Arch. Agron. Soil. Sci.*, 66(3):
608 358-369, 2020c

609 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X. Tropical rainforest
610 conversion into rubber plantations results in changes in soil fungal composition,
611 but underling mechanisms of community assembly remain unchanged,
612 *Geoderma*, 375: 114505, 2020b

613 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X.C. Forest conversion
614 changed the structure and functional process of tropical forest soil microbiome,
615 *Land. Degrad. Dev.* 2020a. DOI: 10.1002/ldr.3757

616 Lopez, S., Rousset, F., Shaw, F.H., Ruth, G., Shaw, R.G., Ophélie, R. Joint effects of

617 in? breeding and local adaptation on the evolution of genetic load after
618 fragmentation, *Conserv. Biol.*, 23: 1618-1627, 2009

619 **Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O'Connor, M.I.,**
620 **Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., Parfrey,**
621 **L.W. Function and functional redundancy in microbial systems. *Nat. Ecol. Evol.*, 2:**
622 **936-943, 2018**

623 **Ma, H., Zou, W., Yang, J., Hogan, J. A., Chen, J. Dominant tree species shape soil**
624 **microbial community via regulating assembly processes in planted subtropical**
625 **forests. *Forests*, 10(11): 978, 2019**

626 Mills, L.S., Soulé, M.E., Doak, D.F. The keystone- species concept in ecology and
627 conservation, *BioScience*, 43: 219-224, 1993

628 Morriën, E., Hannula, S., Snoek, L. et al. Soil networks become more connected and
629 take up more carbon as nature restoration progresses, *Nat. Commun.*, 8: 14349,
630 2017

631 Mouquet, N., Gravel, D., Massol, F., Calcagno, V. Extending the concept of keystone
632 species to communities and ecosystems, *Ecol. Lett.*, 16:1-8, 2013

633 Neutel, A. M., Heesterbeek, J. A. P., de Ruiter, P. C. Stability in real food webs: weak
634 links in long loops, *Science*, 296:1120-1123, 2002

635 Olesen, J.M., Bascompte, J., Dupont, Y.L., Jordano, P. The modularity of pollination
636 networks, *Proc. Nat. Acad. Sci. USA*, 104: 19891-19896, 2007

637 Pagliai, M., Vignozzi, N., Pellegrini, S. Soil structure and the effect of management
638 practices. *Soil Tillage Res.* 79: 131-143, 2004

639 Philippot, L., Spor, A., He'nault, C., Bru, D., Bizouard, F., Jones, C. M., Sarr, A.,
640 Maron, P.A. Loss in microbial diversity affects nitrogen cycling in soil Laurent,
641 *ISME J.*, 7:1609-1619, 2013

642 Power M, Tilman D, Estes J, Menge B, Bond W, Mills S, Daily G, Castilla J,
643 Lubchenco J, Paine R, Power M, Tilman D, Estes J, Menge B, Bond W, Mills L,
644 Daily G, Castilla J, Lubchenco J, Paine R. Challenges in the quest for keystones,
645 *Bioscience*. 46: 609-620,1996

646 Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen,T.,
647 Pons, N., Levenez, F., Yamada T. A human gut microbial gene catalogue
648 established by metagenomic sequencing, *Nature*, 464: 59-65, 2010

649 Roger, G., Amaral, L.A.N., Functional cartography of complex metabolic networks,
650 *Nature*, 433: 895,2005

651 Rooney, N., McCann, K., Gellner, G., Moore, J. C. Structural asymmetry and the
652 stability of diverse food webs, *Nature*, 442, 265-269, 2006

653 Röttjers, L, Faust, K. From hairballs to hypotheses—biological insights from microbial
654 networks, *FEMS Microbiol. Rev.*, 10:1093, 2018

655 Sahner, J. , Budi, S. W. , Barus, H. , Edy, N. , Meyer, M. , Corré, MD, Polle, A.
656 Degradation of root community traits as indicator for transformation of tropical
657 lowland rain forests into oil palm and rubber plantations, *PLoS One*, 10(9):
658 e0138077, 2015

659 Sampson, T.R., Debelius J W, Thron T, Janssen, S., Shastri, G.G., Ilhan, Z.E.,

660 Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., Chesselet, M.F.,
661 Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede,
662 P., Knight, R., Mazmanian, S.K. Gut microbiota regulate motor deficits and
663 neuroinflammation in a model of Parkinson's disease. *Cell*, 167(6): 1469-1480,
664 2016

665 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,
666 Lesniewski, R.A, Oakley, B.B., Parks, D.H., Robinson, C.J. Introducing mothur:
667 open-source, platform-independent, community-supported software for
668 describing and comparing microbial communities. *Appl Environ Microbiol*. 75:
669 7537-7541, 2009

670 Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevskaya, V., Heinemann,
671 M., Scheu, S. Impact of lowland rainforest transformation on diversity and
672 composition of soil prokaryotic communities in Sumatra Indonesia, *Front.*
673 *Microbiol.*, 6: 296, 2015;

674 Song H., Singh, D., Tomlinson, K.W., Yang, X.D., Ogwu, M.C., Slik, J. W. F.,
675 Adams, J.M. Tropical forest conversion to rubber plantation in southwest China
676 results in lower fungal beta diversity and reduced network complexity, *FEMS*
677 *Microbiol. Ecol.*, 95, 7: fiz092, 2019

678 Stouffer, D. B., Bascompte, J. Compartmentalization increases food-web persistence,
679 *Proc. Natl. Acad. Sci. USA*. 108:3648-3652, 2011

680 Taniguchi, T., Kitajima, K., Douhan, G.W., Yamanaka, N., Allen, M.F. A pulse of
681 summer precipitation after the dry season triggers changes in ectomycorrhizal
682 formation, diversity, and community composition in a Mediterranean forest in
683 California, USA. *Mycorrhiza*. 28(7): 665-677, 2018

684 Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N.,
685 Adams, J. M. Tropical soil bacterial communities in Malaysia: pH dominates in
686 the equatorial tropics too, *Microb Ecol.*, 64: 474-484, 2012

687 Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A.
688 Fungal-bacterial diversity and microbiome complexity predict ecosystem
689 functioning, *Nat Commun.*, 10:4841, 2019

690 Walters, W., Hyde, E. R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A.,
691 Gilbert, J. A., Jansson, J. K., Caporaso, J. G., Fuhrman, J. A., Apprill, A., Knight,
692 R. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal
693 transcribed spacer marker gene primers for microbial community surveys,
694 *mSystems*, 1(1): e00009-15, 2016

695 Yang, W., Zhang, D., Cai, X., Xia, L, Luo, Y.Q., Cheng, X., An, S.Q. Significant
696 alterations in soil fungal communities along a chronosequence of *spartina*
697 *alterniflora* invasion in a Chinese yellow sea coastal wetland. *Sci. Total Environ.*,
698 693(25): 133548., 2019.

699 Zaller, J. G., Heigl, F., Ruess, L., Grabmaier, A. Glyphosate herbicide affects
700 belowground interactions between earthworms and symbiotic mycorrhizal fungi
701 in a model ecosystem, *Sci Rep.*, 4:5634, 2014

702

703 **Figure legend**

704 **Figure 1** The soil bacterial-fungal community network of rubber plantation and
705 rainforest in dry season and rainy season. Red solid circles indicate fungi, and green
706 solid circle indicate bacteria. Red lines indicate positive correlation between OTUs,
707 and green indicate negative correlation. Absolute value of correlation coefficient $\rho >$
708 $0.6, P < 0.01$

709 **Figure 2** Soil bacterial network structure of rubber plantations and tropical rainforest
710 in dry and rainy seasons. Red lines indicate positive correlation between OTUs, and
711 green indicate negative correlation. Absolute value of correlation coefficient $\rho > 0.6,$
712 $P < 0.01$

713 **Figure 3** Soil fungal network structure of rubber plantations and tropical rainforest in
714 dry and rainy season. Red lines indicate positive correlation between OTUs, and
715 green indicate negative correlation. Absolute value of correlation coefficient $\rho > 0.6,$
716 $P < 0.01$

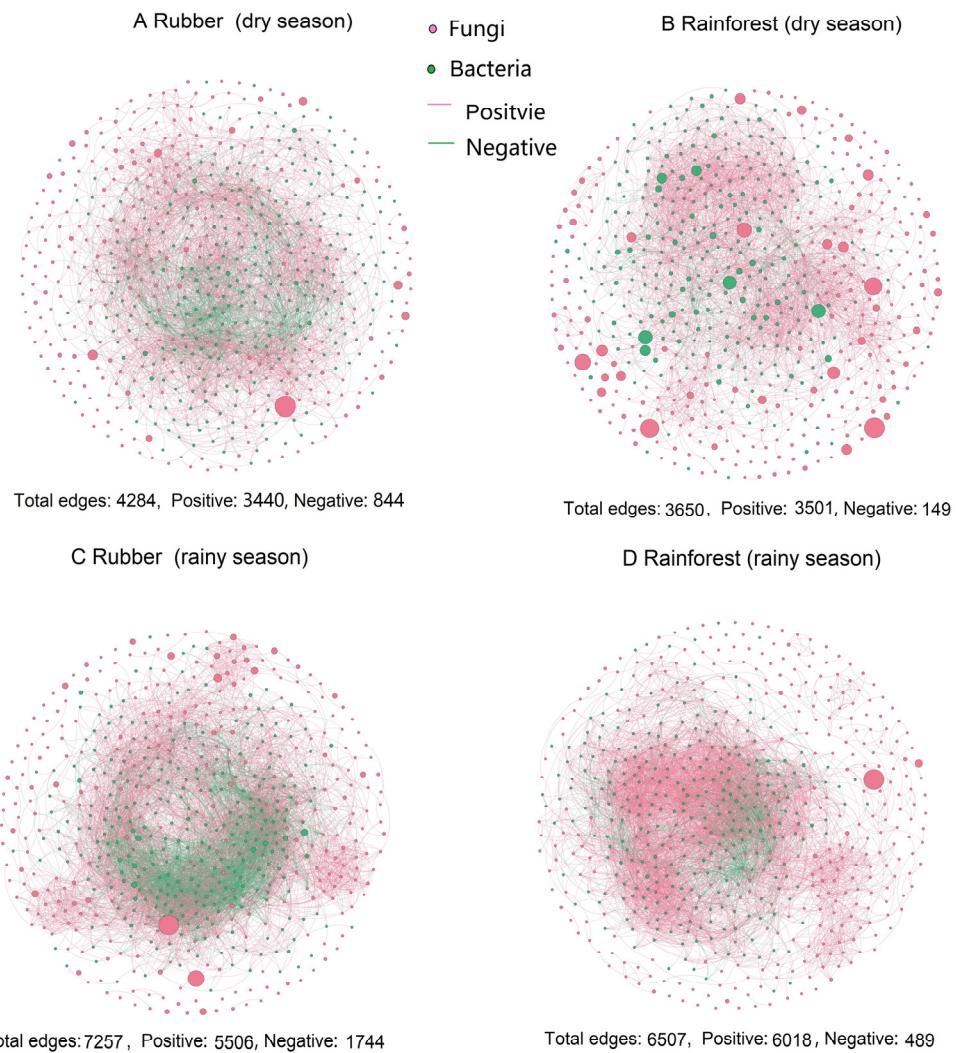
717 **Figure 4** Number of shared and unique edges of soil bacterial and fungal networks in
718 rubber plantations and tropical rainforests in the dry and rainy season. The number
719 where the two circles cross is number of shared edges. Numbers in red circle presents
720 the unique edges in rainforest, while in blue circle present the unique edges in rubber
721 plantations.

722 **Figure 5** Network degree of soil bacterial and fungal community of rubber plantations
723 (blue) and tropical rainforest (red) in dry season and rainy season.

724 **Figure 6** Frequency distributions of correlations in bacterial (a: dry season, b: rainy
725 season) and fungal (c: dry season, d: rainy season) networks of rubber plantations and
726 tropical rainforest in the dry season and rainy season. (Absolute correlation coefficient
727 greater than 0.3, $P < 0.01$) Correlations in rainforest networks are red, correlations in
728 rubber plantation networks are blue.

729 **Figure 7** Proportional influence of different phylum on bacterial and fungal network
730 structure in both dry season and rainy. The influence was the number of degrees of
731 nodes belonging to a particular phylum. (a: bacteria in dry season, b: bacteria in rainy
732 season, c: fungal in dry season, d: fungal in rainy season).

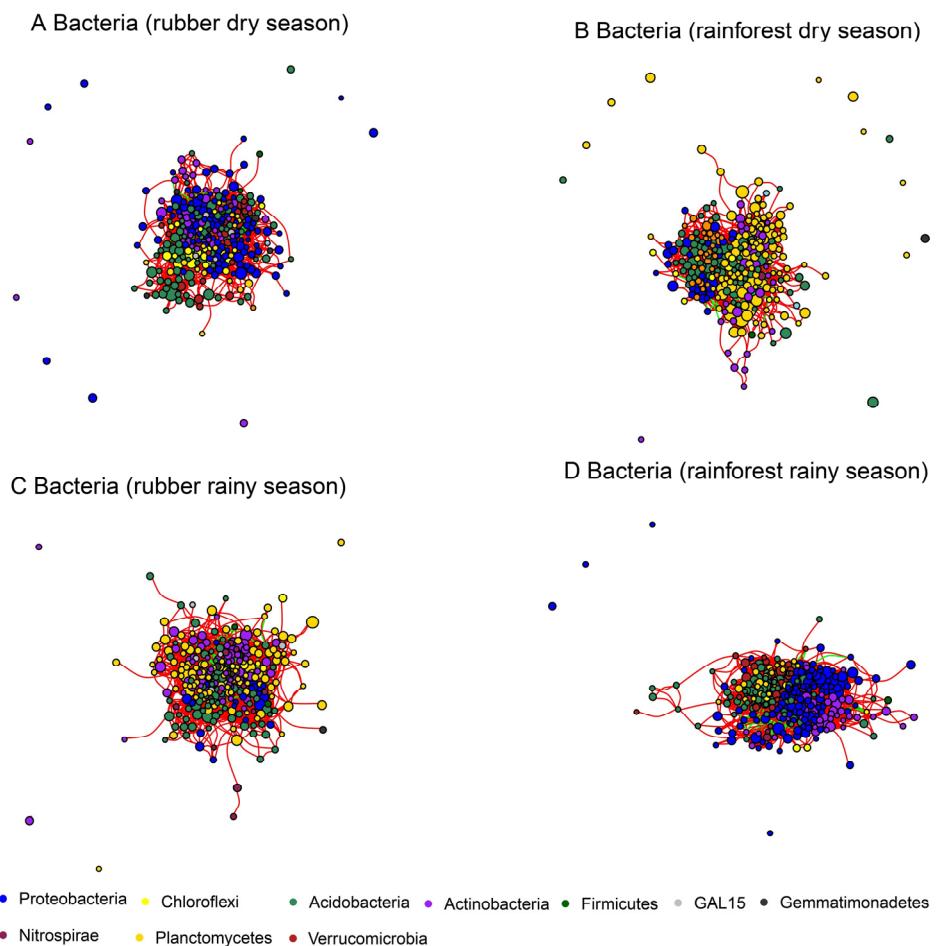
733 **Figure 8** Network of the top 50 most abundant species (based on metagenomics data)
734 and top 50 most frequent KEGG functions (pathway level 3) of rubber plantations and
735 tropical rainforest sites in dry season and rainy season. (A: rubber in dry season; B:
736 rainforest in dry season; C: rubber in rainy season; D: rainforest in rainy season) The
737 size of the node indicates the species/function abundance. A red line indicates positive
738 correlation between species/functions, and green indicates negative correlation.
739 Absolute value of correlation coefficient $> 0.6, P < 0.01$


740

741 **Table 1** Topological properties of soil microbial (bacterial and fungi) network
742 structure in rubber plantation and tropical rain forest in dry season and rainy season

	Bacteria				Fungi			
	Rubber		Rainforest		Rubber		Rainforest	
	Dry	Dry	Rainy	Rainy	Dry	Dry	Rainy	Rainy
No. of nodes	291	287	296	296	220	235	243	244
No. of edges	2448	2559	4248	5019	791	769	1250	905
No. of positive edges	2052	2508.00	3385	4901	760	764	1195	897
No. of negative edges	396	51	863	118.00	31	5	55	8
Connectance	0.06	0.06	0.09	0.11	0.02	0.02	0.03	0.02
Average degree	16.82	17.83	16.67	33.91	16.67	6.54	10.28	7.41
Average betweenness	100.61	93.52	31.23	42.57	208.90	185.03	170.99	266.31
Average of shortest path length	2.92	2.92	2.56	2.45	4.00	3.626	3.81	5.27
Diameter	6.00	7.00	7.00	6.00	10.00	12.00	9.00	15.00
Cluster of coefficient	0.46	0.451	0.51	0.54	0.59	0.457	0.49	0.51
No of clusters	11.00	14.00	5.00	5.00	94.00	75.00	62.00	67.00
Degree centralization	0.12	0.11	0.17	0.18	0.08	0.08	0.10	0.10
Betweenness centralization.	0.0066	0.0067	0.0053	0.0049	0.02	0.03	0.121	0.04
Closeness centralization.	0.35	0.35	0.40	0.41	0.31	0.351	0.291	0.26
Neighborhood Connectivity	21.12	21.79	34.69	40.68	10.45	9.28	13.78	9.44
Topological coefficient	0.26	0.26	0.26	0.27	0.33	0.36	0.37	0.50

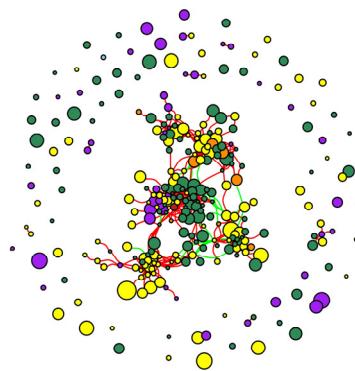
743


744

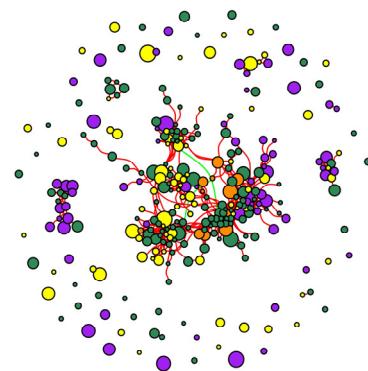
745

746 **Figure 1** The soil bacterial-fungal community network of rubber plantation and rainforest in dry
 747 season and rainy season. Red solid circles indicate fungi, and green solid circle indicate bacteria.
 748 Red lines indicate positive correlation between OTUs, and green indicate negative correlation.
 749 Absolute value of correlation coefficient $\rho > 0.6, P < 0.01$.

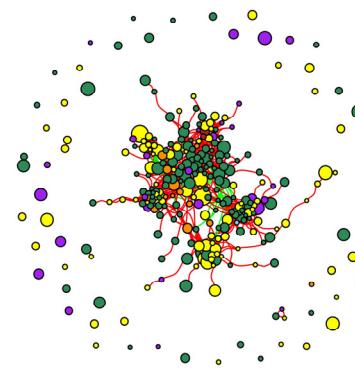
750

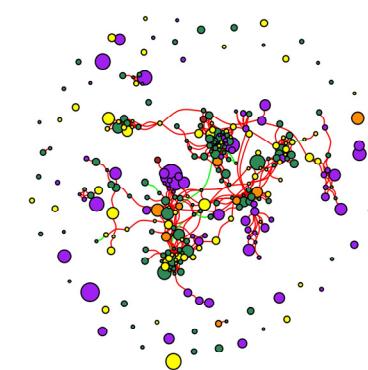

751

752 **Figure 2** Soil bacterial network structure of rubber plantations and tropical rainforest in dry and
 753 rainy season. Red line indicates positive correlation between OTUs, and green indicates negative
 754 correlation. Absolute value of correlation coefficient $\rho > 0.6, P < 0.01$


755

756


A Fungi (rubber dry season)


B Fungi (rainforest dry season)

C Fungi (rubber rainy season)

D Fungi (rainforest rainy season)

● Ascomycota ● Basidiomycota ● Chytridiomycota ● Rozellomycota ● Zygomycota ● Unclassified

757

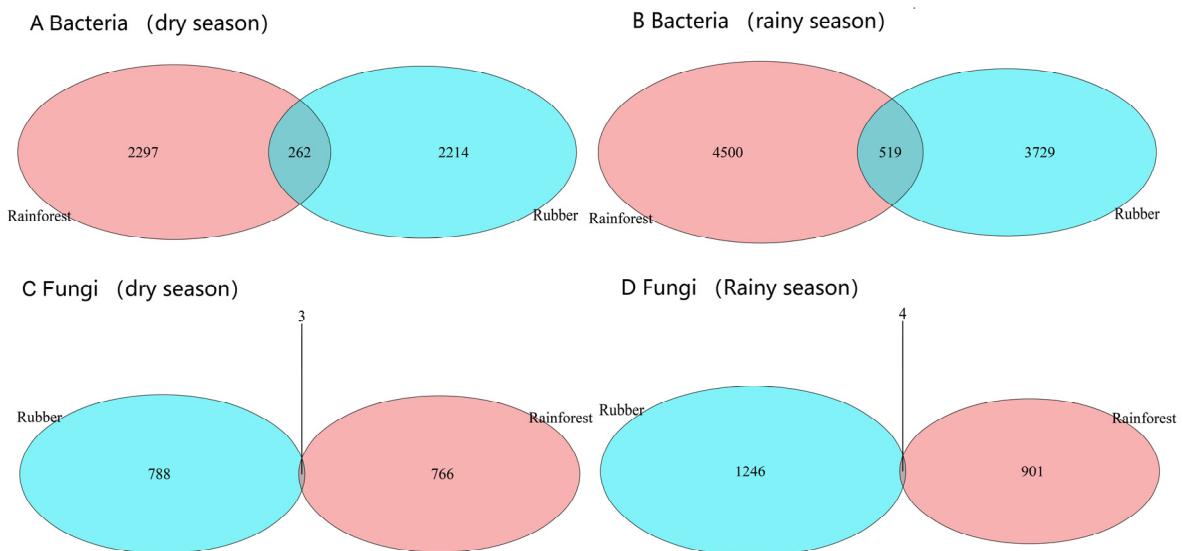
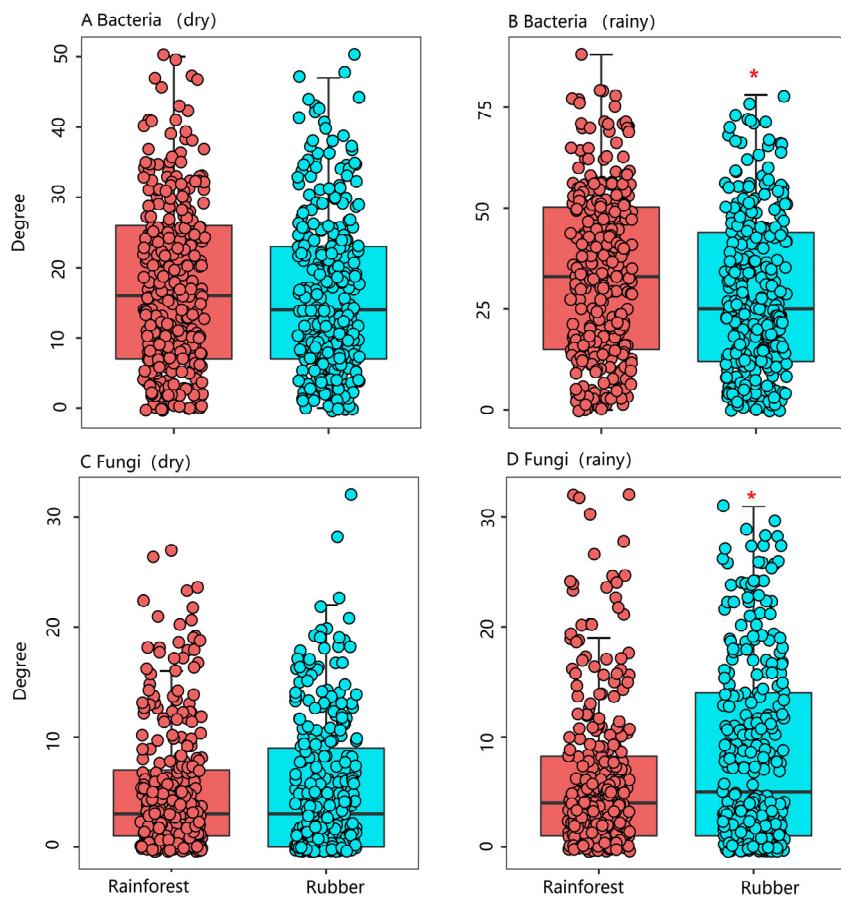
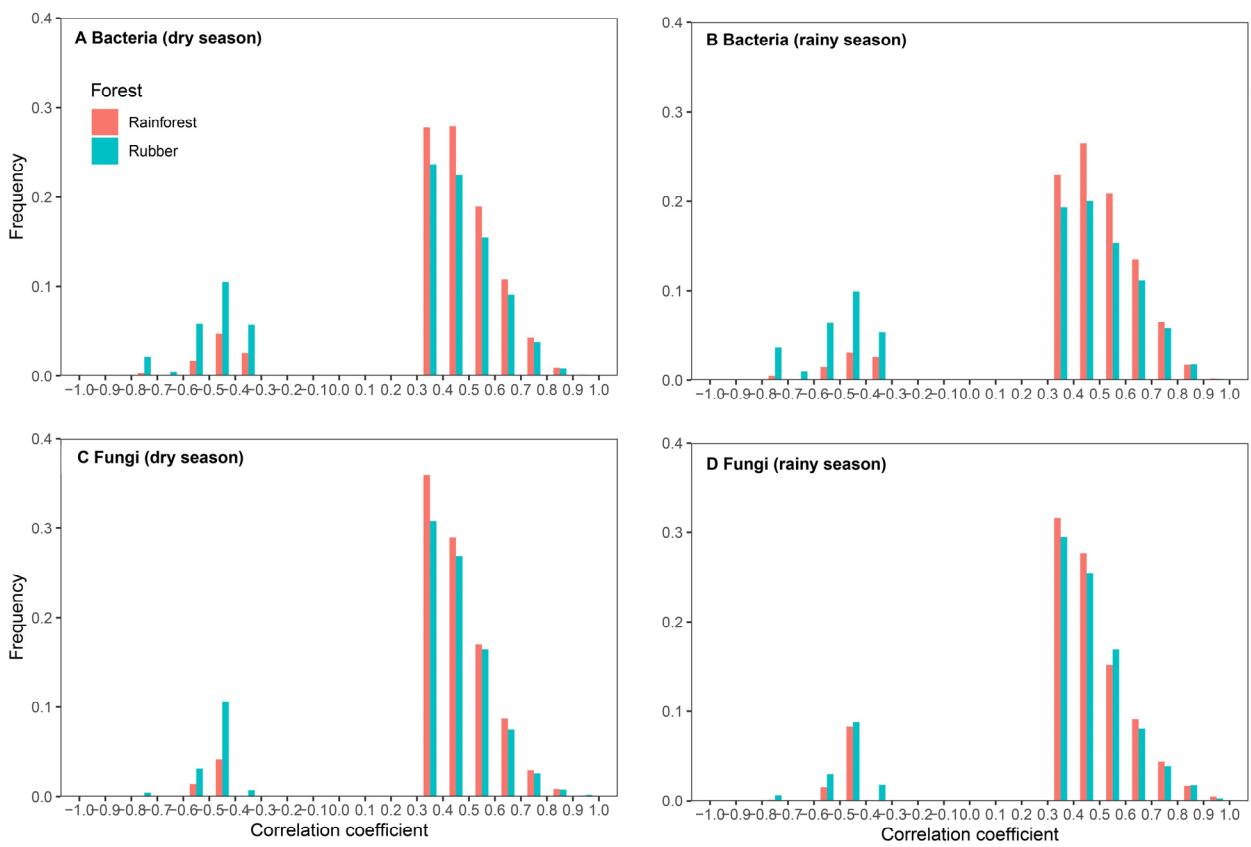

758

Figure 3 Soil fungal network structure of rubber plantations and tropical rainforest in dry and rainy season. Red line indicates positive correlation between OTUs, and green indicates negative correlation. Absolute value of correlation coefficient $\rho > 0.6, P < 0.01$

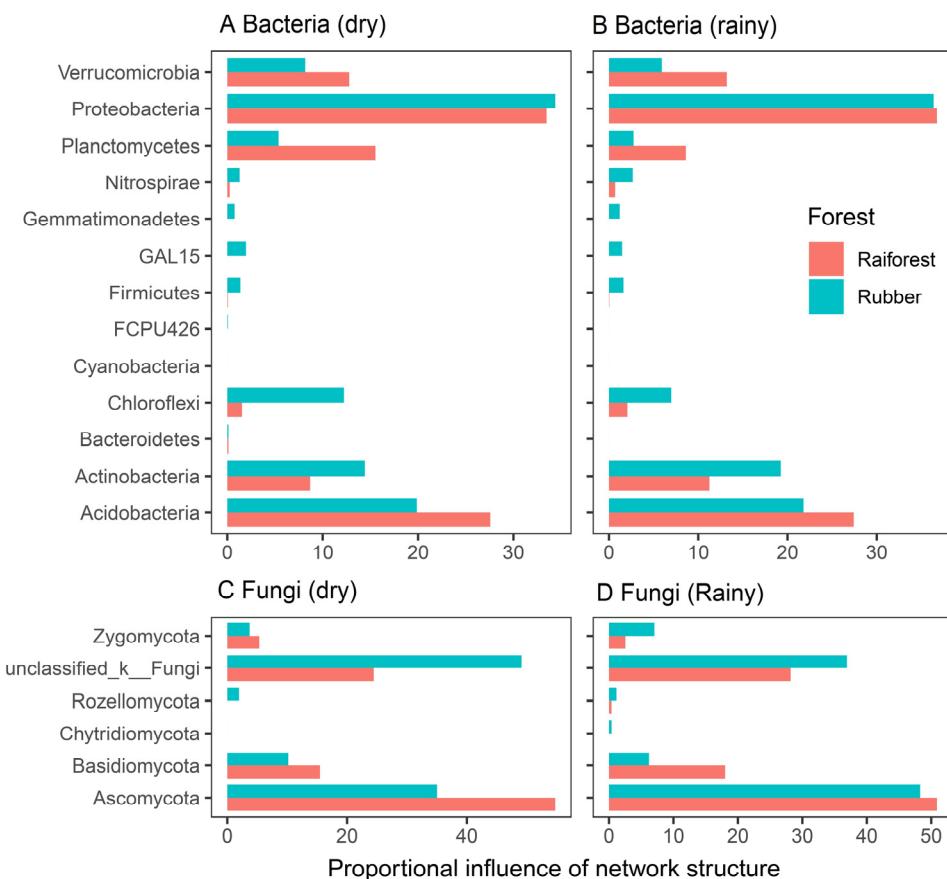
760


761

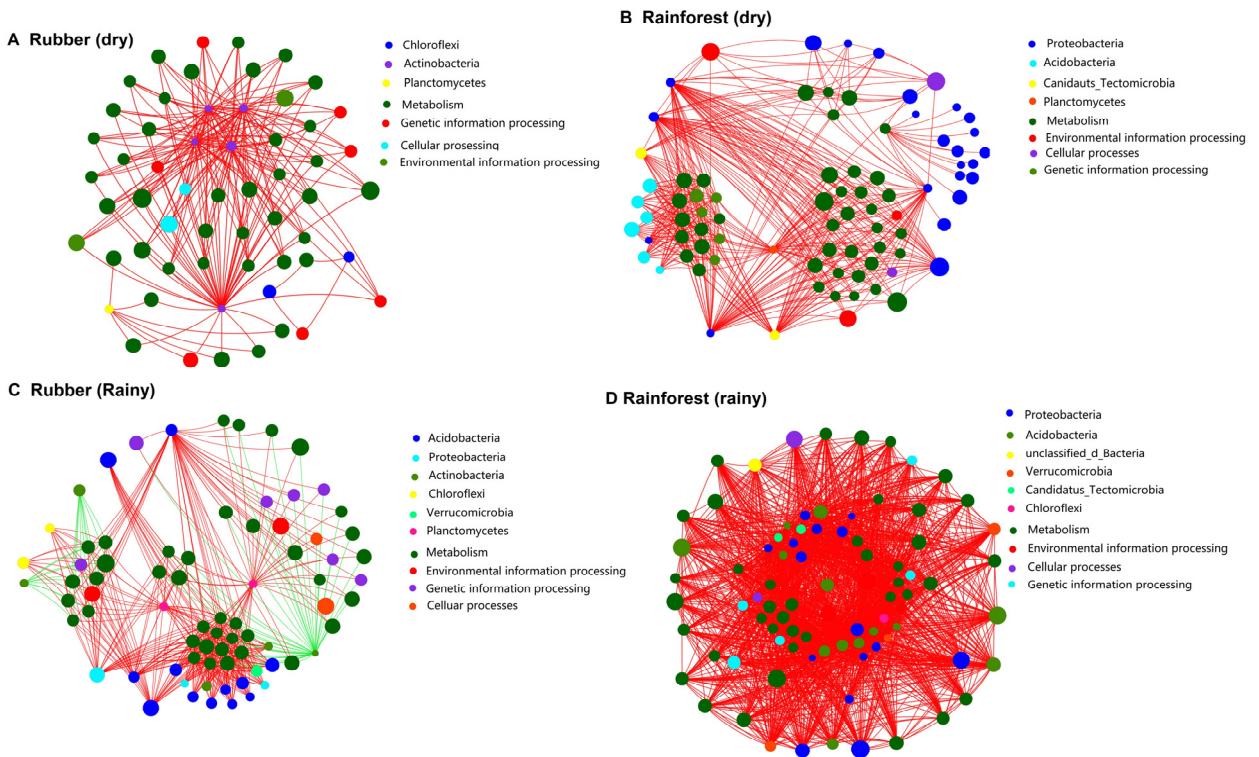
762


763

764 **Figure 4** Number of shared and unique edges of soil bacterial and fungal networks in rubber
765 plantations and tropical rainforests in the dry and rainy season. The number where the two circles
766 cross is number of shared edges. Numbers in red circle presents the unique edges in rainforest,
767 while in blue circle present the unique edges in rubber plantations.
768



769
770
771
772
773


Figure 5 Network degree of soil bacterial and fungal community of rubber plantations (blue) and tropical rainforest (red) in dry season and rainy season.

776 **Figure 6** Frequency distributions of correlations in bacterial (a: dry season, b: rainy season) and
 777 fungal (c: dry season, d: rainy season) networks of rubber plantations and tropical rainforest in dry
 778 season and rainy season. (Absolute correlation coefficient greater than 0.3, $P < 0.01$) Correlations
 779 in rainforest networks are red, correlations in rubber plantation networks are blue.

783 **Figure 7** Proportional influence of different phylum on bacterial and fungal network structure in
 784 both dry season and rainy. The influence was the number of degrees of nodes belonging to a
 785 particular phylum. (a: bacteria in dry season, b: bacteria in rainy season, c: fungal in dry season,
 786 d: fungal in rainy season).

789

790 **Figure 8** Network of the top 50 abundant species (based on metagenomics data) and top 50
791 abundant KEGG function (pathway level 3) of rubber plantations and tropical rainforest in dry
792 season and rainy season. (A: rubber in dry season; B: rainforest in dry season; C: rubber in rainy
793 season; D: rainforest in rainy season) The size of the node indicates the species/function
794 abundance. Red line indicates positive correlation between species/functions, and green indicates
795 negative correlation. Absolute value of correlation coefficient > 0.6 , $P < 0.01$