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Abstract. Climate change, accompanied by intensified extreme weather events, results in changes in intensity, frequency 

and magnitude of soil erosion. These unclear future developments make adaption and improvement of soil erosion modelling 

approaches all the more important. Hypothesizing that models cannot keep up with the data, this review gives an overview of 

44 process based soil erosion models, their strengths and weaknesses and discusses their potential for further development 

with respect to new and improved soil and soil erosion assessment techniques. We found valuable tools in areas, as remote 15 

sensing, tracing or machine learning, to gain temporal and spatial distributed high resolution parameterization and process 

descriptions which could lead to a more holistic modelling approach. Most process based models are so far not capable to 

implement cross-scale erosional processes or profit from the available resolution on a temporal and spatial scale. We 

conclude that models need further development regarding their process understanding, adaptability in respect to scale as well 

as their parameterization and calibration. The challenge is the development of models which are able to simulate soil erosion 20 

processes as close to reality as possible, as user-friendly as possible and as complex as it needs to be. 
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1 Introduction 

Soil, a natural resource with essential functions to the ecosystem, has experienced extensive degradation over the past 

decades (Swinton et al., 2007; Evans et al., 2019). Soil degradation is caused by a combination of spatial and temporal 25 

highly variable factors of natural and anthropogenic origin. Natural processes such as soil nutrient depletion, salinization and 

soil erosion are intensified by anthropogenic influences, such as agricultural mismanagement, overgrazing, overexploitation 

and environmental pollution (Jie et al., 2002; Baumgart et al., 2017). Soil erosion can lead to extensive soil loss and 

eventually to the exposure of the underlying bedrock (Evans et al., 2019). Due to its complexity, the determination of 

influencing parameters is challenging (Phinzi and Ngetar, 2019). Soil erosion represents a decisive process for degrading 30 

agricultural land and with this crop yield on a global scale (Bakker et al., 2004; Zhang et al., 2004; Zhao et al., 2016).  

Climate change, accompanied by an increase in frequency and magnitude of weather extremes, leads to spatially 

differentiated changes in extent, intensity and frequency of soil erosion (Nearing et al., 2005; Routschek et al., 2014; Li and 

Fang, 2016; Guo et al., 2019). A variety of studies such as Boardman et al. (1990), Favis-Mortlock and Boardman (1995), 

Michael et al. (2005), Klik and Eitzinger (2010), Nunes et al. (2013) and Hu et al. (2020b) focusses on estimating climatic 35 

impact on erosional processes. According to them, the impact of climate change on soil erosion varies greatly depending on 

the region. One approach to better estimate these impacts, suggests to link climate change models with soil erosion models 

working on a high temporal resolution (Li and Fang, 2016). 

Climate change having its direct impact on soil erosion, also triggers indirect drivers, such as anthropogenic activity, changes 

in crop management or land use changes, which can affect soil erosion even more strongly (Li and Fang, 2016; Guo et al., 40 

2019). While soil erosion on arable land is generally higher than on non-arable land (Cerdan et al., 2010), it largely depends 

on land management practices. Consequently, adapted land management is an important step towards the sustainable use of 

soils (Mullan et al., 2012; Routschek et al., 2014). The protection and conservation of soils has become a major social 

challenge worldwide and represents an important field of research (Govers et al., 2007). To support soil protection efforts 

and recovery strategies, precise assessments of erosion rates and information on erosion and sedimentation processes are of 45 

crucial importance (Boardman and Poesen, 2006; Evans et al., 2019). 

Research on this topic started early in the last century, with first modelling approaches in the 1940s by Zingg (1940) (quoted 

in Wischmeier and Smith, 1965) and the development of an empirical based soil erosion model, the universal soil-loss 

equation (USLE) by Wischmeier and Smith (1965). Since then many soil erosion and sedimentation models have been 

developed and many authors have reviewed them, providing an overview of the variety of existing models. Amongst others, 50 

they point out the following limiting factors for process based soil erosion models:  

- High data demand and model complexity (Pandey et al., 2016) 

- The risk of equifinality (Govers, 2010; Batista et al., 2019) 

- Temporal unchanging soil and surface input parameters (Merritt et al., 2003; Pandey et al., 2016) 

- Spatial homogenous soil input parameters for areas of similar properties (Pandey et al., 2016; Merritt et al., 2003) 55 

- Scarce data availability (Schindewolf et al., 2013)  

- Only a selective process description (e.g. leaving out gully erosion, rill-interill interaction or rill initiation) (Aksoy 

and Kavvas, 2005; Hajigholizadeh et al., 2018)  

For a more holistic understanding of soil erosion and an impact reduction by applying adapted management strategies, 

models need to integrate the current understanding of soil erosion processes from splash to gully erosion (Parsons, 2019; Li 60 

and Fang, 2016). The continuous development and improvement of measurement techniques for soil erosion and soil 

properties, lead to spatially and temporally highly resolved information at different scales (Li et al., 2017). In this context, it 

is of great interest to consider how far they can contribute to the improvement and further development of soil erosion 
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models. Based on these considerations we work with the hypothesis that models cannot keep up with the data, in the context 

of which, we consider the  65 

i) State-of-the-art 

- Are current process based soil erosion models insufficient in terms of parameterization and modern process 

description at high spatial and temporal scales?  

- What are the opportunities and limitations offered by today’s data assessment techniques? 

ii) What to do next? 70 

- Can today’s potential in data assessment overcome shortcomings and improve existing models?  

- Can soil erosion process descriptions be delineated from modern erosion measurement techniques and be integrated 

into the models?  

- Can these data possibilities make the models more accurate and improve them in terms of parameterization and 

validation? 75 

This review intends to offer scientists an overview of potentials and shortcomings of process based soil erosion models, 

especially regarding their capabilities of implementing data from new and improved measurement techniques. Along this 

interface, we want to identify the relevant factors for verification and advancement of these models based on today’s 

possibilities of data generation and processing to overcome limitations and to improve soil erosion modelling. 

2 Soil erosion assessment – state of research 

Today, a large number of soil erosion models exist and a wide range of methods for measuring soil erosion processes by 

water have been developed. A brief summary on process based soil erosion models is provided, taking the spatial and 145 

temporal frame, the limitations, capabilities and the type of considered erosion process, into account. An overview of soil 

erosion assessment techniques follows, focusing on their type of assessment and the temporal and spatial scale they can be 

applied to. 

2.1 Process based soil erosion models 

Models as simplifications of reality can, by definition never represent the processes of the real world in its entirety. Soil 150 

erosion modelling started with the development of first empirical based models in the middle of the last century (Wischmeier 

and Smith, 1965; Wischmeier and Smith, 1978; Renard et al., 1991) and where, with the improvement of computing power 

and data availability, followed by process based or physically based soil erosion models (Schmidt, 1991; De Roo and 

Offermans, 1995). The latter, while being more complex regarding their input data, computing requirement, calibration 

necessity and being less user-friendly, offer due to physical based descriptions of soil erosion and sediment transport a more 155 

accurate understanding and reproduction of the occurring processes (Hajigholizadeh et al., 2018). Process based models 

therefor enable a better extrapolation and transferability of the results than empirical based models (Merritt et al., 2003; Lane 

et al., 2001; Li et al., 2017; Pandey et al., 2016; Vente et al., 2013; Schindewolf et al., 2013). Furthermore, they allow an 

isolated consideration of individual components of soil erosion processes as well as a better understanding of the relationship 

between cause and impact within soil erosion research (Scherer, 2008).  160 

Soil erosion models can be further distinguished along different aspects, as their considered temporal (continual/event-based) 

and spatial (field/catchment/regional) scale, or their distribution of erosion patterns (lumped/spatially distributed) (Karydas 

et al., 2012). Water erosion, as a discontinuous process, is mainly driven by single extreme rainfall events (Edwards and 

Owens, 1991), making the event-based simulation an important aspect. Spatially distributed models enable spatially 

distributed predictions, as ranking erosion prone areas, sediment dynamics within a catchment and acceptable simulations of 165 

outlet transport rates (Batista et al., 2021). 
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Figure 1: Development decades of process based soil erosion models based on Aksoy and Kavvas, 2005: 253), Karydas et al., 2012: 

10), Hajigholizadeh et al., 2018: 11-13), Merritt et al., 2003: 766, 791) and Pandey et al., 2016: 600-606). 

Considering that many process based soil erosion models have been developed in the end of the 20th century (fig. 1), the 170 

question arises which of the once limiting factors might be outdated and can be remedied with the help of new measurement 

techniques and temporal and spatial high resolution data as well as new possibilities regarding processing and computing 

power. Taking different perspectives into account, several authors have reviewed soil erosion models in recent years (Merritt 

et al., 2003; Aksoy and Kavvas, 2005; Jetten and Favis-Mortlock, 2006; Pandey et al., 2016; Hajigholizadeh et al., 2018; 

Guo et al., 2019; Baartman et al., 2020), considering the following aspects: 175 

- Possibilities and limitations regarding the user 

- Model requirements 

- Input data  

- Process representation 

- Spatial and temporal resolution 180 

- Output data  

- Model strengths and weaknesses  

- Influencing variables  

- Fundamental equations  

- Future development ideas  185 

- Regional fit  

- The representation of connectivity  

Based on five review papers on soil erosion models published between 2005 and 2018, tab. 1 offers a selection of process 

based soil erosion models focusing on the similarities and differences of 44 models, their capabilities regarding process 

descriptions as well as their limitations. 190 

Table 1: Process based soil erosion models compiled according to Aksoy and Kavvas, 2005: 253), Karydas et al., 2012: 10), 

Hajigholizadeh et al., 2018: 11-13), Merritt et al., 2003: 766, 791) and Pandey et al., 2016: 600-606), with information on the 

temporal scale (E = event based/ C = continuous), the spatial distribution (L = lumped/ D = distributed), the spatial scale (F = field, 

W = watershed/catchment), their integration of Geographic Information Systems (GIS) and an overview of their processes and 

capabilities as well as their limitations and missing aspects (gully erosion = GE, rainfall runoff = RR, in-stream sediment = InS, 195 
overland sediment = OS, sediment associated chemicals =SAC) 
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Model 

information 

Spatial & 

Temporal 

Scale & 

Distribution 
Processes/Capabilities Limitations/Missings 

E/

C 

F/

W 

L/

D 

ARMSED 
(Riggins et al., 
1989) 

E W - RR; generation, transport & deposition of OS; 

runoff peak discharge; runoff volume 

GE, SAC; high data demand 

AGNPS
1
 

(Young et al., 

1989) (Ann) 

AGNPS
2
 

(Bingner and 
Theurer, 2001) 

E1

C2 

W - RR; sediment transport; SAC; daily time step2 sediment deposition, sediment 

connectivity; poor for large watersheds 

due to heterogenic input data; only 

single event1; GIS (medium) 

 

ANSWERS
1 

(Beasley et al., 
1980) 

ANSWERS 

continuous
2
 

E1

C2 

F

W 

D RR; generation, transport & deposition of OS; 

channel erosion; spatial variation in soil infiltration 

capacity2 

GE; SAC; rill structure; sub-surface 

flow; only transport by runoff; high 

data demand; erodibility as time 

constant parameter; GIS (medium) 

CASC2D 
(Julien and 
Saghafian, 1991), 

CASC2D-

SED
2
 (Johnson et 

al., 2000) 

E 

C 

W D Generation, transport and deposition of OS and 

InS; suited for urban and agricultural watershed 

Rill structure; sub-surface flow; 

reservoir flow; channel sediment; GE; 

SAC; GIS (low), high data demand2 

CHILD (Tucker 

et al., 2001) 
E F

W 

D RR; gully formation; generation, transport & 

deposition of InS 

SAC; poor sedigraphs simulation; high 

data demand  

CREAMS 
(Knisel, 1980) 

E F L RR; GE and deposition; SAC; rill structure; 

sediment yield; peak flow; percolation to 

groundwater; generation, transport and deposition 

of OS 

InS; GIS (low); uniform in soil 

topography and land use; high 

dependency on accuracy of input data; 

assumption of homogeneity; high data 

demand 

CESP (Kirkby 

and Cox, 1995) 
E W - RR; GE; generation, transport and deposition of OS 

and InS 

SAC; high data demand 

DWSM (Borah 

et al., 2004) 
E W D GE; SAC/flood agrochemical transport; generation, 

transport and deposition of OS and InS; surface and 

underground runoff 

GIS (medium); long computing time; 

low robustness; high data demand 

EGEM 
(Woodward, 1999) 

E F D Ephemeral GE; hillslope sediment SAC; RR; generation, transport and 

deposition of OS and InS; moderate 

data demand 

EPIC
1
 (Williams 

et al., 1984) 

GEPIC
2
 (Liu et 

al., 2007) 

E F L Hillslope sediment; surface runoff; percolation; 

subsurface flow; wind and water erosion; nutrients 

and pesticides; GIS-based2 

GE; GIS (low)1; processes limited to 

small scales 

EROSION2D/

3D (Schmidt, 

1991; Werner, 

1995)  

E F

W 

D RR; generation, transport and deposition of OS and 

InS; suitable for large scale simulations 

GE; high computational effort; high 

data demand 

EUROSEM 

(Morgan et al., 

1998) 

E F  D Erosion, transport and deposition by rill and 

interrill processes; splash erosion before runoff; 

total runoff; total soil loss; storm hydrographs and 

sedigraphs 

GE; RR; SAC; bank collapse in 

channel, crusting algorithm; poor with 

dynamic data and vegetated surface; 

high data demand; cannot generate rills 

EUROWISE 
(Torri & Morgan 

1998 

E W - RR; GE; sediment yield SAC 
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GLEAMS 
(Knisel and 

Turtola, 2000) 

 E 

C 

F  L RR; SAC; generation, transport and deposition of 

OS; pesticides and plant nutrients; user-friendly; 

effects of agricultural management practices on 

water quality 

GE; generation, transport and 

deposition of InS; high data demand; 

GIS (low) 

GSSHA 
(Downer and 

Ogden, 2004) 

 E 

C 

W  D GE; RR; generation of OS and InS; underground 

runoff; raindrop impact  

SAC; sub-surface flow  

GUEST (Misra 

and Rose, 1996) 
E F  D RR; generation, transport and deposition of OS; 

sheet erosion; rill erosion 

GE, SAC; GIS (low); high data 

demand 

HEM (Lane et 

al., 1995) 
E F - RR; SAC; generation, transport and deposition of 

OS and InS 

GE; high data demand 

KINEROS
1
 

(Woolhiser et al., 

1990) 

KINEROS2
2
 

(Goodrich et al., 

2002)  

E W  D Generation, transport and deposition of OS; peak 

rate; RR2; channel sediment; GIS (high); splash 

erosion2; rill erosion2 

RR; GE; SAC; sub-surface flow; high 

data demand 

LISEM
1
 (De 

Roo et al., 1994) 

OpenLISEM
2 

 

E W  D RR; SAC; rill structure; sediment and storage 

depression; variable time intervals; spatial 

distribution of soil erosion and deposition; GIS 

(high); generation of OS; generation, transport & 

deposition of InS; soil crust; GE; transport 

capacity; settling velocity 

Ephemeral GE; high data demand 

(detailed spatial representation 

required); sediment sources and 

deposition processes not correctly 

simulated; most sensitive variable: 

saturated hydraulic conductivity 

MEFIDIS 
(Nunes et al., 

2006) 

E W  D RR; peak runoff; erosion (based on extreme rainfall 

events) 

Chemical simulation; GIS (low) 

MIKE11 
(Hanley et al., 

1998) 

 E 

C 

W - RR; SAC; generation, transport and deposition of 

InS; GIS (high); sediment and water quality; 

cohesive and non-cohesive sediments; large 

complex catchments with varying land use, soil and 

management 

GE; bank erosion; OS; high data 

demand; 1-D equation to represent 3-

D processes  

MIKE SHE 
(Abbott et al., 
1986) 

E F

W 

- RR; generation, transport and deposition of OS and 

InS 

GE, SAC; GIS (loose); high data 

demand 

MWISED 
(Torri et al., 2002) 

E F - RR; gully formation; transport of OS; generation, 

transport & deposition of InS 

SAC; high data demand 

OPUS (Smith, 

1992) 
E F  D RR; SAC; GIS (high); generation, transport & 

deposition of OS 

GE; high data demand 

PEPP (PEPP-

Hillflow) 
(Schramm, 1994) 

E F D RR; SAC; generation, transport & deposition of OS 

and InS and phosphorus; preferential flow in 

macro-pores  

GE; GIS (medium); high data demand 

PERFECT 
(Littleboy et al., 

1992) 

E F L RR; SAC; crop yield GE; high data demand (crop and 

tillage); GIS (low); field to small 

catchment; calibration (NE Australia) 

PESERA 
(Kirkby et al., 

2004) 

 E 

C 

W L RR; generation, transport & deposition of OS; crop 

growth; GIS (high) 

GE; chemical simulation & flow 

routing not fully developed; regional 

to national scale 

REGEM 
(Gordon, 2006) 

E W - Gully formation; RR; SAC; generation, transport 

and deposition of OS and InS 

High data demand 

RillGROW 
(Favis-Mortlock, 

1998) 

E F D Spatial development and location of rill system Field scale; GIS (low); range lands 

RUNOFF 
(Borah, 1989) 

E W D RR; peak rate; GIS (high); low data demand; 

generation, transport and deposition of OS; rainfall 

detachment 

GE; SAC; rill structure; parameters 

fixed in time 

SEM (Storm and 

Jorgensen, 1987) 
C W D Generation, transport & deposition of OS and InS; 

splash detachment 

GE; RR; SAC; high data demand 

SEMMED 
(Jong et al., 1999) 

C W - GE; RR; generation, transport and deposition of OS SAC 
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While process based models exist, which are more frequently used than others (e.g. LISEM), researchers continue to develop 

soil erosion models, to create approaches that have advantages in one or the other way (e.g. being more accurate to simulate 200 

a specific process or being more simplified) (Hajigholizadeh et al., 2018). As models are conceptualized for different 

purposes as well as spatial and temporal scales (Karydas et al., 2012), they vary widely regarding their complexity, data 

demand, temporal and spatial representation of process mapping as well as input and output parameters (Pandey et al., 2016). 

As simplifications of reality, the all-achieving model does not exist jet, which results in a constantly rising and meanwhile 

confusing amount of models with a range of different strengths and weaknesses, as listed in tab. 1. 205 

In their study on 16 European erosion models Jetten and Favis-Mortlock (2006) review them next to others with respect to 

their process representation. They emphasize the problem, that different models are calibrated for special spatial and 

temporal scales, and in general assume continuous temporal soil and surface input parameters, which lead to falsified process 

description. The models e.g. EGEM, EPIC, GLEAMS, GUEST or PERFECT are developed to simulate erosion on the field 

to small catchment scale. Restrictions such as these are often accompanied by the practical aspect of data availability 210 

(Pandey et al., 2016), a factor with decreasing importance due to the increasing possibility of collecting high resolution data 

on a large spatial and temporal scale. Aksoy and Kavvas (2005) see further potential of model improvement amongst others 

SHE
1
/SHESE

D
2
 (Abbott et al., 

1986) 

E1

C 

E2 

F

W 

D RR; GIS (high); subsurface hydrology; generation, 

transport and deposition of OS 

GE; SAC; rill structure; bank erosion; 

frozen soil erosion; high data demand 

SHETRAN 
(Bathurst et al., 
1996) 

E F

W 

D RR; SAC; peak runoff rate; GIS (high); generation, 

transport and deposition of OS and InS 

GE; no flow simulation through 

unsaturated zones 

SIMWE (Mitas 

and Mitasova, 

1998) 

E W - RR; GE; generation, transport & deposition of OS SAC; data demand high 

SMODERP, 

SMODERP2D 
(Dostál et al., 

2000) 

E F

W 

D Effective precipitation; RR; stream network 

routing; surface retention 

GE 

SPNM 
(Williams, 1980) 

E F

W 

- RR; SAC; generation, transport and deposition of 

InS 

GE 

SWAT/SWAT

-WB (White et 

al., 2011) 

 E 

C 

W D RR; SAC; sediment yield; GIS (high) GE; flood peaks; snow melt runoff  

SWRRB 
(Williams et al., 
1985) 

 E 

C 

W L SAC; RR; subsurface flow; sediment yield  GE; high data demand 

TOPMODEL 
(Beven and 
Kirkby, 1979) 

 E 

C 

W D RR; subsurface runoff; sediment yield; GIS (high); 

low level of expertise necessary 

SAC; GE; suitable for shallow 

homogenous soil; long dry periods 

and moderate topography 

TOPOG 
(O'Loughlin, 1986) 

E W D RR; SAC; erosion hazard; splash erosion; 

generation, transport and deposition of OS 

GE; SAC; high data demand; GIS 

(moderate) 

WATEM
1
/ 

SEDEM
2
 (van 

Oost et al., 2000) 

C F1 

W2 

D Generation, transport and deposition of OS and 

InS; tillage erosion; sedimentation rate; low data 

demand; limited input data; user-friendly 

GE, RR, SAC, river channel erosion; 

GIS (moderate) 

WEPP
1
 (Laflen 

et al., 1991) 

GeoWEPP
2
 

(Renschler et al., 

2002) 

 E 

C 

F

W 

D Generation, transport & deposition of OS and InS; 

RR; raindrop detachment; GIS (high)2 

GE, SAC, rill structure; high data 

demand; large computational demand 

WESP (Lopez-

Garcia and 

Caselles, 1987) 

E W D Generation, transport & deposition of OS and 

InS; RR 

GE, SAC, rill structure; lack of 

information on erosion and 

deposition parameters; poor 

simulation of sedigraph; GIS 

(moderate) 
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in implementing the process description of rill-interrill interaction in soil erosion models. Various models, e.g. ANSWERS, 

WEPP, PERFECT, LISEM, EUROSEM or KINEROS2, lack the ability to simulate gully erosion processes, making the 

application in large gully prone areas unfeasible (Hajigholizadeh et al., 2018). The prediction quality of a model is heavily 215 

influenced by its input data and its parameterization, which concludes appropriate data collection from multiple sources, 

accurate model parameterization and temporal and spatial high resolution input data as important aspects for model 

improvement (Batista et al., 2021; Pandey et al., 2016).  

2.2 Techniques on soil erosion measurement 

Measurement techniques to assess soil properties and soil erosion are constantly advancing in terms of their spatial and 220 

temporal resolution (Li et al., 2017). In the context of reviewing those, most researchers focus on a selection of similar 

technological approaches but do not take a holistic overview on assessment techniques into account (e.g. Padarian et al., 

2020; Castillo et al., 2012). Li et al. (2017) i.e. compare the selected methods of runoff plot, radionuclide tracers and erosion 

pins for soil erosion assessment. Taking just a few methods into account, they predict a future trend towards merging 

different methods for more quantitative and precise approaches. Rodrigo-Comino (2018), includes 91 publications in his 225 

review on soil erosion assessment methods. To gain an improved understanding of processes and connectivity, he as well 

recommends a combined application of methods, working on different temporal and spatial scales. Figure 2 gives an 

overview of assessment techniques used in soil erosion research, compiled according to types of assessment and ordered by 

their applicability on a temporal scale. 

 230 

Figure 2: Soil erosion assessment techniques, for further information please refer to: Guan et al. (2017), Li et al. (2017),  Jester and 

Klik (2005), Thomsen et al. (2015), Batista et al. (2019), Rodrigo-Comino (2018) (LiDAR = Light Detection and Ranging). 

2.2.1 Tracer 

Authors as Guzmán et al. (2013) and Guan et al. (2017) review different tracing approaches, as also listed in fig. 2 – namely 

the fallout radionuclides of both anthropogenic and natural origin as e.g. Caesium-137 (
137

Cs), Beryllium-7 (
7
Be) or Lead-235 

210 (
210

Pbex). These tracers are capable of reconstructing sedimentation histories on different temporal scales, from a few 

months up to approximately 100 years (Mabit et al., 2008; Alewell et al., 2017; Guan et al., 2017). While 
137

Cs is most 

suitable for the measurement of medium-term soil erosion on slope scales (Baumgart et al., 2017), combining soil erosion 

modelling with both 
7
Be and soil measurements can help to improve the understanding of soil relocation processes 
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(Deumlich et al., 2017). Joining 
7
Be with high resolution unmanned aerial vehicle (UAV) photogrammetry shows useful to 240 

quantitative assess surface change detection in a spectrum of up to 2 mm resolution (Baumgart et al., 2017), offering high 

resolution cross-scale measurement of different erosion processes. Rare earth elements, which can be of natural origin or 

artificially added, are useful for studying both rill and interill detachment and deposition processes from the plot up to the 

catchment scale. Using the magnetic properties of the soil, natural or artificially incorporated, magnetic tracers enable the 

reconstruction of sediment sources on different temporal and spatial scales. Sediment fingerprinting takes the chemical, 245 

biological or physical properties of soil into account, comparing a given composition at one area with those elsewhere (Guan 

et al., 2017; Guzmán et al., 2013). Combining different tracing and soil erosion monitoring approaches on different temporal 

and nested spatial scales, can be used to identify sediment sources, and their change of spatial and temporal distribution in a 

catchment over time (Guan et al., 2017).  

To better understand the influence of spatial variability in water erosion, Guzmán et al. (2013) see big potential in the use of 250 

magnetic tracers and spectroscopic techniques. Regarding the last one, Alexakis et al. (2019) present, with the opportunities 

artificial neural networks offer us today, a time as well as cost efficient way to monitor soil parameter using spectroscopy by 

satellite data. They describe the opportunity for fast and efficient ways of parameter assessment on a large scale. With the 

development and improvement of sensor systems, capable tracing methods arise, measuring with high accuracy e.g. the for 

soil erosion crucial flow velocity. Next to colour dyes, fluorescent dyes, fluorescent particles or electrolytes, such an 255 

approach is the thermal tracing (Lima et al., 2015; Tauro and Grimaldi, 2016). Thanks to an increase in resolution, 

portability and a reduction in cost, today infrared thermography offers a fast, effective and accurate opportunity to monitor  

flow velocity via thermal tracer on a high temporal and spatial resolution (Lima et al., 2015; Lin et al., 2018). 

2.2.2 Remote Sensing 

While remote sensing shows already useful in combination with tracing approaches, it can also stand alone as a valuable tool 260 

in soil erosion and soil property assessment. In this context, satellite sensors provide a vast range of spatial resolutions, 

spectral bands and revisiting times. They show great potential for soil erosion measurements due to the method’s robustness, 

the large spatial scales and the data availability especially in remote regions, they furthermore are becoming affordable and 

display low time expenditure of data assessment (Sepuru and Dube, 2018). Data by e.g. Sentinel 1, Sentinel 2 or Landsat 8 

offer a great spectrum of information on i.e. soil organic carbon, soil total nitrogen, clay content of the soil or the 265 

Normalized Difference Vegetation Index (NDVI), with resolutions up to 10 m (Septianugraha et al., 2019; Zhou et al., 2020; 

Gholizadeh et al., 2018). While valuable to identify erosion and its consequences on the medium to large scale (Vrieling, 

2006) and showing usefulness for empirical models working on large areas (Aiello et al., 2015), satellite data has not yet 

established itself in combination with process based soil erosion models, mostly used on smaller, slope to catchment, scales. 

Methods on aerial and terrestrial photogrammetry and aerial and terrestrial LiDAR or laser scanning (ALS and TLS) are very 270 

valuable in soil erosion research and become even more efficient with further development and improvement in computing 

power (Guo et al., 2016; Neugirg et al., 2015; Glendell et al., 2017). They allow, remote sensing with high temporal and 

spatial resolution. The photogrammetric technique Structure from Motion (SfM) via UAV offers a powerful and achievable 

method for measuring soil erosion, also in terrain difficult to access (Neugirg et al., 2015). Thanks to their high spatial and 

temporal resolution, photogrammetry and LiDAR can be used to measure on-going soil erosion processes quasi continuous 275 

during artificial and natural rainfall events. On the one hand the data can be used to e.g. validate measured soil loss on an 

artificial plot while on the other hand they give valuable insight on the continuous process of soil erosion (Guo et al., 2016; 

Hänsel et al., 2016). Yang et al. (2021) offer a spatial high resolution monitoring of the development of rill and interrill 

erosion via TLS and SfM (with resolutions less than 1 mm) on an artificial plot (0.7 m²), concluding for SfM a high accuracy 

in quantifying rill erosion. On an even smaller scale Laburda et al. (2021) use SfM to monitor splash erosion, working on 280 

resolutions of up to 0.1 mm. Low cost, terrestrial, high resolution photogrammetry enables surface change detection in the 
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sub-minute time step and with sub-millimetre resolutions, offering new insight in detailed soil erosion processes from the 

micro perspective (Kou et al., 2021). 

UAVs equipped with cameras, as a cost-effective and flexible tool (Pineux et al., 2017), offer the assessment of spatially 

distributed soil surface changes over different temporal and spatial scales and with resolutions in the low millimetre range 285 

(Kaiser et al., 2018). These datasets and the quantification of soil loss help to assess and understand the water erosion 

mechanisms and the spatial and temporal dimension of the soil erosion processes taking place on the slope to catchment 

scale (Cândido et al., 2020; Eltner et al., 2018). LiDAR, despite the higher time and cost expenditure, proves a feasible tool 

for change detection (Li et al., 2020a), helping to improve the understanding of soil erosion forms, as soil crusts (Hu et al., 

2020a) or rill characteristics (Vinci et al., 2015). Jiang et al. (2020) monitor rilling on an artificial plot via LiDAR and SfM. 290 

They promote the use of close range photogrammetry, achieving even higher accuracies than by the use of TLS. Meinen and 

Robinson (2020) see great potential in UAV SfM-MVS (multi-view stereo) for validation and calibration of soil erosion 

models. Photogrammetric approaches and LiDAR, allow a spatial and temporal high resolution cross-scale understanding of 

on-going processes and their development from the microplot to the catchment scale, offering cross-scale validation 

opportunities and new and accurate process understanding by water induced soil erosion to process based soil erosion 295 

models.  

Hu et al. (2020a) use LiDAR to quantify results of interrill erosion processes. They describe LiDAR as a promising 

technology for generating microtopography soil parameters, which can be linked to high resolution photogrammetric derived 

Digital Elevation Model (DEM). Photogrammetry and TLS as non-invasive, high accuracy, high mobility and in the case of 

photogrammetry low cost techniques allow the assessment of soil properties as e.g. roughness (Thomsen et al., 2015; Kaiser 300 

et al., 2018; Li et al., 2020b; Gilliot et al., 2017) or soil moisture (Kemppinen et al., 2018). Soil spectra measured via remote 

sensing are an important step for in-situ assessment of soil properties at real time (Ge et al., 2011). Remote sensing enables 

the spatially distributed assessment of soil properties on a high temporal resolution, which can be of great value for the 

parameterization of physically based soil erosion models. Thomsen et al. (2015) already point out that the possibilities 

offered by SfM and TLS regarding the survey of roughness exceed the integration opportunities of process based soil erosion 305 

models such as LISEM. This supports the hypothesis that the models cannot keep up with the available data and that the 

latter need to be further developed for an appropriate inclusion of the novel possibilities.  

2.2.3 Machine Learning 

Machine learning (ML) approaches as artificial neural networks (ANN) offer cost and time efficient ways for spatially 

distributed assessment of soil parameters (Alexakis et al., 2019) and erosion forms, as e.g. gully erosion (Arabameri et al., 310 

2020a; Arabameri et al., 2020b). Different authors have used different ML approaches to map the susceptibility of gully 

erosion and the factors controlling it (Lei et al., 2020; Pourghasemi et al., 2020). In this context Pourghasemi et al. (2020) 

found the Random Forest approach the most reliable to understand such controlling factors. While techniques have been 

developed to use ML (e.g. linear equation model or decision tree) based on visual data to predict soil properties (i.e. soil bulk 

density), those approaches seem only to be applicable for approximate in situ measurements, filling the gaps of laboratory 315 

assessed data (Bondi et al., 2018). Deep learning, as ANN can offer new opportunities to model soil spectral data (Padarian 

et al., 2019). Open source algorithms combined with proximally and remotely assessed soil data enable the use of ML 

approaches to analyse soil data (Padarian et al., 2020). While there is great potential in ML approaches for soil erosion 

prediction and management (Vu Dinh et al., 2021), there also exists the risk of equifinality, gaining plausible results for the 

wrong reason (Padarian et al., 2020). While these techniques offer new possibilities they so far show most useful on regional 320 

scales with large data availability (Zhang et al., 2018b) and up to now have not found their way in improving process based 

soil erosion models.  
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3 Challenges and opportunities of process based soil erosion modelling in the context of novel data acquisition 

methods 

Limits set by computing power are constantly shifting and creating new possibilities. In addition, the required time and cost 325 

for the collection of high resolution data is decreasing and new opportunities arise. In the development of soil erosion 

monitoring, measuring approaches have become more precise and thus small scale monitoring techniques were 

supplemented by those applicable to large, regional scales (Li et al., 2017). Due to improved and novel assessment 

technologies, possibilities for process based soil erosion models constantly increase. In the following the necessity for model 

adaption and further development, regarding the aspects of parameterization and calibration, process description, scale and 330 

resolution as well as complexity and equifinality will be discussed. 

3.1 Parameterization and calibration 

Being time and resource consuming and accompanied by a high parameterization requirement, expecting input parameters 

on e.g. topographic data, soil data, tillage practices and crop management, process based soil erosion models, are considered 

rather complex, making them more difficult in their handling than empirical models (Merritt et al., 2003; Pandey et al., 2016; 335 

Hajigholizadeh et al., 2018). To reduce assessment time and complexity and to increase user-friendliness, the input 

parameters are often assumed homogeneously distributed for the whole field or catchment (e.g. CREAMS). Nether the less 

new assessment techniques especially in the field of remote sensing can extremely facilitate the procurement of highly 

resolved parameters on both temporal and spatial scales, enabling distributed input data in both time and space (Eltner et al., 

2018; Jester and Klik, 2005; Kaiser et al., 2015). Time-varying input data for process based models as the RUNOFF model, 340 

are important to gain more accurate results (Aksoy and Kavvas, 2005), while also their flexibility in space proves to be of 

great value (Guo et al., 2019). 

Even parameters such as roughness, which over the past, for the lack of other possibilities, were determined empirically, can 

increasingly be derived, by remote sensing, as shown for the models LISEM (Thomsen et al., 2015) or EROSION3D (Kaiser 

et al., 2015). Due to its high resolution, SfM enables the spatially distributed assessment of roughness on a large scale (Eltner 345 

et al., 2018). Besides novel methods in the field of topographic reconstruction and ML, advances in the area of image 

velocimetry as mentioned before, bare great potential for an automatic measurement technique, offering new possibilities for 

the parameterization of process based soil erosion models (Lima et al., 2015; Lin et al., 2018). 

Since they represent reality in a simplified way, models cannot include all influencing factors. Model developers therefore 

decide to include certain processes as close to reality as possible and to neglect others in order to avoid overly complex 350 

models. This results in a large number of models with different strengths and weaknesses. Regarding the precipitation, there 

are models, as EROSION3D, taking the temporally variable intensity of the rainfall event into account (Pandey et al., 2016) 

while others, e.g. PERFECT, ignore this impact using the same intensity for every time step (Merritt et al., 2003). An aspect 

widely neglected by process based models is the influence of wind-driven rain on soil erosion. This influence of the wind 

can be immense with up to 30 % more erosion, emphasizing the need for assessing and integrating high resolution data on 355 

near surface wind speed and direction in soil erosion modelling (Marzen et al., 2017; Schmidt et al., 2017). Recent advances 

in time-lapse SfM photogrammetry allow for the assessment of surface changes during a rainfall event with a temporal 

resolution of several seconds (Eltner et al., 2017). Such data, combined with surface wind speed and direction, can offer new 

possibilities for the further development of process based soil erosion models. While up to a certain degree, the model’s 

accuracy improves with the number of input parameters, in general more input parameters lead to an increasing model 360 

complexity. A balancing act of process based models is the over-parameterization: the more parameters are included in a 

model, the greater the risk of having a stochastically fitting model that however fails to map the processes actually taking 

place (Pandey et al., 2016; Vente et al., 2013; Jetten et al., 2003). 
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In the case that parameters cannot be assessed directly, the calibration of the models helps to determine these parameters and 

thus to achieve the best possible agreement between measured and modelled output (Merritt et al., 2003; Pandey et al., 365 

2016). One or multiple parameters are calibrated against an available dataset to minimize the prediction error (Batista et al., 

2019). While Guo et al. (2019) see improvement in generating more extensive calibration data for soil erosion models (e.g. 

MEFIDIS), regarding the GSSHA model Pandey et al. (2016) on the other hand propose, less dependency on model 

calibration all together. Based on high resolution data, a better process understanding can help reduce the necessity of model 

calibration. Further model development as improving the parameter validation and calibration for models e.g. SHETRAN, 370 

MEFIDIS, GLEAMS and WESP can already help reduce the risk of equifinality – gaining a statistical right answer for the 

wrong reason (Guo et al., 2019; Batista et al., 2019; Pandey et al., 2016). 

3.2 Soil erosion processes 

The soil erosion processes, as splash, interrill, rill and gully erosion, show high variability in their process description 

(Batista et al., 2019) and are represented differently well depending on the model. Models as ANSWERS miss the sediment 375 

transport by rainfall (splash erosion) (Hajigholizadeh et al., 2018), while others such as EUROSEM simulate splash erosion, 

but only until interrill erosion starts (Aksoy and Kavvas, 2005). Different soil erosion models are developed for different 

scales and therefore vary regarding their process description (Batista et al., 2019). Models for small scales depict splash 

erosion and interrill erosion especially well, where there are models developed for larger scales, focusing on gully erosion. 

Due to the complexity of the occurring and transforming soil erosion processes, many models make simplified assumptions. 380 

The KINEROS model for example does not differentiate between interrill and rill erosion (Aksoy and Kavvas, 2005), while 

WEPP simulates interrill erosion and concentrated runoff within rills, but does not take the transition from one to another 

into account (Merritt et al., 2003). 

While most process based soil erosion models are capable of modelling runoff and soil erosion within existing rills as well as 

in interrill areas, they miss the ability to depict spontaneous rill formation (Pandey et al., 2016). Existing rill erosion models, 385 

such as RillGROW 2 by Favis-Mortlock et al. (2000), can map the hydraulic processes inside a rill, but are unable to model 

its initiation (Wirtz et al., 2010; Pandey et al., 2016). An approach on a WEPP-based soil erosion model by Wu et al. (2018) 

simulates erosion and rill evolution on the hillslope scale. However even this model is not capable to model every occurring 

rill formation and has difficulties in locating the bifurcation and merging of rills. The embedding of the initiation and 

development of rills in soil erosion models is an important future step to gain more precise modelling results (Wu and Chen, 390 

2020). 

To this goal, a new and improved process understanding, gained by repeated and accurate rill erosion assessment (Di Stefano 

et al., 2017) and detailed information about their origin, geometry and frequency (Merritt et al., 2003) is an important step in 

the understanding and modelling of rills. Advances in time-lapse SfM photogrammetry allow for the assessment of surface 

changes during a rainfall event with a temporal resolution of several seconds (Eltner et al., 2017). Such approaches, as well 395 

as information gained by rare earth elements on rill-interrill erosion processes, might enable an enhanced temporal and 

spatial high resolution process understanding (Zhang et al., 2018a). Information that can help develop and integrate a 

topographic threshold concept, as suggested by Nouwakpo et al. (2016) to implement the transition from interrill to rill 

erosion in process based soil erosion models. Different assessment techniques offer opportunities for an enhanced 

understanding of soil erosion processes and especially the cross-scale transition from one process to another. 400 

Gully erosion as an important driver of land degradation is in many cases neglected by process based soil erosion models 

(Pandey et al., 2016; Lei et al., 2020). There are certain landscapes, as the loess plateau in China or areas in Iran, where 

annual sediment loss due to gully erosion exceeds that of slope erosion by far, making it a severe environmental problem 

(Cai et al., 2019; Arabameri et al., 2020b). For these gully-prone areas, as well as for cross-scale and large scale soil erosion 

modelling the incorporation of gully erosion processes in process based soil erosion models is of great importance (Li and 405 
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Fang, 2016; Cai et al., 2019). Various ML approaches are used for the susceptibility mapping of gully erosion (Arabameri et 

al., 2020a), which could be a helpful extension for the detection of gully initiation in process based models. 

Often unattended by these models, is the simulation of nutrients and chemical paths as shown by the models: AGNPS (Adu 

and Kumarasamy, 2018), CASCA2D, DWSM, EGEM, EROSION2D/3D, KINEROS, MEFIDIS, PERFECT, PERSERA, 

RUNOFF, SHESED, WATEM or the WEPP (Pandey et al., 2016). Nether the less as soil erosion is to great parts an 410 

agricultural challenge such discharge presents an important modelling aspect (Tao et al., 2020). For a better understanding of 

soil relocation processes, including nutrients and chemical paths, and to implement them in soil erosion models, Deumlich et 

al. (2017) propose to combine soil erosion models, with the tracer technique 
7
Be as well as soil measurements. 

Considering that changing climate leads to an increase in extreme weather events, it is important to gain a holistic 

understanding of processes and feedback mechanisms (Vereecken et al., 2016; Guo et al., 2019). Guo et al. (2019) 415 

recommend to implement such aspects and to further develop soil erosion models in respect to changing climate scenarios. 

Bringing together knowledge of different disciplines Li and Fang (2016) propose combining climate, land use and soil 

erosion models to achieve a both multi-scenario as well as multi-model framework for an improved simulation of soil 

erosion influenced by climate change, associated land use changes and adopted management strategies. 

3.3 Scale and resolution 420 

Process based soil erosion models deliver the best results in the observation scale they were parameterized and validated for 

(Batista et al., 2019; Govers, 2010; Hajigholizadeh et al., 2018; Cerdà et al., 2013; Vente et al., 2013). The governing 

equations are usually derived on the basis of small scales and then transferred to larger scales, which can lead to poor 

validation results (Hajigholizadeh et al., 2018). Most models are developed for the field scale (e.g. GUEST or RillGROW), 

the field and small catchment scale (e.g. CREAMS, EGEM, EPIC, EROSION3D, EUROSEM, GLEAMS, OPUS, PEPP-425 

HILLFLOW, PERFECT and WATEM) or the catchment scale (e.g. TOPMODEL) (Pandey et al., 2016). By changing the 

considered scale, both prevailing erosional process as well as the complexity of these processes alter (Govers, 2010; Merritt 

et al., 2003). Taking the role of scale into account is important to understand the dominant processes and their influence on 

erosional rates (Vente and Poesen, 2005). With improving technology, large scale, high resolution data is available, enabling 

a validated extension of the spatial modelling scales (Baartman et al., 2020). 430 

To gain reliable and accurate results, the resolution and quality of the different input data is of importance to the model 

performance (Merritt et al., 2003; Alewell et al., 2019). The impact of the cell size on the soil erosion simulation varies with 

the model choice. The LISEM model for example proves more adaptable to changes in spatial and temporal resolution than 

EROSION3D, where the choice for the right solution shows to be more complex and requires a higher modelling experience 

(Starkloff and Stolte, 2014). Varying the DEM cell size in either direction, can lead to a different focus on operating 435 

processes and connectivity (Baartman et al., 2020). Due to new and further developed assessment techniques, data with 

higher temporal and spatial resolution arise, offering new opportunities and challenges for modelling approaches. Changes in 

resolution can lead to changes in the representation of hydrology or topography and therefore affect soil erosion predictions 

(Zhang et al., 2008; Cochrane and Flanagan, 2005). An increasing resolution can expose non-erosive processes, as e.g. 

swelling and shrinking, which may mask the actual erosional processes (Kaiser et al., 2018). Therefore an holistic 440 

understanding of soil erosion processes, including its scale, is inevitable (Cerdà et al., 2013). Remote sensing data can enable 

temporal and spatial high resolution change detection and process mapping on different magnitudes (Balaguer-Puig et al., 

2018; Cândido et al., 2020), offering such information for soil erosion modelling. 

3.4 Model complexity and equifinality 

One downside of process based compared to empirical soil erosion models is the model complexity. Nether the less, there 445 

are little to no alternatives if the model is to be transferable and offer spatially differentiated and event-based predictions 
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(Hessel et al., 2006). Complex models are not automatically the better choice (Jetten et al., 2003). An increase in complexity 

is not necessarily reflected in improved modelling (Govers, 2010), but enhances the dependency of modelling results on the 

modeller’s experience (Merritt et al., 2003). With rising complexity process based models forfeit user-friendliness (Batista et 

al., 2019). Model development therefore is a balancing act between complex models that represent reality as accurate as 450 

possible and user-friendly models developed for a wide range of users. 

The large number of input data not only results in a high model complexity but also in a large number of degrees of freedom 

(Govers, 2010). Varying parameter combinations can lead to equally sufficient model outputs (Batista et al., 2019), 

misjudging the relationship between observed and predicted erosion (Evans and Brazier, 2005). Even though the model 

adequately simulates the sediment yield at the systems outlet, it not necessarily implicates a correct process description or a 455 

correct spatial distribution of erosion and deposition (Starkloff et al., 2018). This points out another challenge of process 

based soil erosion models, the risk of achieving the correct outcome for the wrong reasons (Govers, 2010). Even though the 

model is working poorly in identifying spatially distributed erosion hotspots or representing internal dynamics it might still 

offer a realistic prediction of the overall simulation outcome in respect to soil loss and runoff at the systems outlet (Favis-

Mortlock, 2010; van Oost et al., 2005). Modellers should be aware that equifinality is an inevitable consequence of model 460 

calibration (Batista et al., 2019), which might even lead to misdirected management and recovery strategies (van Oost et al., 

2005). Spatially and temporally distributed data, as high-resolution surface change detection, can be used for validation and 

thus help reducing the risk of equifinality. 

3.5 Connectivity 

The complexity and multitude of processes taking place within a catchment, affects the sediment and water transfer 465 

throughout the system. To address management strategies and mitigation measurements, it is inevitable to gain a holistic 

overview of the system’s connectivity, shifting the perspective away from the single slope to the connected system and 

taking a variety of spatial scales into account. Such knowledge leads to a better understanding of the influences of human 

built structures and natural landforms on the continuity of water and sediment transfer throughout the system as well as the 

cause of off-site damages (Cavalli et al., 2019; Biddulph et al., 2017). Models, being simplifications of reality, often neglect 470 

the delayed reaction of the sediment yield and the impact of sediment connectivity (Vente et al., 2013). Supplementary to 

erosion rate assessment, the mapping and modelling of sediment transport and runoff throughout the system, is of major 

importance as it has great influence on off-site damage (Boardman et al., 2019). Regarding accurate modelling results the 

aspects of sediment sources and connectivity might be even more important than the model parameterization (Uber et al., 

2020). 475 

High rainfall intensity leads to large amounts of sediment yield, which increases the impact of connectivity. Stronger events 

result in better simulated sediment connectivity (Baartman et al., 2020). Including connectivity analysis into soil erosion 

models, the parameterization of the landscape and rainfall characteristics are decisive (Uber et al., 2020). For a best-fit of 

sediment transfer to its outlet, Mahoney et al. (2020) stress the need of coupling erosion, sediment routing and connectivity 

formula. The GeoWEPP-C model, based on the GeoWEPP, offers an approach of integrating process based soil erosion 480 

modelling and modelling of lateral sediment connectivity. While this model presents an opportunity to combine these 

different aspects, it still needs major improvement before applicable to the practice (Poeppl et al., 2019). To gain insights on 

the development of connectivity on short to long terms Baartman et al. (2020) propose a continuous monitoring and 

modelling of runoff and sediment transfer. GIS-based indices offer an approach to overcome the extensive field work and 

large amount of input data necessary to partly quantify relevant connectivity factors (Najafi et al., 2021). Even though 485 

connectivity is up to now just to some extents assessable, new high resolution remote sensing data (e.g. DEMs), help 

measuring connectivity aspects at least partway and enable the development of connectivity indices (Heckmann et al., 2018), 

which can be of interest to process based soil erosion modelling. 
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4 Conclusion and outlook 

Climate change accompanied by local changes in extreme weather events, as droughts, rising temperature, high rainstorm 490 

intensity and temporal precipitation shifts also leads to changes in soil erosion rates. A major influence on soil erosion in 

modern times is human-driven land use changes. Unclear future developments only make an adaption of assessment 

techniques and modelling approaches all the more important. Regarding heavy local rainstorm events, resulting in intensified 

local soil erosion, assessment and modelling on the sub-daily scale is of great importance (Mullan et al., 2012). This review 

gives an overview of 44 process based soil erosion models, their strengths and their shortcomings. Potential of their further 495 

development is based on new opportunities, which assessment techniques offer the soil erosion research today. 

Hypothesizing, that models cannot keep up with the data, we found several weaknesses that can be improved or even 

eliminated, utilizing up to date assessment techniques of soil erosion research. Future research should focus on incorporating 

improved, new as well as spatial distributed input data and an updated process description. Evaluating the scale dependent 

boundaries of processes, researchers should strive to include the initial development of rills and enable cross-scale modelling 500 

from the micro-plot to the regional scale. Huge potential could be found by remote sensing, to further develop process 

descriptions, assess parameters as topography, roughness or flow velocity with high temporal and spatial resolution, or to 

work across scale. Techniques, with low cost, low time expenditure and high resolution, show potential to gain adequate data 

from the micro to the macro scale. Further of interest are ML approaches and tracing techniques. They for once pave the way 

to respond to different processes on different scales (splash-, sheet-, rill-, gully erosion, transport and deposition). ML and 505 

automated assessment systems, could even offer opportunities on a completely new level, enabling the development of fully 

automated modelling approaches in the future. 

Over the years many soil erosion models have been developed, resulting today in a large amount of process based models 

with different strengths and weaknesses. Even though the models are not capable to include the different erosional processes 

or make use of the newly available resolution or temporal and spatial scale, the question arises if we need jet another model 510 

or if we could further develop and improve existing approaches. These models should be adapted to our possibilities and 

needs, to meet the current data availability and achieve a more holistic process understanding. The goal should be to achieve 

a realistic but user-friendly model, minimizing challenges as equifinality and offering an improved understanding of soil 

erosion processes and influences. 

Authors contribution 515 

L. Epple conceptualized and prepared the manuscript with supervision of A. Eltner and A. Kaiser and the reviewing and 

editing from all co-authors. 

Competing interests 

The authors declare that they have no conflict of interest. 

 520 

References 

Adu, J. and Kumarasamy, M. V.: Assessing Non-Point Source Pollution Models: a Review, Pol J Environ Stud, 27, 1913–

1922, https://doi.org/10.15244/pjoes/76497, 2018. 

Aiello, A., Adamo, M., and Canora, F.: Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river 

basin scale in southern Italy, CATENA, 131, 174–185, https://doi.org/10.1016/j.catena.2015.04.003, 2015. 525 

Aksoy, H. and Kavvas, M. L.: A review of hillslope and watershed scale erosion and sediment transport models, CATENA, 

64, 247–271, https://doi.org/10.1016/j.catena.2005.08.008, 2005. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.

Reviewer
Highlight
I found this part of the manuscript a bit disappointing. The model comparison table is confusing and contains several mistakes.

Reviewer
Cross-Out

Reviewer
Highlight
in?

Reviewer
Cross-Out

Reviewer
Cross-Out

Reviewer
Highlight

Reviewer
Highlight
Is user friendliness really the goal? I would focus more on reproducible code than user friendly GUIs.



 

  16  

 

Alewell, C., Pitois, A., Meusburger, K., Ketterer, M., and Mabit, L.: 239+240 Pu from “contaminant” to soil erosion tracer: 

Where do we stand?, Earth-Science Reviews, 172, 107–123, https://doi.org/10.1016/j.earscirev.2017.07.009, 2017. 

Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE: Chances, challenges and limitations of soil 530 

erosion modelling, International Soil and Water Conservation Research, 7, 203–225, 

https://doi.org/10.1016/j.iswcr.2019.05.004, 2019. 

Alexakis, D. D., Tapoglou, E., Vozinaki, A.-E. K., and Tsanis, I. K.: Integrated Use of Satellite Remote Sensing, Artificial 

Neural Networks, Field Spectroscopy, and GIS in Estimating Crucial Soil Parameters in Terms of Soil Erosion, Remote 

Sensing, 11, 1106, https://doi.org/10.3390/rs11091106, 2019. 535 

Arabameri, A., Chen, W., Loche, M., Zhao, X., Li, Y., Lombardo, L., Cerda, A., Pradhan, B., and Bui, D. T.: Comparison of 

machine learning models for gully erosion susceptibility mapping, Geosci Front, 11, 1609–1620, 

https://doi.org/10.1016/j.gsf.2019.11.009, 2020a. 

Arabameri, A., Chen, W., Lombardo, L., Blaschke, T., and Tien Bui, D.: Hybrid Computational Intelligence Models for 

Improvement Gully Erosion Assessment, Remote Sensing, 12, 140, https://doi.org/10.3390/rs12010140, 2020b. 540 

Baartman, J. E.M., Nunes, J. P., Masselink, R., Darboux, F., Bielders, C., Degré, A., Cantreul, V., Cerdan, O., Grangeon, T., 

Fiener, P., Wilken, F., Schindewolf, M., and Wainwright, J.: What do models tell us about water and sediment connectivity?, 

Geomorphology, 367, 107300, https://doi.org/10.1016/j.geomorph.2020.107300, 2020. 

Bakker, M. M., Govers, G., and Rounsevell, M. D.A.: The crop productivity-erosion relationship: an analysis based on 

experimental work, CATENA, 57, 55–76, https://doi.org/10.1016/j.catena.2003.07.002, 2004. 545 

Balaguer-Puig, M., Marqués-Mateu, Á., Lerma, J. L., and Ibáñez-Asensio, S.: Quantifying small-magnitude soil erosion: 

Geomorphic change detection at plot scale, Land Degrad Dev, 29, 825–834, https://doi.org/10.1002/ldr.2826, 2018. 

Batista, P. V.G., Laceby, J. P., Davies, J., Carvalho, T. S., Tassinari, D., Silva, M. L.N., Curi, N., and Quinton, J. N.: A 

framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models 

and the observational data, Environ Modell Softw, 137, 104961, https://doi.org/10.1016/j.envsoft.2021.104961, 2021. 550 

Batista, P. V.G., Davies, J., Silva, M. L.N., and Quinton, J. N.: On the evaluation of soil erosion models: Are we doing 

enough?, Earth-Sci Rev, 197, 102898, https://doi.org/10.1016/j.earscirev.2019.102898, 2019. 

Baumgart, P., Eltner, A., Domula, A. R., Barkleit, A., and Faust, D.: Scale dependent soil erosion dynamics in a fragile loess 

landscape, Zeit fur Geo, 61, 191–206, https://doi.org/10.1127/zfg/2017/0409, 2017. 

Biddulph, M., Collins, A. L., Foster, I.D.L., and Holmes, N.: The scale problem in tackling diffuse water pollution from 555 

agriculture: Insights from the Avon Demonstration Test Catchment programme in England, River Res Appl, 33, 1527–1538, 

https://doi.org/10.1002/rra.3222, 2017. 

Boardman, J., Evans, R., Favis-Mortlock, D. T., and Harris, T. M.: Climate change and soil erosion on agricultural land in 

england and wales, Land Degrad Dev, 2, 95–106, https://doi.org/10.1002/ldr.3400020204, 1990. 

Boardman, J. and Poesen, J. (Eds.): Soil Erosion in Europe, John Wiley & Sons, Ltd, Chichester, UK, 2006. 560 

Boardman, J., Vandaele, K., Evans, R., and Foster, I. D. L.: Off‐site impacts of soil erosion and runoff: Why connectivity is  

more important than erosion rates, Soil Use Manage, 35, 245–256, https://doi.org/10.1111/sum.12496, 2019. 

Bondi, G., Creamer, R., Ferrari, A., Fenton, O., and Wall, D.: Using machine learning to predict soil bulk density on the 

basis of visual parameters: Tools for in-field and post-field evaluation, Geoderma, 318, 137–147, 

https://doi.org/10.1016/j.geoderma.2017.11.035, 2018. 565 

Cai, J., Zhou, Z., Liu, J., Wang, H., Jia, Y., and Xu, C.-Y.: A three-process-based distributed soil erosion model at catchment 

scale on the Loess Plateau of China, J Hydrol, 578, 124005, https://doi.org/10.1016/j.jhydrol.2019.124005, 2019. 

Cândido, B. M., Quinton, J. N., James, M. R., Silva, M. L.N., Carvalho, T. S. de, Lima, W. de, Beniaich, A., and Eltner, A.: 

High-resolution monitoring of diffuse (sheet or interrill) erosion using structure-from-motion, Geoderma, 375, 114477, 

https://doi.org/10.1016/j.geoderma.2020.114477, 2020. 570 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  17  

 

Castillo, C., Pérez, R., James, M. R., Quinton, J. N., Taguas, E. V., and Gómez, J. A.: Comparing the Accuracy of Several 

Field Methods for Measuring Gully Erosion, Soil Sci Soc Am J, 76, 1319–1332, https://doi.org/10.2136/sssaj2011.0390, 

2012. 

Cavalli, M., Vericat, D., and Pereira, P.: Mapping water and sediment connectivity, The Science of the total environment, 

673, 763–767, https://doi.org/10.1016/j.scitotenv.2019.04.071, 2019. 575 

Cerdà, A., Brazier, R., Nearing, M., and Vente, J. de: Scales and erosion, CATENA, 102, 1–2, 

https://doi.org/10.1016/j.catena.2011.09.006, 2013. 

Cochrane, T. A. and Flanagan, D. C.: EFFECT OF DEM RESOLUTIONS IN THE RUNOFF AND SOIL LOSS 

PREDICTIONS OF THE WEPP WATERSHED MODEL, Transactions of the ASAE, 48, 109–120, 

https://doi.org/10.13031/2013.17953, 2005. 580 

De Roo, A. P. J. and Offermans, R. J. E.: LISEM: a physically-based hydrological and soil erosion model for basin-scale 

water and sediment management, Modelling and Management of Sustainable Basin-scale Water Resource Systems, 399–

407, available at: http://hydrologie.org/redbooks/a231/iahs_231_0399.pdf, 1995. 

Deumlich, D., Jha, A., and Kirchner, G.: Comparing measurements, 7Be radiotracer technique and process-based erosion 

model for estimating short-term soil loss from cultivated land in Northern Germany, Soil Water Res, 12, 177–186, 585 

https://doi.org/10.17221/124/2016-SWR, 2017. 

Di Stefano, C., Ferro, V., Palmeri, V., and Pampalone, V.: Measuring rill erosion using structure from motion: A plot 

experiment, CATENA, 156, 383–392, https://doi.org/10.1016/j.catena.2017.04.023, 2017. 

Edwards, W.M. and Owens, L.B.: Large storm effects on total soil erosion, Soil and Water Conservation, 46, 75–78, 1991. 

Eltner, A., Maas, H.-G., and Faust, D.: Soil micro-topography change detection at hillslopes in fragile Mediterranean 590 

landscapes, Geoderma, 313, 217–232, https://doi.org/10.1016/j.geoderma.2017.10.034, 2018. 

Eltner, A., Kaiser, A., Abellan, A., and Schindewolf, M.: Time lapse structure-from-motion photogrammetry for continuous 

geomorphic monitoring, Earth Surf Proc Land, 42, 2240–2253, https://doi.org/10.1002/esp.4178, 2017. 

Evans, D. L., Quinton, J. N., Tye, A. M., Rodés, Á., Davies, J. A. C., Mudd, S. M., and Quine, T. A.: Arable soil formation 

and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom, SOIL, 5, 253–263, 595 

https://doi.org/10.5194/soil-5-253-2019, 2019. 

Evans, R. and Brazier, R.: Evaluation of modelled spatially distributed predictions of soil erosion by water versus field-based 

assessments, Environ Sci Policy, 8, 493–501, https://doi.org/10.1016/j.envsci.2005.04.009, 2005. 

Favis-Mortlock, D.: "The right answer for the wrong reason" revisited: validation of a spatially-explicit soil erosion model 

(RillGrow), EGU, 2010. 600 

Favis-Mortlock, D. and Boardman, J.: Nonlinear responses of soil erosion to climate change: a modelling study on the UK 

South Downs, CATENA, 25, 365–387, https://doi.org/10.1016/0341-8162(95)00018-N, 1995. 

Favis-Mortlock, D. T., Boardman, J., Parsons, A. J., and Lascelles, B.: Emergence and erosion: a model for rill initiation and 

development, Hydrol Process, 14, 2173–2205, https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2173:AID-

HYP61>3.0.CO;2-6, available at: http://www.geocomputation.org/1998/86/gc_86.htm, 2000. 605 

Ge, Y., Thomasson, J. A., and Sui, R.: Remote sensing of soil properties in precision agriculture: A review, Front Earth Sci, 

33, 149, https://doi.org/10.1007/s11707-011-0175-0, 2011. 

Gholizadeh, A., Žižala, D., Saberioon, M., and Borůvka, L.: Soil organic carbon and texture retrieving and mapping using 

proximal, airborne and Sentinel-2 spectral imaging, Remote Sens Environ, 218, 89–103, 

https://doi.org/10.1016/j.rse.2018.09.015, 2018. 610 

Gilliot, J. M., Vaudour, E., and Michelin, J.: Soil surface roughness measurement: A new fully automatic photogrammetric 

approach applied to agricultural bare fields, Comput Electron Agr, 134, 63–78, 

https://doi.org/10.1016/j.compag.2017.01.010, 2017. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  18  

 

Glendell, M., McShane, G., Farrow, L., James, M. R., Quinton, J., Anderson, K., Evans, M., Benaud, P., Rawlins, B., 

Morgan, D., Jones, L., Kirkham, M., DeBell, L., Quine, T. A., Lark, M., Rickson, J., and Brazier, R. E.: Testing the utility of 615 

structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to 

estimate the extent of upland soil erosion, Earth Surf Processes, 42, 18601871, https://doi.org/10.1002/esp.4142, 2017. 

Govers, G.: Misapplications and Misconceptions of Erosion Models, in: Handbook of Erosion Modelling, edited by: 

Morgan, R. P. C. and Nearing, M. A., John Wiley & Sons, Ltd, Chichester, UK, 117–134, 

https://doi.org/10.1002/9781444328455.ch7, 2010. 620 

Govers, G., Giménez, R., and van Oost, K.: Rill erosion: Exploring the relationship between experiments, modelling and 

field observations, Earth-Sci Rev, 84, 87–102, https://doi.org/10.1016/j.earscirev.2007.06.001, 2007. 

Guan, Z., Tang, X.-Y., Yang, J. E., Ok, Y. S., Xu, Z., Nishimura, T., and Reid, B. J.: A review of source tracking techniques 

for fine sediment within a catchment, Environ Geochem Hlth, 39, 1221–1243, https://doi.org/10.1007/s10653-017-9959-9, 

2017. 625 

Guo, M., Shi, H., Zhao, J., Liu, P., Welbourne, D., and Lin, Q.: Digital close range photogrammetry for the study of rill 

development at flume scale, CATENA, 143, 265–274, https://doi.org/10.1016/j.catena.2016.03.036, 2016. 

Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., and He, H.: Modelling the impacts of climate and land use 

changes on soil water erosion: Model applications, limitations and future challenges, J Environ Manage, 250, 109403, 

https://doi.org/10.1016/j.jenvman.2019.109403, 2019. 630 

Guzmán, G., Quinton, J. N., Nearing, M. A., Mabit, L., and Gómez, J. A.: Sediment tracers in water erosion studies: current 

approaches and challenges, J Soil Sediment, 13, 816–833, https://doi.org/10.1007/s11368-013-0659-5, 2013. 

Hajigholizadeh, M., Melesse, A. M., and Fuentes, H. R.: Erosion and Sediment Transport Modelling in Shallow Waters: A 

Review on Approaches, Models and Applications, Int J Env Res Pub He, 15, https://doi.org/10.3390/ijerph15030518, 2018. 

Hänsel, P., Schindewolf, M., Eltner, A., Kaiser, A., and Schmidt, J.: Feasibility of High-Resolution Soil Erosion 635 

Measurements by Means of Rainfall Simulations and SfM Photogrammetry, Hydrology, 3, 38, 

https://doi.org/10.3390/hydrology3040038, 2016. 

Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., Smetanová, A., Vericat, D., and Brardinoni, F.: 

Indices of sediment connectivity: opportunities, challenges and limitations, Earth-Sci Rev, 187, 77–108, 

https://doi.org/10.1016/j.earscirev.2018.08.004, 2018. 640 

Hessel, R., van den Bosch, R., and Vigiak, O.: Evaluation of the LISEM soil erosion model in two catchments in the East 

African Highlands, Earth Surf Proc Land, 31, 469–486, https://doi.org/10.1002/esp.1280, 2006. 

Hu, Y., Fister, W., He, Y., and Kuhn, N. J.: Assessment of crusting effects on interrill erosion by laser scanning, PeerJ, 8,  

e8487, https://doi.org/10.7717/peerj.8487, 2020a. 

Hu, Y., Gao, M., and Batunacun: Evaluations of water yield and soil erosion in the Shaanxi-Gansu Loess Plateau under 645 

different land use and climate change scenarios, Environmental Development, 34, 100488, 

https://doi.org/10.1016/j.envdev.2019.100488, 2020b. 

Jester, W. and Klik, A.: Soil surface roughness measurement—methods, applicability, and surface representation, CATENA, 

64, 174–192, https://doi.org/10.1016/j.catena.2005.08.005, 2005. 

Jetten, V. and Favis-Mortlock, D.: Modelling Soil Erosion in Europe, in: Soil Erosion in Europe, edited by: Boardman, J. 650 

and Poesen, J., John Wiley & Sons, Ltd, Chichester, UK, 695–716, https://doi.org/10.1002/0470859202.ch50, 2006. 

Jetten, V., Govers, G., and Hessel, R.: Erosion models: quality of spatial predictions, Hydrol Process, 17, 887–900, 

https://doi.org/10.1002/hyp.1168, 2003. 

Jiang, Y., Shi, H., Wen, Z., Guo, M., Zhao, J., Cao, X., Fan, Y., and Zheng, C.: The dynamic process of slope rill erosion 

analyzed with a digital close range photogrammetry observation system under laboratory conditions, Geomorphology, 350, 655 

106893, https://doi.org/10.1016/j.geomorph.2019.106893, 2020. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  19  

 

Jie, C., Jing-zhang, C., Man-zhi, T., and Zi-tong, G.: Soil degradation: a global problem endangering sustainable 

development, J Georg Sci, 12, 243–252, https://doi.org/10.1007/BF02837480, 2002. 

Kaiser, A., Neugirg, F., Haas, F., Schmidt, J., Becht, M., and Schindewolf, M.: Determination of hydrological roughness by 

means of close range remote sensing, SOIL, 1, 613–620, https://doi.org/10.5194/soil-1-613-2015, 2015. 660 

Kaiser, A., Erhardt, A., and Eltner, A.: Addressing uncertainties in interpreting soil surface changes by multitemporal high-

resolution topography data across scales, Land Degrad Dev, 29, 2264–2277, https://doi.org/10.1002/ldr.2967, 2018. 

Karydas, C. G., Panagos, P., and Gitas, I. Z.: A classification of water erosion models according to their geospatial 

characteristics, Int J Digit Earth, 7, 229–250, https://doi.org/10.1080/17538947.2012.671380, 2012. 

Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling soil moisture in a high-latitude landscape using 665 

LiDAR and soil data, Earth Surf Proc Land, 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018. 

Klik, A. and Eitzinger, J.: Impact of climate change on soil erosion and the efficiency of soil conservation practices in 

Austria, J Agr Sci, 148, 529–541, https://doi.org/10.1017/S0021859610000158, 2010. 

Kou, P., Xu, Q., Yunus, A. P., Dong, X., Zhong, Y., Chen, L., Fang, S., Luo, X., and Jin, Z.: Rill development and its change 

rate: a field experiment under constant rainfall intensity, CATENA, 199, 105112, 670 

https://doi.org/10.1016/j.catena.2020.105112, 2021. 

Laburda, T., Krása, J., Zumr, D., Devátý, J., Vrána, M., Zambon, N., Johannsen, L. L., Klik, A., Strauss, P., and Dostál, T.: 

SfM‐MVS Photogrammetry for Splash Erosion Monitoring under Natural Rainfall, Earth Surf Proc Land, 46, 1067–1082, 

https://doi.org/10.1002/esp.5087, 2021. 

Lane, L. J., Nichols, M. H., Levick, L. R., and Kidwell, M. R.: A Simulation Model for Erosion and Sediment Yield at the 675 

Hillslope Scale, in: Landscape Erosion and Evolution Modeling, edited by: Harmon, R. S. and Doe, W. W., Springer US, 

Boston, MA, 201–237, https://doi.org/10.1007/978-1-4615-0575-4_8, 2001. 

Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., Costache, R., Shahabi, H., Shirzadi, A., and 

Mosavi, A.: GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of 

Iran, Remote Sens, 12, 2478, https://doi.org/10.3390/rs12152478, 2020. 680 

Li, L., Nearing, M. A., Nichols, M. H., Polyakov, V. O., and Cavanaugh, M. L.: Using terrestrial LiDAR to measure water 

erosion on stony plots under simulated rainfall, Earth Surf Proc Land, 45, 484–495, https://doi.org/10.1002/esp.4749, 2020a. 

Li, L., Nearing, M. A., Nichols, M. H., Polyakov, V. O., Phillip Guertin, D., and Cavanaugh, M. L.: The effects of DEM 

interpolation on quantifying soil surface roughness using terrestrial LiDAR, Soil Till Res, 198, 104520, 

https://doi.org/10.1016/j.still.2019.104520, 2020b. 685 

Li, Y., Bai, X., Tian, Y., and Luo, G.: Review and Future Research Directions about Major Monitoring Method of Soil 

Erosion, J Hydrol Eng, 63, 12042, https://doi.org/10.1088/1755-1315/63/1/012042, 2017. 

Li, Z. and Fang, H.: Impacts of climate change on water erosion: A review, Earth-Sci Rev, 163, 94–117, 

https://doi.org/10.1016/j.earscirev.2016.10.004, 2016. 

Lima, R. L.P. d., Abrantes, J. R.C.B., Lima, J. L.M.P. d., and Lima, M. I. P. d.: Using thermal tracers to estimate flow 690 

velocities of shallow flows: laboratory and field experiments, J Hydrol Hydromech, 63, 255–262, 

https://doi.org/10.1515/johh-2015-0028, 2015. 

Lin, D., Eltner, A., Sardemann, H., and Maas, H.-G.: Automatic spatio-temporal flow velocity measurement in small rivers 

using thermal image sequences, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2, 

201–208, https://doi.org/10.5194/isprs-annals-IV-2-201-2018, 2018. 695 

Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and limitations of the fallout radionuclides 

(137)Cs, (210)Pb(ex) and (7)Be for assessing soil erosion and sedimentation, J Environ Radioactiv, 99, 1799–1807, 

https://doi.org/10.1016/j.jenvrad.2008.08.009, 2008. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  20  

 

Mahoney, D. T., Fox, J., Al-Aamery, N., and Clare, E.: Integrating connectivity theory within watershed modelling part II: 

Application and evaluating structural and functional connectivity, The Science of the total environment, 740, 140386, 700 

https://doi.org/10.1016/j.scitotenv.2020.140386, 2020. 

Marzen, M., Iserloh, T., Lima, J. L. M. P. de, Fister, W., and Ries, J. B.: Impact of severe rain storms on soil erosion: 

Experimental evaluation of wind-driven rain and its implications for natural hazard management, The Science of the total 

environment, 590-591, 502–513, https://doi.org/10.1016/j.scitotenv.2017.02.190, 2017. 

Meinen, B. U. and Robinson, D. T.: Mapping erosion and deposition in an agricultural landscape: Optimization of UAV 705 

image acquisition schemes for SfM-MVS, Remote Sens Environ, 239, 111666, https://doi.org/10.1016/j.rse.2020.111666, 

2020. 

Merritt, W. S., Letcher, R. A., and Jakeman, A. J.: A review of erosion and sediment transport models, Environ Modell 

Softw, 18, 761–799, https://doi.org/10.1016/S1364-8152(03)00078-1, 2003. 

Michael, A., Schmidt, J., Enke, W., Deutschländer, T., and Malitz, G.: Impact of expected increase in precipitation 710 

intensities on soil loss—results of comparative model simulations, CATENA, 61, 155–164, 

https://doi.org/10.1016/j.catena.2005.03.002, 2005. 

Mullan, D., Favis-Mortlock, D., and Fealy, R.: Addressing key limitations associated with modelling soil erosion under the 

impacts of future climate change, Agr Forest Meterol, 156, 18–30, https://doi.org/10.1016/j.agrformet.2011.12.004, 2012. 

Najafi, S., Dragovich, D., Heckmann, T., and Sadeghi, S. H.: Sediment connectivity concepts and approaches, CATENA, 715 

196, 104880, https://doi.org/10.1016/j.catena.2020.104880, 2021. 

Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Le Bissonnais, Y., Nichols, M. H., Nunes, 

J. P., Renschler, C. S., Souchère, V., and van Oost, K.: Modeling response of soil erosion and runoff to changes in 

precipitation and cover, CATENA, 61, 131–154, https://doi.org/10.1016/j.catena.2005.03.007, 2005. 

Neugirg, F., Kaiser, A., Schmidt, J., Becht, M., and Haas, F.: Quantification, analysis and modelling of soil erosion on steep 720 

slopes using LiDAR and UAV photographs, Proc IAHS, 367, 51–58, https://doi.org/10.5194/piahs-367-51-2015, 2015. 

Nouwakpo, S. K., Williams, C. J., Al-Hamdan, O. Z., Weltz, M. A., Pierson, F., and Nearing, M.: A review of concentrated 

flow erosion processes on rangelands: Fundamental understanding and knowledge gaps, International Soil and Water 

Conservation Research, 4, 75–86, https://doi.org/10.1016/j.iswcr.2016.05.003, 2016. 

Nunes, J. P., Seixas, J., and Keizer, J. J.: Modeling the response of within-storm runoff and erosion dynamics to climate 725 

change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis, CATENA, 

102, 27–39, https://doi.org/10.1016/j.catena.2011.04.001, 2013. 

Padarian, J., Minasny, B., and McBratney, A. B.: Using deep learning to predict soil properties from regional spectral data, 

Geoderma Regional, 16, e00198, https://doi.org/10.1016/j.geodrs.2018.e00198, 2019. 

Padarian, J., Minasny, B., and McBratney, A. B.: Machine learning and soil sciences: a review aided by machine learning 730 

tools, SOIL, 6, 35–52, https://doi.org/10.5194/soil-6-35-2020, 2020. 

Pandey, A., Himanshu, S. K., Mishra, S. K., and Singh, V. P.: Physically based soil erosion and sediment yield models 

revisited, CATENA, 147, 595–620, https://doi.org/10.1016/j.catena.2016.08.002, 2016. 

Parsons, A. J.: How reliable are our methods for estimating soil erosion by water?, The Science of the total environment, 

676, 215–221, https://doi.org/10.1016/j.scitotenv.2019.04.307, 2019. 735 

Phinzi, K. and Ngetar, N. S.: The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote 

sensing: A review, International Soil and Water Conservation Research, 7, 27–46, 

https://doi.org/10.1016/j.iswcr.2018.12.002, 2019. 

Pineux, N., Lisein, J., Swerts, G., Bielders, C. L., Lejeune, P., Colinet, G., and Degré, A.: Can DEM time series produced by 

UAV be used to quantify diffuse erosion in an agricultural watershed?, Geomorphology, 280, 122–136, 740 

https://doi.org/10.1016/j.geomorph.2016.12.003, 2017. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  21  

 

Poeppl, Dilly, Haselberger, Renschler, and Baartman: Combining Soil Erosion Modeling with Connectivity Analyses to 

Assess Lateral Fine Sediment Input into Agricultural Streams, Water, 11, 1793, https://doi.org/10.3390/w11091793, 2019. 

Pourghasemi, H. R., Sadhasivam, N., Kariminejad, N., and Collins, A. L.: Gully erosion spatial modelling: Role of machine 

learning algorithms in selection of the best controlling factors and modelling process, Geosci Front, 11, 2207–2219, 745 

https://doi.org/10.1016/j.gsf.2020.03.005, 2020. 

Renard, K. G., Foster, G. R., Weesies, G. A., and Porter, J. P.: RUSLE: Revised universal soil loss equation, 46, 30–33, 

1991. 

Rodrigo-Comino, J.: Five decades of soil erosion research in “terroir”. The State-of-the-Art, Earth-Sci Rev, 179, 436–447, 

https://doi.org/10.1016/j.earscirev.2018.02.014, 2018. 750 

Routschek, A., Schmidt, J., Enke, W., and Deutschlaender, T.: Future soil erosion risk — Results of GIS-based model 

simulations for a catchment in Saxony/Germany, Geomorphology, 206, 299–306, 

https://doi.org/10.1016/j.geomorph.2013.09.033, 2014. 

Scherer, U.: Prozessbasierte Modellierung der Bodenerosion in einer Lösslandschaft, Dissertation, University Karlsruhe, 

Karlsruhe, 2008. 755 

Schindewolf, M., Schmidt, J., and Werner, M. von: Modeling Soil Erosion and resulting Sediment Transport into Surface 

Water Courses on Regional Scale, Zeit fur Geo Supp, 57, 157–175, https://doi.org/10.1127/0372-8854/2012/S-00087, 2013. 

Schmidt, J., Werner, M. v., and Schindewolf, M.: Wind effects on soil erosion by water — A sensitivity analysis using 

model simulations on catchment scale, CATENA, 148, 168–175, https://doi.org/10.1016/j.catena.2016.03.035, 2017. 

Schmidt, J.: A mathematical Model to Simulate Rainfall Erosion, Catena Supp, 101–109, 1991. 760 

Septianugraha, R., Harryanto, R., and Sara, D. S.: Remote sensing and GIS methode for assess erosion with satellite imagery 

at Citarik Sub-Watershed, IOP Conference Series: Earth and Environmental Science, 393, 12064, 

https://doi.org/10.1088/1755-1315/393/1/012064, 2019. 

Sepuru, T. K. and Dube, T.: An appraisal on the progress of remote sensing applications in soil erosion mapping and 

monitoring, Remote Sensing Applications: Society and Environment, 9, 1–9, https://doi.org/10.1016/j.rsase.2017.10.005, 765 

2018. 

Starkloff, T. and Stolte, J.: Applied comparison of the erosion risk models EROSION 3D and LISEM for a small catchment 

in Norway, CATENA, 118, 154–167, https://doi.org/10.1016/j.catena.2014.02.004, 2014. 

Starkloff, T., Stolte, J., Hessel, R., Ritsema, C., and Jetten, V.: Integrated, spatial distributed modelling of surface runoff and 

soil erosion during winter and spring, CATENA, 166, 147–157, https://doi.org/10.1016/j.catena.2018.04.001, 2018. 770 

Swinton, S. M., Lupi, F., Robertson, G. P., and Hamilton, S. K.: Ecosystem services and agriculture: Cultivating agricultural 

ecosystems for diverse benefits, Ecol Econ, 64, 245–252, https://doi.org/10.1016/j.ecolecon.2007.09.020, 2007. 

Tao, W., Wang, Q., Guo, L., and Lin, H.: A new analytical model for predicting soil erosion and nutrient loss during crop 

growth on the Chinese loess plateau, Soil Till Res, 199, 104585, https://doi.org/10.1016/j.still.2020.104585, 2020. 

Tauro, F. and Grimaldi, S.: Ice dices for monitoring stream surface velocity, J Hydro-Environ Res, 14, 143–149, 775 

https://doi.org/10.1016/j.jher.2016.09.001, 2016. 

Thomsen, L. M., Baartman, J. E. M., Barneveld, R. J., Starkloff, T., and Stolte, J.: Soil surface roughness: comparing old and 

new measuring methods and application in a soil erosion model, SOIL, 1, 399–410, https://doi.org/10.5194/soil-1-399-2015, 

2015. 

Uber, M., Nord, G., Legout, C., and Cea, L.: How do modeling choices impact the representation of structural connectivity 780 

and the dynamics of suspended sediment fluxes in distributed soil erosion models?, 2020. 

van Oost, K., Govers, G., Cerdan, O., Thauré, D., van Rompaey, A., Steegen, A., Nachtergaele, J., Takken, I., and Poesen, J.: 

Spatially distributed data for erosion model calibration and validation: The Ganspoel and Kinderveld datasets, CATENA, 61, 

105–121, https://doi.org/10.1016/j.catena.2005.03.001, 2005. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  22  

 

Vente, J. de and Poesen, J.: Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative 785 

models, Earth-Sci Rev, 71, 95–125, https://doi.org/10.1016/j.earscirev.2005.02.002, 2005. 

Vente, J. de, Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., van Rompaey, A., Arabkhedri, M., and Boix-Fayos, 

C.: Predicting soil erosion and sediment yield at regional scales: Where do we stand?, Earth-Sci Rev, 127, 16–29, 

https://doi.org/10.1016/j.earscirev.2013.08.014, 2013. 

Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., 790 

Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., 

Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, 

F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., 

Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., van Dam, J., van der 

Zee, S.E.A.T.M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M.: Modeling Soil Processes: Review, Key 795 

Challenges, and New Perspectives, Vadose Zone J, 15, vzj2015.09.0131, https://doi.org/10.2136/vzj2015.09.0131, 2016. 

Vinci, A., Brigante, R., Todisco, F., Mannocchi, F., and Radicioni, F.: Measuring rill erosion by laser scanning, CATENA, 

124, 97–108, https://doi.org/10.1016/j.catena.2014.09.003, 2015. 

Vrieling, A.: Satellite remote sensing for water erosion assessment: A review, CATENA, 65, 2–18, 

https://doi.org/10.1016/j.catena.2005.10.005, 2006. 800 

Vu Dinh, T., Hoang, N.-D., and Tran, X.-L.: Evaluation of Different Machine Learning Models for Predicting Soil Erosion 

in Tropical Sloping Lands of Northeast Vietnam, Applied and Environmental Soil Science, 2021, 1–14, 

https://doi.org/10.1155/2021/6665485, 2021. 

Wirtz, S., Seeger, M., and Ries, J. B.: The rill experiment as a method to approach a quantification of rill erosion process 

activity, Zeit fur Geo, 54, 47–64, https://doi.org/10.1127/0372-8854/2010/0054-0004, 2010. 805 

Wischmeier, W. H. and Smith, D. D.: Predicting rainfall erosion losses: a guide to conservation planning, USDA Agriculture 

Handbook, 537, US Givt. Printing Office, Washington DC, 1978. 

Wischmeier, W. H. and Smith, D. D.: Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains, 

Agricultural Handbook, 282, US Department of Agriculture - Agriculture Research Service, Brooksville, FL, 1965. 

Wu, S. and Chen, L.: Modeling Soil Erosion With Evolving Rills on Hillslopes, Water Resour Res, 56, 697, 810 

https://doi.org/10.1029/2020WR027768, 2020. 

Wu, S., Chen, L., Wang, N., Yu, M., and Assouline, S.: Modeling Rainfall‐Runoff and Soil Erosion Processes on Hillslopes 

With Complex Rill Network Planform, Water Resour Res, 54, 570, https://doi.org/10.1029/2018WR023837, 2018. 

Yang, Y., Shi, Y., Liang, X., Huang, T., Fu, S., and Liu, B.: Evaluation of structure from motion (SfM) photogrammetry on 

the measurement of rill and interrill erosion in a typical loess, Geomorphology, 385, 107734, 815 

https://doi.org/10.1016/j.geomorph.2021.107734, 2021. 

Zhang, J. X., Chang, K.‐T., and Wu, J. Q.: Effects of DEM resolution and source on soil erosion modelling: a case study 

using the WEPP model, Int J Geogr Inf Sci, 22, 925–942, https://doi.org/10.1080/13658810701776817, 2008. 

Zhang, X.-C., Nearing, M. A., Garbrecht, J. D., and Steiner, J. L.: Downscaling Monthly Forecasts to Simulate Impacts of 

Climate Change on Soil Erosion and Wheat Production, Soil Sci Soc Am J, 68, 1376–1385, 820 

https://doi.org/10.2136/sssaj2004.1376, 2004. 

Zhang, X.-C. J., Liu, G., and Zheng, F.: Understanding erosion processes using rare earth element tracers in a preformed 

interrill-rill system, The Science of the total environment, 625, 920–927, https://doi.org/10.1016/j.scitotenv.2017.12.345, 

2018a. 

Zhang, Y., Sui, B., Shen, H., and Wang, Z.: Estimating temporal changes in soil pH in the black soil region of Northeast 825 

China using remote sensing, Comput Electron Agr, 154, 204–212, https://doi.org/10.1016/j.compag.2018.09.005, 2018b. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.



 

  23  

 

Zhao, J., van Oost, K., Chen, L., and Govers, G.: Moderate topsoil erosion rates constrain the magnitude of the erosion-

induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau, Biogeosciences, 13, 4735–4750, 

https://doi.org/10.5194/bg-13-4735-2016, 2016. 

Zhou, T., Geng, Y., Chen, J., Pan, J., Haase, D., and Lausch, A.: High-resolution digital mapping of soil organic carbon and 830 

soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms, The Science 

of the total environment, 729, 138244, https://doi.org/10.1016/j.scitotenv.2020.138244, 2020. 

Zingg, A. W.: Degree and length of land slope as it affects soil loss in run-off, Agric Enging, 59–64, 1940. 

https://doi.org/10.5194/soil-2021-85
Preprint. Discussion started: 20 August 2021
c© Author(s) 2021. CC BY 4.0 License.




