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Abstract. Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics 11 

are influenced by a number of well-known abiotic factors such as clay content, soil pH or pedogenic oxides. These parameters 12 

interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence 13 

of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on 14 

parent material, soil texture class and land use. To this end, topsoils were sampled from arable and grassland sites in southwestern 15 

Germany at four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of 16 

data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained 17 

PCA results only to a small extent. The obtained global and the different local clusters of the dataset were further analyzed for the 18 

relationships between SOC and mineral phase parameters in order to assess specific parameter combinations explaining SOC and 19 

its labile fractions. Analyses were focused on soil parameters that are known as possible predictors for the occurrence and 20 

stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides). Regarding the global dataset, we found significant correlations 21 

between SOC and its labile fractions hot water-extractable C (HWEC) and microbial biomass C (MBC), respectively and the 22 

predictors, yet correlation coefficients were partially low. Mixed effect models were used to identify specific parameter 23 

combinations that significantly explain SOC and its labile fractions of the different clusters. Comparing measured and mixed effect 24 

models-predicted SOC values revealed acceptable to very good regression coefficients (R² = 0.41-0.91). Thereby, the predictors and 25 

predictor combinations clearly differed between models obtained for the whole data set and the different cluster groups. At a local 26 

scale site specific combinations of parameters explained the variability of organic matter notably better, while the application of 27 

global models to local clusters resulted in less sufficient performance. Independent from that, the overall explained variance 28 

generally decreased in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties than on organic 29 

matter input and turnover in soil. 30 
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1 Introduction 32 

Soil as an inherent part of terrestrial ecosystems acts as a major regulator of the organic carbon (OC) cycle especially through the 33 

function of OC storage (Heimann and Reichstein, 2008; Scharlemann et al., 2014). Hence, it is of utmost relevance and a focus of 34 

ongoing research to define models and parameter sets that best describe and predict soil organic carbon (SOC) contents of soils. 35 

Further it is required to identify the driver for SOC storage at different scales and sites to adapt the management of soils. Overall, 36 

the relevance of parameters for quantification of SOC is often described by bivariate relationships (Hassink et al., 1993; Barré et 37 

al., 2017). Yet, SOC and its potential sequestration by formation of organo-mineral associations depends on combinations and 38 

interactions of several environmental factors or soil properties, so that the number of multivariate applications to estimate the 39 

accumulation of SOC is increasing  (Hobley et al., 2015; Heinze et al., 2018).  40 

In addition to total SOC, its labile subfractions such as hot water extractable carbon (HWEC) or microbial biomass carbon (MBC) 41 

are more and more recognized as fast reacting SOC pools in order to analyze carbon dynamics in soils (Weigel et al., 2011; Lal, 42 

2016). The HWEC is known as a measure of the bioavailable and mineralizable fraction of SOC (Spohn and Giani, 2011; Heller 43 

and Zeitz, 2012). The MBC is a quantitative measure of the microbial community that plays an indispensable role for the turnover 44 

of SOC. Therefore, MBC is expedient to explain SOC dynamics (Liang et al., 2017). In contrast, much less research and attempts 45 

for quantitative modeling of these labile fractions compared to SOC have been done in the past (Liddle et al., 2020). 46 

It is well known that factors such as climate, topography, vegetation, parent material and time are major factors influencing contents 47 

and storage of SOC (Jenny, 1941). Accordingly, large scale (often national or continental) surveys often include geographical 48 

properties, vegetation types, general forms of land use as well as climatic site conditions to explain the variability of SOC 49 

(Wiesmeier et al., 2014; Gray et al., 2015). Consequently, vegetation and anthropogenic influence by land use and land use changes 50 

are essential factors to model SOC accumulation and dynamics (Poeplau and Don, 2013; Dignac et al., 2017). The relevance of the 51 

parent material for SOC sequestration and stocks was discussed for sites and small landscapes of a few km² (Barré et al., 2017; 52 

Angst et al., 2018) as well as for large areas on the scale of regions or countries (Wiesmeier et al., 2013; Vos et al., 2019). The 53 

potential influence of parent material on SOC is mostly considered by parameters of soil mineralogy and texture (Herold et al., 54 

2014). Factors such as climate, topography, parent material, vegetation or land use are well suited to explain the variability of SOC 55 

at larger scales or at landscapes with a high variability concerning these factors. In contrast, for smaller, local study areas or rather 56 

uniform areas with a low factor variability an inclusion of these factors as variables is less expedient (Wiesmeier et al., 2019).  57 

In addition to or even instead of these general factors, further parameters describing the soil composition in a more specific way, 58 

become relevant at regional or local scale setting boundaries for SOC accumulation, e.g. by the formation of organo-mineral 59 

associations. For an identification of SOC variations due to site specific characteristics selected parameters are used which are 60 

mostly known as indicators for stabilization of SOC such as content of fine silt, clay and pedogenic oxides or microbial parameters 61 

such as microbial biomass and amino sugars (Angst et al., 2018; Quesada et al., 2020). There are indications that for the explanation 62 

of SOC variability on a local to regional scale soil parameters instead of factors are especially suitable. Models based on soil 63 

parameters also allow to identify possible drivers of SOC stabilization while using the above mentioned general factors would not 64 

deliver a satisfying result (Wiesmeier et al., 2019; Adhikari et al., 2020).  65 

Organo-mineral associations are highly relevant for stabilization and accumulation of SOC and its labile fractions (Lützow et al., 66 

2006). It is well known that the different mineral particle size classes vary in their ability to interact with SOC, forming organo-67 

mineral associations (Arrouays et al., 2006; Lützow et al., 2007). On one hand coarse particle size fractions such as sand, coarse silt 68 

(cSilt) and medium silt (mSilt) contribute less to interactions between SOC and the mineral phase while on the other hand fine silt 69 

(fSilt) and clay dominate such interactions (Ludwig et al., 2003). In addition, the mineral composition of the fine fraction, i.e. types 70 

of clay minerals and pedogenic oxides, is relevant for the interactions of SOC with the mineral phase (Kleber et al., 2015; Porras et 71 

al., 2017). Especially iron and aluminum oxides interact with SOC leading to sequestration (Mikutta et al., 2006). Stabilization of 72 

SOC is further enhanced by multivalent cations such asCa2+ and Mg2+ going along with higher soil pH (Kaiser et al., 2012; O'Brien 73 

et al., 2015). Covering on one hand all quantitative relevant cations and on the other hand being an overall measure of soils sorptive 74 
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properties the effective cation exchange capacity (ECEC) provides an overall measure to model cation impact on SOC storage 75 

(Kaiser et al., 2012; O'Brien et al., 2015). Rock fragments (soil skeleton) contribute only little to SOC storage (Poeplau et al., 2017). 76 

Anyhow, the fraction of rock fragments is considered as a relevant parameter to assess SOC accumulation due to a potential 77 

saturation effect in soils with a high rock fragment content in consequence of a disproportionately high input of organic matter in 78 

the fine soil fraction (Bornemann et al., 2011).  79 

Consequently, understanding SOC as a dynamic equilibrium of heterogeneous compounds with distinct relationships to various 80 

components of the soil mineral phase (Lehmann and Kleber, 2015) implements that SOC accumulation is best described and 81 

predicted by a variety of soil mineral phase parameters instead of a single predictor. Thereby combinations of parameters or factors 82 

can differ according to the considered scale. Consequently, multivariate approaches better explain the SOC variability (Heinze et 83 

al., 2018; Liddle et al., 2020) compared to bivariate correlation models that are often unsuited at the level of local and regional 84 

soilscapes (Jian-Bing et al., 2006). The latter especially applies for studies that are limited to a single specific location or only 85 

contain a limited number of categorical variables or estimated soil parameters (Liddle et al., 2020). On the other hand, predictions 86 

based on global models are often less site-specific and thus can possibly lead to an insufficient quantification of SOC at certain sites.  87 

Consequently, it is required to determine parameter sets to estimate SOC and its labile fractions HWEC and MBC at a regional or 88 

landscape scale. It is necessary to identify predictor parameters and categorical environmental factors that are able to predict SOC 89 

as well as its labile fractions by using local and global models. Differences regarding the relevance of a predictor in local vs. global 90 

models have to be identified to boost model performance and to fit adequate datasets using the best set of parameters for the 91 

prediction of SOC at the investigated location. This overall aim was investigated in this study using a dataset from four local 92 

agricultural areas in the greater region of Trier (each with a size of 5-10 km²), thus with similarity in the global factors but distinct 93 

local properties such as parent rock material, soil texture and land use. Regarding the composition of the soil mineral phase the four 94 

local areas differ among each other, but as a global dataset they represent a broad range of soil properties typical for soils in temperate 95 

regions. Therefore, the dataset enables to verify whether the global dataset is able to cover the local variability of SOC and its labile 96 

fractions. Objectives of this study were, (i) based on identified differences in soil properties to determine best fitting factors and 97 

parameter combinations that explain the variability in SOC and its labile fractions HWEC and MBC. (ii) It was aimed to determine 98 

the relevance of local models in comparison to global models to achieve a sufficient quantification for local landscapes with distinct 99 

properties. To this end, linear regression, principal component analysis (PCA) and mixed effect models were used in order to find 100 

out whether global models or local models are better fitting. (iii) It was assessed if local datasets show a distinct combination of 101 

significantly contributing predictor parameters compared to other local datasets and the entire dataset. 102 

2 Material and Methods 103 

2.1 Study area 104 

The study was conducted in the greater area of Trier in southwestern Germany (Fig. 1). Bulk samples from topsoil horizons, i.e. 0-105 

25 cm for arable and 0-15 cm for grassland soils, were taken in spring 2017 and 2018 from 199 agricultural sites used as arable land 106 

(150) and grassland (49). Similar numbers of samples were taken from four regional areas with different parent materials. Parent 107 

materials were Devonian clay schist (DCS), Luxemburg sandstone (LBS), sandy dolomitic limestone (DLS) from the Muschelkalk, 108 

and Permian siltstone and fine sandstone (PSS) from the Rotliegend (Wagner et al., 2011).  109 
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 111 

Fig. 1. Study area in the greater Trier region; sampling sites at the four regions with different parent material are indicated, i.e. 112 

Devonian clay schist (DCS), sandy dolomitic limestone (DLS) from the Muschelkalk, Luxemburg sandstone (LBS), and Permian 113 

siltstone and fine sandstone (PSS) from the Rotliegend (©GeoBasis-DE). 114 

 115 

 116 

2.2 Analysis of soil properties 117 

Samples were sieved < 2 mm and the stone content (> 2 mm) was determined gravimetrically. For further analysis, samples were 118 

divided and stored at -20°C or air-dried, respectively. Soil pH was measured in 0.01 M CaCl2 solution using a pH/Con 340i glass 119 

electrode (WTW GmbH, Weilheim). Particle size distribution was determined by a combination of wet sieving and pipette method 120 

according to Blume et al. (2011). Dithionite-citrate extractable Fe (Fed) was measured according to Mehra and Jackson (1958). To 121 

this end, 2 g air-dry soil were extracted with a mixture of 1 g sodium dithionite, 40 ml sodium citrate and 10 ml NaHCO3. Oxalate 122 

extractable Fe and Al (Feo, Alo) were determined according to  Schwertmann (1964). For extraction, 1 g air-dry soil was shaken for 123 

2 h in the dark in 50 ml NH4
+-oxalate (pH 3) and filtered afterwards. Extraction for the determination of the effective cation exchange 124 

capacity (ECEC) was conducted using 1 M NH4Cl. Elemental analyses for pedogenic oxides and ECEC (Na, K, Fe, Mn, Al, Ca, 125 

Mg) were done using atomic absorption spectrometry (Varian AA240 FS Fast Sequential Atomic Absorption Spectrometer; 126 

Darmstadt, Germany). 127 

For estimation of total carbon (TC) and nitrogen soil was dried at 105°C, grinded and measured by an Elemental Analyzer EA3000 128 

Series (HEKAtech GmbH, Wegberg). For carbonate containing soils the inorganic carbon (IC) was determined following carbonate 129 
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destruction using phosphoric acid at a temperature of 100°C (IC Kit combined with Elemental Analyzer EA3000 Series, HEKAtech 130 

GmbH, Wegberg). SOC content was calculated as the difference of TC and IC. HWEC and hot water extractable nitrogen (HWEN) 131 

were determined following Körschens et al. (1990), using a Gerhardt Turbotherm TT 125 (Gerhardt, Bonn, Germany) for extraction 132 

of 10 g soil with distilled water (50 ml) at 100°C for 1 h. After extracts cooled down 1 ml of 0.2 M MgSO4 was added and samples 133 

were centrifuged at 1476 g for 10 minutes. Microbial biomass was estimated by using chloroform fumigation extraction according 134 

to Joergensen (1995) with 0.01 M CaCl2. Extracts of HWEC, HWEN, microbial biomass carbon (MBC) and nitrogen (MBN) were 135 

analyzed with a TOC-VCPN analyzer (Shimadzu, Duisburg, Germany). For MBC and MBN correction factors kEC = 0.45 and kEN 136 

= 0.4 respectively, were used (Joergensen, 1996; Joergensen and Mueller, 1996). Soil respiration was measured according to 137 

Heinemeyer et al. (1989) . Therefore, 25 g dry equivalent of sieved field moist soil were weighted in a tube that was flushed with 138 

200 mL min-1 of CO2-free, humid air for 24 hours. Evolved CO2 was determined after the soil passage using an infrared gas analyzer 139 

(ADC 225 MK3, The Analytical Development, Hoddesdon, England).  140 

2.3 Data analysis 141 

Principal component analysis (PCA) was carried out to identify clusters within the dataset. For that purpose, 24 parameters 142 

describing the mineral phase as well as SOM were included (Table 1). To conduct the PCA applied variables were log transformed, 143 

centered and scaled to achieve standardized and comparable variables. Ellipses were defined by 95 % of the confidence interval 144 

according to Fox and Weisberg (2019), The cluster of clayey soils was not included in the analysis due to a small number of samples 145 

(n = 5). Linear regressions were performed to identify significant impact of mineral phase parameters  on SOC, HWEC and MBC 146 

for the entire dataset as well as for the identified clusters. Mixed effect models were determined for the entire dataset and for 147 

identified clusters. To this end, selected soil properties of the mineral phase (Fed-o [g/kg], Feo [g/kg], Alo [g/kg], sand [%], cSilt plus 148 

mSilt [%], fSilt plus clay [%], (Ca + Mg)ECEC [mmolc/kg ], stones [%] and pH) were used as fixed effect while, ‘parent material’, 149 

‘soil texture group’ or ‘land use’ were used as random effect. In general, as random effects only categorical variables were selected, 150 

while for the fixed effects variable mineral phase parameters were selected. Parent material as a random effect includes the four 151 

different soil parent materials that dominate at the four sampling sites. For the soil texture group as random effect four levels were 152 

applied (sandy, silty, clayey and loamy soils). The additional implementation of the soil texture groups was done to consider the 153 

potential different intercepts of the specific groups. Land use as random effect comprised the two management practices arable and 154 

grassland. Maximum likelihood was applied as estimation procedure for the mixed effect models. At the beginning, all selected soil 155 

properties were included in each model. Stepwise removal of parameters was conducted until all properties included in the models 156 

significantly contributed to SOC, HWEC or MBC, respectively. Additional, the relevance of variables was visualized by the mean 157 

values of the clusters multiplied with their coefficient received from the mixed effect models. To avoid collinear behavior of the 158 

soil texture related parameters either ‘sand’ or ‘coarse silt plus medium silt’ (cSilt plus mSilt) were used for model development. 159 

The two models received were compared by their Akaike information criterion (AIC) using ANOVA to identify the best model. 160 

Furthermore, ECEC was excluded from mixed effect models to avoid overfitting due to collinearity with (Ca+Mg)ECEC. Residuals 161 

of models were examined for homoscedasticity and normality. In case these criteria were not fulfilled, the response variable was 162 

square root transformed to achieve variance homogeneity and normality. To examine performance of mixed effect models, predicted 163 

values were tested against measured values of SOC, HWEC and MBC, respectively using linear regressions. Data are shown as 164 

mean (± SE) if not indicated otherwise. Statistical significance was indicated with *p < 0.05, **p < 0.01 and ***p < 0.001. Statistical 165 

analyses were carried out using the R statistical package version 3.6.2 (R Core Team, 2019).  166 
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3 Results  169 

The dataset covers soils and topsoil properties with broad ranges of 24 parameters and parameter ratios, respectively, of SOM, 170 

soil mineral phase and microbial biomass (Table 1). For example, soil pH ranged from very strongly acidic (pH 3.8) to slightly 171 

alkaline (pH 7.4); soil texture varied from sandy to clayey texture. Thereby, parent materials essentially influenced 172 

characteristics of the mineral phase related parameters such as texture, e.g. soils developed from sandy parent material such as 173 

LBS had a sandy texture with sand content of up to 91.9 %. Soils developed from DCS and DLS parent material had elevated 174 

contents of fine silt plus clay (33.4-53.3% and 16.7-44.8, respectively). Additionally, high contents of pedogenic oxides were 175 

found in soils from DCS while ECEC and especially the contents of the polyvalent cations (Ca+Mg)ECEC were high in soils 176 

developed from DLS (Table 1). Higher contents of SOC, HWEC and MBC were found for all parent material substrates in 177 

grassland soils compared to arable soils (Table 1 and SI Table A). For the entire dataset, SOC ranged from 0.38 to 5.32 %, while 178 

ranges from 237 to 1889 µg/g and 52.4 to 810 µg/g were determined for HWEC and MBC, respectively. SOC was strongly 179 

correlated with HWEC (R² = 0.75) while the correlation with MBC was substantially lower (R² = 0.40). The dissimilar 180 

correlations of SOC with the two labile fractions indicate differences between HWEC and MBC, which was further confirmed 181 

by the mediocre correlation between HWEC and MBC (R² = 0.55). 182 

To identify possible local clusters due to different sampling sites, parent material or land use systems within the dataset, PCA 183 

was conducted including all 24 soil parameters and parameter ratios (Fig. 2). Principal component (PC) 1 to 3 explained 65 % 184 

of the variance and had eigenvalues > 1 (Table 2). Parameters related to the soil mineral phase loaded on all three PCs. 185 

Additionally, highest loadings on PC 1 were found for parameters describing the composition of SOM. For PC 2 high loadings 186 

were further found for parameters related to soil acidity (pH, IC, ECEC, (Ca+Mg)ECEC) as well as for SOC and the microbial 187 

ratio MBC/SOC. The HWEC and respiration further loaded on PC 3 (Table 2). A plot of the first two PCs shows clear clusters 188 

that were strongly related to the parent materials according to the different sampling sites (Fig. 2 A). In addition, samples 189 

clustered somewhat different when assigned to different soil texture classes (Fig. 2 B). Land use, however, was insufficient to 190 

explain separation into different local clusters (Fig. S1). Instead, it could be used as a global cluster covering soils with separated 191 

effects due to land use management. Compared to the entire dataset, the identified clusters based on parent material and soil 192 

texture showed distinct properties of the SOM and the mineral phase (Table 1). In contrast to the local clusters, the global cluster 193 

according to land use classes showed mostly properties quite similar to the entire dataset. Overall, identified clusters strongly 194 

depended on the composition of SOM as well as on specific properties of the soil mineral phase, e.g. texture or soil pH related 195 

properties. With a smaller relevance, parameters regarding the characteristics of soil microorganisms separated the dataset into 196 

clusters (Table 2). 197 

 198 
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Table 2. Loadings of the variables on the first three principal components. 201 

 202 

  PC1 PC2 PC3 

SOC -0.24 -0.24 -0.19 

Nitrogen  -0.27 -0.21 -0.04 

Hydrogen -0.26 -0.12 0.17 

Oxygen -0.26 -0.18 0.07 

HWEC -0.22 -0.21 -0.36 

HWEN -0.22 -0.04 -0.19 

MBC -0.27 0.08 -0.26 

MBN -0.24 0.12 -0.26 

Respiration -0.18 0.01 -0.36 

MBC/SOC -0.09 0.33 -0.12 

C/N SOM 0.09 -0.07 -0.36 

C/N HWEC 0.06 -0.16 -0.13 

C/N MB -0.03 -0.09 0.04 

IC -0.09 0.32 -0.09 

pH -0.07 0.4 0.03 

ECEC -0.22 0.3 0.07 

(Ca+Mg)ECEC -0.22 0.3 0.06 

Feo -0.27 -0.13 0.12 

Fed-Feo -0.17 -0.07 0.37 

Alo -0.16 -0.34 0.14 

Sand 0.27 -0.11 -0.11 

cSilt + mSilt -0.21 0.19 0.12 

fSilt + clay -0.29 0.03 0.18 

Stones -0.13 -0.09 0.29 

Proportion of Variance 40.2 17.5 7.47 

Cumulative Proportion 40.2 57.8 65.23 

Eigenvalue 9.66 4.21 1.79 

 203 

  204 
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In order to test whether single parameters are suitable predictors of SOC, HWEC and MBC ten independent parameters 205 

describing the properties of the soil mineral phase were selected from the dataset (Table 1). Regressions were calculated based 206 

on the total dataset (n = 199), for further global clusters (e.g. arable or grassland soils) and the local clusters that were identified 207 

in PCA, i.e. subgroups based on the four parent rock materials and major texture classes (Table 3). Using the complete dataset, 208 

highly significant regressions of SOC, HWEC and MBC to most soil mineral phase parameters were found, yet predominantly 209 

at a low level of explained variance (Table 3). Compared to the complete dataset substantially different soil parameters explained 210 

SOC, HWEC and MBC especially for smaller clusters such as soils from the parent materials DCS or LBS. Yet, clusters 211 

comprising large sample numbers, where soil parameters cover broad ranges such as the clusters of loamy, arable or grassland 212 

soils, showed significantly contributing parameters that largely matched with those found for the complete dataset. All clusters 213 

differed in their pattern of significant parameters. However, for the complete dataset as well as for the clusters the explained 214 

variance decreased from SOC to the labile fractions HWEC and MBC (Fig. 3 and Table 3). Only some properties such as sand. 215 

ECEC or (Ca+Mg)ECEC showed for MBC  a higher explained variance compared to SOC and HWEC (Table 3). For the entire 216 

dataset the content of SOC was best explained by Alo and Feo as predictor parameter (R² = 0.63 and 0.56, respectively) while 217 

soil texture related properties such as sand or fSilt plus clay explained SOC on a lower level (Table 3). Other determined mineral 218 

phase parameters such as cSilt plus mSilt or ECEC explained variance to a negligible extent (Table 3). With lower values for 219 

R², HWEC was explained by similar soil mineral phase parameters, as it was the case for SOC. With R² of 0.39 and a variance 220 

of 0.38 HWEC was best explained by pedogenic oxides (Feo and Alo, Table 3). In contrast, the predictors for MBC were quite 221 

distinct. Especially parameters related to soil texture such as fSilt plus clay (R² = 0.43) or sand (R² = 0.45) better explained the 222 

variance of MBC compared to HWEC (R² = 0.27 and 0.16, respectively). Nevertheless, none of the applied parameters could 223 

explain in all cases the complete variance of SOC, HWEC or MBC to a sufficient extent. Explained variance of SOC and its 224 

labile fractions varied strongly between the parent material clusters. In general, the variance in these clusters was explained to a 225 

substantially lower extent compared to the whole dataset (Table 3). In most cases, parameters of soil texture and pedogenic 226 

oxides correlated significantly with SOC, HWEC and MBC. Additional to these parameters, (Ca+Mg)ECEC was useful to predict 227 

SOC and MBC for some parent material clusters (Table 3). Highest values of R² were reached for the regression between SOC 228 

and Alo and Feo (0.47, 0.42) in the cluster DCS and fSilt plus clay (0.37) in the cluster PSS. R² was even lower in the clusters 229 

LBS and DLS with maximum values of 0.21 and 0.20 respectively. Further, the cluster of loamy soils was also best described 230 

by parameters representing pedogenic oxides and texture. Much lower R² were found for the sandy and silty soil clusters with 231 

Alo and texture parameters (sandy) and additionally Feo (silty) as best descriptors. While for SOC, HWEC and MBC mostly the 232 

same descriptors were found (yet on different level of R²), they were partially different for MBC of the clusters silty and loamy 233 

soils.  234 
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Comprising soils from all identified clusters, the set of descriptor parameters of the land use clusters were comparable to those 237 

of the global dataset. Yet, the variance of SOC and its labile fractions were explained to a much higher extent for the global 238 

dataset and the clusters of arable soils and especially grassland soils compared to the clusters based on parent material and 239 

texture. Both land use types include an equal weight of samples from each parent material and act therefore as global cluster. 240 

While SOC was explained by complex interactions of several different parameters for the distinct fractions, less variables 241 

showed a significant contribution to explain the variability of HWEC and MBC.  242 

Since bivariate linear models insufficiently explained SOC, HWEC and MBC, respectively, mixed effect models were 243 

developed. In these models, mineral phase parameters were applied as fixed effects, and land use, parent material and texture 244 

were used as random effects (Table 4, Fig. 4 and Fig. 5). Variability of SOC, HWEC and MBC were much better explained than 245 

by linear regressions indicating that organic matter depends on complex interactions of several components of the mineral phase. 246 

In general, mixed effect models explained variance in the order SOC > HWEC > MBC (Fig. 3 and Table 4). Measured and 247 

predicted data using the mixed effect models showed a close relationship along the 1:1 prediction line while scatter increased at 248 

higher contents of HWEC and especially of MBC, showing that estimates for grassland soils were inferior. Anyhow, correlations 249 

between measured data and predictions of the mixed effect models (R² = 0.29-0.91) were mostly higher than for bivariate linear 250 

regressions (R² = 0.00 – 0.73). Independent from the applied random effect, precision of prediction results increased with sample 251 

number and data range of parameters, respectively. Consequently, best model performance was achieved for the complete dataset 252 

as well as for some of the local clusters (e.g. DCS, loamy soils), while models for other local clusters such as LBS, DLS or 253 

sandy soils revealed the poorest estimates of SOC (Table 4). In general, applying random effects such as parent material, land 254 

use or texture for mixed effect models led to distinct results for the prediction of SOC, HWEC or MBC (Table 4). For clusters 255 

according to land use variance was explained to a high extent (mean R² of 0.68 and 0.80 for cluster of arable and grassland 256 

respectively). Models using parent material or texture as random effect mostly showed minor differences for predictions of SOC, 257 

HWEC or MBC. Models using land use as random effect were partly distinct, though, indicating the different influence of land 258 

use on SOC and its labile fractions (Table 4).  259 

  260 
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Table 4. R² of the models for prediction of SOC, HWEC, and MBC based on the results of mixed effect models.  261 

 262 

 Parent material+ Land use+ Texture+ 
Mean model prediction 

for cluster 

Sample 

subgroups 
SOC HWEC MBC SOC HWEC MBC SOC HWEC MBC R² 

Dataset 0.80* 0.63* 0.38* 0.77* 0.66* 0.67* 0.77* 0.61* 0.40* 0.61 

Land use 

Arable 0.80* 0.59* 0.70*    0.73* 0.53* 0.70* 0.68 

Grassland 0.91* 0.75* 0.75*    0.89* 0.75* 0.75* 0.80 

Parent material 

DCS  -  - -  0.81* 0.78* 0.79* 0.73* 0.60* 0.56* 0.71 

LBS  -  -  - 0.41* 0.34* 0.48* 0.41* 0.29* 0.30* 0.37 

DLS  -  -  - 0.50* 0.35* 0.32* 0.50* 0.35* 0.25* 0.38 

PSS  - -   - 0.60* 0.55* 0.71* 0.63* 0.55* 0.61* 0.61 

Texture 

Sandy soils 0.79* 0.61* 0.33* 0.54* 0.50* 0.54* - - - 0.55 

Silty soils 0.72* 0.75* 0.48* 0.72* 0.64* 0.48* - - - 0.63 

Loamy soils 0.84* 0.59* 0.40* 0.81* 0.64* 0.60* - - - 0.65 

Mean model prediction 

R²  0.81 0.65 0.51 0.65 0.56 0.57 0.65 0.53 0.51  

+Applied random effect; ~Not all random effects could applied to this group of clusters because of missing factor levels. *Significant on a 263 
level of <0.05 264 

265 
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Fig. 4. Coefficients of the mixed effect models to predict SOC, multiplied with the mean values of the specific cluster indicating 266 

the impact of the applied variables. Differentiation into clusters and used random factors. Variables are scaled from 0 to 1. 267 

 268 

 269 
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 272 

The different mixed effects models particularly comprised variables (Fig. 4, Fig. 5) that also proved significant in linear 273 

regressions (Table 3). Mineral phase parameters contributed with different significance to the models for SOC, HWEC and 274 

MBC. The SOC and HWEC were primarily explained by pedogenic oxides followed by soil texture related parameters. Not last, 275 

soil acidity indicated by pH and (Ca+Mg)ECEC was also relevant. MBC, compared to SOC or HWEC, was better explained by 276 

parameters linked to soil texture. Contribution of the variables, on SOC and its labile fraction was visualized using the mean 277 

values multiplied with their coefficients (Fig. 4, Fig 5). Distinct significant parameter combinations explaining SOC, HWEC 278 

and MBC were also found between the global data set and local clusters (Table 3,Fig. 4 and Fig. 5, SI Table 2). For example, 279 

within the soil texture related clusters pedogenic oxides, (Ca+Mg)ECEC, pH and texture parameters were relevant to estimate 280 

SOC, HWEC and MBC. Regarding the random effects, applied mixed effect models using parent material as random effect 281 

explained variability of SOC best. For MBC and HWEC, however, best model fits were mostly obtained with land use as random 282 

effect. Only estimates of HWEC for the texture clusters were better when parent material was used as random effect.  283 

The R² of model predictions was best for the global clusters tested in this study, i.e. all data and data clustered according to 284 

arable or grassland land use. Yet, this was at least partly due to a larger sample size and a broader range of parameter values 285 

compared to the various local clusters. Applying the global model for SOC estimation to a smaller local cluster data set clearly 286 

revealed an inferior performance of the global compared to the local model (Fig. 6). The better performance of specific local 287 

models and parameter combinations was also found for other local clusters (Table 5 and SI Table 3) 288 

 289 

 290 
Table 5. R² for implementation of the global dataset to local clusters to estimate SOC. 291 

SOC 

 Parent material Land use Texture 

Sample subgroups Model 
Global model 

to local cluster 
Model 

Global model 

to local cluster 
Model 

Global model 

to local cluster 

Dataset 0.80  0.77  0.77  

DCS -  0.81 0.68 0.73 0.65 

LBS -  0.41 0.23 0.41 0.24 

DLS -  0.50 0.30 0.50 0.35 

PSS -  0.60 0.57 0.63 0.57 

Sandy soils 0.79 0.68 0.54 0.38 -  

Silty soils 0.72 0.65 0.72 0.60 -  

Loamy soils 0.84 0.83 0.81 0.79 -  

Arable 0.80 0.80   0.73 0.73 

Grassland 0.91 0.87   0.89 0.87 

 292 

 293 

 294 

295 
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4 Discussion  298 

Our study showed that interactions of SOC with the mineral phase are highly relevant for the content of SOC as well as of its 299 

labile fractions HWEC and MBC in soils. High correlations of SOC to fSilt plus clay (Table 3) agree with reports on the 300 

relevance of organo-mineral associations for the stabilization of SOC and related to this the accumulation of the labile fraction 301 

HWEC and MBC (Lützow et al., 2006). Furthermore, sandy soils contained the lowest content of SOC while loamy and silty 302 

soils had an equally higher content of SOC (Table 1). This is typically expected and confirms numerous previous reports, e.g. 303 

Ludwig et al. (2003) and Vos et al. (2018). In contrast, a slightly positive effect of sand on SOC was found for the in total very 304 

sandy soils in the parent material cluster of LBS. This, however, is most likely a consequence of agricultural practice, with high 305 

manure application to the LBS soils in the sampled area. This was further confirmed by a factor of 1.2 higher ratios of SOC/N 306 

and HWEC/N as well as by a lower oxygen content of SOM compared to soils of the other parent material clusters (factor of 307 

0.6; Table 1). Besides parameters directly related to soil texture, pedogenic Al- and Fe-oxides were found to be strong predictors 308 

of SOC in soils. Accordingly, Al- and Fe-oxides were shown to have a relevant influence on the sequestration and stabilization 309 

of SOC (Kaiser and Guggenberger, 2000; Lützow et al., 2006) as well as to have a high affinity to retain components of the 310 

labile SOC fractions (Kaiser and Zech, 1998; Kaiser et al., 2002). Although soil acidity strongly affects soil processes such as 311 

microbial activity and turnover that are relevant for SOC accumulation (Kemmitt et al., 2006), no clear correlation between pH 312 

and SOC or its labile fractions was found by linear regression. Yet, soil parameters that are strongly related to soil acidity, i.e. 313 

ECEC as well as the content of exchangeable polyvalent cations such as Ca2+ and Mg2+, were suitable predictors for SOC and 314 

its labile fractions in this and previous studies (O'Brien et al., 2015; Rasmussen et al., 2018). This is causally explained by the 315 

stabilization of SOC in organo-mineral associations and the contribution of multivalent cation bridges (Ca2+ and Mg2+) to it 316 

(Kaiser et al., 2012). The minor ability of ECEC and (Ca+Mg)ECEC and the higher ability of pedogenic oxides to explain variance 317 

of SOC and its labile fractions in this study (Table 3), corresponds to findings of Rasmussen et al. (2018). They found a 318 

prevalence of pedogenic oxides in humid areas with moderately acidic soils, while exchangeable Ca and clay prevealed in soils 319 

of dry climates with circumneutral to alkaline pH. Such a prevalence of parameters to predict SOC, HWEC or MBC 320 

demonstrates that it is preferred to use specific parameter sets when it is aimed to focus on local areas. The bivariate models 321 

revealed that the stone content had only a small impact on SOC, HWEC and MBC. Hence, a funnel effect of the stone content, 322 

by funneling more SOC into the remaining fine textured soil (Bornemann et al., 2011) was irrelevant. The combinations of 323 

factors and soil properties affecting SOC and SOC fractions, respectively, were dissimilar between the different local areas 324 

investigated in this study. The PCA revealed that differences according to parent material and soil texture were most relevant to 325 

separate the dataset into various local clusters based on different factors (Fig. 2 A and B; Table 2). At the same time, this 326 

illustrates the importance of the mineral composition (parent material) and grain size (soil texture) for the accumulation of SOC 327 

as well as its labile fractions HWEC and MBC. In contrast, land use was not useful for a separation into clusters. This was 328 

unexpected because typically topsoils under grassland have higher SOC contents compared to arable soils (Poeplau et al., 2020), 329 

which was largely confirmed for the samples investigated in this study (Table 1). This went along with differences in the 330 

composition of SOM (Table 1 and Table SI). However, data ranges of SOC, HWEC and MBC contents were largely overlapping 331 

and similarities even increased in PCA when further soil properties were included. Consequently, a broad scatter of the land use 332 

clusters was obtained by PCA, suggesting to treat the land use clusters as global datasets as well.  333 

Several studies with large datasets covering national or continental scales, e.g. soil inventories, pointed out the relevance of 334 

combinations of multiple factors and parameters instead of using single predictors to estimate SOC or its labile fractions (Vos 335 

et al., 2018). Furthermore, local studies covering small areas with narrow ranges of soil properties often show weak bivariate 336 

relationships between SOC and components of the mineral phase or environmental factors (Jian-Bing et al., 2006; Liddle et al., 337 
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2020). Accordingly, models focused on specific local clusters and combined with multiple parameter sets were superior 338 

compared to the global model that was developed for the global (complete) dataset to estimate SOC, HWEC or MBC (Fig. 6). 339 

The different parameter combinations indicate that distinct properties of the mineral phase control SOC, HWEC and MBC in 340 

the soils of the different clusters.  341 

Understanding SOC as continuum (Lehmann and Kleber, 2015) implies that accumulation of SOC is a multidimensional process 342 

with various interacting factors and soil properties, respectively. The substantially lower ability of bivariate models to estimate 343 

SOC compared to multiple parameter models confirmed this assumption. Accordingly, it was superior to use multiparameter 344 

mixed effect models to estimate SOC and the two labile fractions. Especially parameter combinations within the land use clusters 345 

gained a high-explained variance (Table 3, Table 4). A comparison with studies on regional or national scale (Vos et al., 2018; 346 

Mayer et al., 2019) suggests that the importance of factors such as land use, soil texture or parent material varies with the 347 

observed scale. Wiesmeier et al. (2019) reported that soil texture, land use and land management are relevant to explain SOC at 348 

all scales. On regional or larger scale, also environmental factors such as climate, geology, soil use, topography are relevant for 349 

SOC. Yet, at a local or smaller scale factors such as climate become less important, while parameters representing small-scale 350 

soil physico-chemical properties gain importance for explaining the variability of SOC. Thereby, different factor and parameter 351 

combinations were identified for the different local clusters by mixed effect modeling. The prevalence of a parameter for 352 

quantification of SOC can differ dependent on environmental factors (Rasmussen et al., 2018). 353 

Consequently, the quality of the multiparameter models was further improved by the implementation of local specific random 354 

effects such as parent material or land use. Dependent on the random factors parent material, soil texture class and land use 355 

different parameter combinations explained SOC, HWEC or MBC (Fig. 4 and Fig. 5). For the global (complete) dataset, nearly 356 

all predictor parameters showed a significant contribution to the explanation of SOC. Most of these soil mineral phase parameters 357 

were also significant in linear regression. In contrast to the bivariate models, most mixed effect models revealed parameters 358 

related to soil acidity as significantly important to estimate SOC, HWEC and MBC. This highlights the importance of soil acidity 359 

on SOC dynamics due to its effects on the reactivity of the mineral phase and the activity of microorganisms (Hillel, 2004). In 360 

order to explain the variability of HWEC and MBC for the various local clusters, different combinations of mineral phase 361 

parameters were required that also clearly differed from the parameter combinations used in the models for SOC (Fig. 4 and 362 

Fig. 5). Such differences concerning significantly contributing parameters were also found by other studies for specific clusters 363 

or local sampling sites (Heinze et al., 2018; Quesada et al., 2020). This emphasizes that local models are required and superior 364 

when it is the aim to estimate SOC and SOC fractions on a local scale. The global models used for the global dataset in this 365 

study reached the best predictions for SOC, HWEC and MBC. Yet, this was largely biased by the large samples size; applying 366 

the same global models to local samples sets produced clearly poorer estimates compared to the more specific local models (Fig. 367 

6; Table 4 and Table 5). Consequently, aggregation of smaller datasets, e.g. from a local scale, to a larger dataset enables to 368 

predict SOC and its labile fractions to a satisfying extent. In opposite a global dataset applied to the local area with defined 369 

properties is partially practicable, resulting in a variance explained on a lower level. Dependend on the properties of the soil 370 

mineral phase, each specific cluster was controlled by other properties, which best explain the accumulation of SOC and its 371 

labile fractions. This implies the importance for analysis of local clusters to avoid a subordination by models of global datasets. 372 

Comparing the results of mixed effect models using the different random effects (parent material, soil texture, land use), the 373 

models using parent material yielded best results for the estimation of SOC. For HWEC and MBC best predictions at a sufficient 374 

quality level were obtained by models using land use as random effect (Table 4). The parent material predefines the boundaries 375 

for accumulation and stabilization of organic matter (Gray et al., 2015). The importance of land use as random effect especially 376 
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for the labile fractions results from the fact that these are especially influenced by soil management (Cardoso et al., 2013; Lal, 377 

2016). 378 

In general, the variance explained by the mixed effect models was not similar, but varied between SOC and its labile fractions 379 

HWEC and MBC. It became clear that SOC and the labile fractions HWEC and MBC are not fully correlated but quantitatively 380 

quite distinct SOM pools with different annual dynamics (Wander, 2004; Tokarski et al., 2020). Not last, the faster turnover of 381 

the labile fractions is one of the reasons for the lower explained variability by the different models. HWEC is a measure of 382 

bioavailable and degradable organic carbon (Weigel et al., 1998). Although it is closely correlated to SOC (R² =0.75) it is best 383 

estimated by distinct parameter combinations compared to SOC, which is explained by the substantially higher variability of 384 

HWEC (Table 3 and 4). Changes in HWEC are mostly assigned to inputs of organic fertilizer substrates (Weigel et al., 1998) 385 

and the soil management (Ghani et al., 2003). For MBC especially soil management and factors such as C-input, climate, soil 386 

texture and soil pH are relevant (Wardle, 1992). Accordingly, the effect of land use but also of soil texture was most relevant 387 

for MBC accumulation. Similar to findings of Ludwig et al. (2015), MBC increased with the content of silt and clay but declined 388 

with sand, which is explained amongst other by the contribution of MBC to aggregate formation, the habitable surface and 389 

accessibility of SOC (Totsche et al., 2018). Additionally, management practices such as tillage and the application of organic 390 

fertilizer directly influence MBC (Liang et al., 1997).  391 

5 Conclusions 392 

The reliable estimation of SOC and of its labile fractions HWEC and MBC is a task of growing importance in order to manage 393 

soil properties and functioning. That task will most often focus on local soilscapes with minor variation range in soil properties. 394 

This study showed that local models are superior to global models. Mixed parameter models combined with random effects 395 

yielded best estimates and highest explained variance for SOC and even its labile and quite dynamic fractions HWEC and MBC. 396 

For this purpose, the application of multivariate approaches to estimate SOC, HWEC and MBC clearly outperforms models 397 

based on bivariate correlations. Even a reduced dataset, representing parameters of the soil mineral phase is suited to estimate 398 

contents of SOC as well as HWEC and MBC. The inclusion of overall factors such as parent material, soil texture class and land 399 

use as random effects further improves the models. Global models, developed from large-scale studies across countries or 400 

continents, often reach best estimates; however, they are subordinate for the above-mentioned small-scale areas and low sample 401 

numbers. From a practical perspective, the selected set of soil mineral phase parameters can be easily determined by using well-402 

established methods and the parameters are rather stable over a longer-term. Thus, using such parameters for the sufficient 403 

estimation of SOC, HWEC and MBC is expedient. The presented research will be further enlarged by studying larger datasets 404 

containing more clusters in order to better identify local drivers of SOC and of its labile fractions.  405 
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