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Abstract. Soil organic matter (SOM) is an indispensable component of terrestrial ecosystems. Soil organic carbon (SOC) dynamics
are influenced by a number of well-known abiotic factors such as clay content, soil pH or pedogenic oxides. These parameters
interact with each other and vary in their influence on SOC depending on local conditions. To investigate the latter, the dependence
of SOC accumulation on parameters and parameter combinations was statistically assessed that vary on a local scale depending on
parent material, soil texture class and land use. To this end, topsoils were sampled from arable and grassland sites in southwestern
Germany at four regions with different soil parent material. Principal component analysis (PCA) revealed a distinct clustering of
data according to parent material and soil texture that varied largely between the local sampling regions, while land use explained
PCA results only to a small extent. The ebtained-PCA clusters were differentiated into totalglebal clusters that contain the entire
dataset or majorlarge proportions of it the-entire-datasetand local clusters which-enly-representing only a smaller part of the dataset.
ahd—the—differenttocal—clusters—of the—dataset—-were—furtherAll clusters were analyzed for the relationships between SOC

concentrations (SOC %) and mineral phase parameters in order to assess specific parameter combinations explaining SOC and its

labile fractions_hot water-extractable C (HWEC) and microbial biomass C (MBC). Analyses were focused on soil parameters that

are known as possible predictors for the occurrence and stabilization of SOC (e.g. fine silt plus clay and pedogenic oxides).
Regarding the total glebal-clustersdataset, we found significant relationships —cerrelations- by bivariate models, between SOC-and

. its labile fractions hot-water-extractable C{HWEC) and microbial-biemass-C{MBC)—respectively and the applied predictors;.
Yyet_some-correlation—coefficients-indicate—a partlywere partially low_explained variances indicated the limited suitability of

bivariate models. Mixed-Hence, mixed effect models were used to identify specific parameter combinations that significantly explain

SOC and its labile fractions of the different clusters. Comparing measured and mixed effect models-predicted SOC values revealed

acceptable to very good regression coefficients (R2 = 0.41-0.91) and low to acceptable root mean square error- (RMSE = 0.20-0.42

%). Thereby, the predictors and predictor combinations clearly differed between models obtained for the whole data set and the
different cluster groups. At a local scale site specific combinations of parameters explained the variability of organic matter-carbon
notably better, while the application of totalglebal models to local clusters resulted in less explained variabitityvariance and a higher
RMSEsufficient performance. Independent from that, the everalt explained variance by marginal fixed effects-generatly decreased
in the order SOC > HWEC > MBC, showing that labile fractions depend less on soil properties but presumably more on processes
such as than-presumeably-en-organic carbonmatter input and turnover in soil.
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1 Introduction

Soil as an inherent part of terrestrial ecosystems acts as a major regulator of the organic carbon (OC) cycle especially through the
function of OC storage (Heimann and Reichstein, 2008; Scharlemann et al., 2014). Hence, it is of utmost relevance and a focus of
ongoing research to define models and parameter sets that best describe and predict soil organic carbon (SOC) contents of soils.
Further it is required to identify the drivers for SOC storage at different scales and sites to adapt the management of soils. Overall,
the relevance of parameters for quantification of SOC is often described by bivariate relationships (Hassink et al., 1993; Barré et
al., 2017). Yet, SOC and its potential sequestration by formation of organo-mineral associations depends on combinations and
interactions of several environmental factors or soil properties, so that the number of multivariate applications to estimate the
accumulation of SOC is increasing- (Hobley et al., 2015; Heinze et al., 2018).

In addition to total SOC, its labile subfractions such as hot water extractable carbon (HWEC) or microbial biomass carbon (MBC)
are more and more recognized as fast reacting SOC pools in order to analyze carbon dynamics in soils (Weigel et al., 2011; Lal,
2016). The HWEC is known as a measure of the bioavailable and mineralizable fraction of SOC (Spohn and Giani, 2011; Heller
and Zeitz, 2012). The MBC is a quantitative measure of the microbial community that plays an indispensable role for the turnover
of SOC. Additionally, Because-ofthe fasterturneverlabile carbon fractions such as MBC guantitatively dominate in short-term
turnover processes, i i i
significant over periods of decadesdynamics-in-variousregions. Therefore, MBC is expedient to explain SOC dynamics (Liang et
al., 2017). Determination of HWEC and MBC, allows to get a representative measure of the labile SOC pool. Labile carbon fractions

were recently simulated (Wieder et al., 2015; Zhang et al., 2021)_but r-contrast-mueh-lessresearch-and-attemptsforquantitative
modeling-of-these-labile-fractions-compared to SOC they were less consideredhave-been-done in the past (Liddle et al., 2020).

while changes in SOC will only become

It is well known that factors such as climate, topography, vegetation, parent material and time are major factors influencing contents
and storage of SOC (Jenny, 1941). Accordingly, large scale (often national or continental) surveys often include geographical
properties, vegetation types, general forms of land use as well as climatic site conditions to explain the variability of SOC
(Wiesmeier et al., 2014; Gray et al., 2015). Consequently, vegetation and anthropogenic influence by land use and land use changes
are essential factors to model SOC accumulation and dynamics (Poeplau and Don, 2013; Dignac et al., 2017). The relevance of the
parent material for SOC sequestration and stocks was discussed for sites and small landscapes of a few km?2 (Barré et al., 2017,
Angst et al., 2018) as well as for large areas on the scale of regions or countries (Wiesmeier et al., 2013; Vos et al., 2019). The
potential influence of parent material on SOC is mostly considered by parameters of soil mineralogy and texture (Herold et al.,
2014). Factors such as climate, topography, parent material, vegetation or land use are well suited to explain the variability of SOC
at larger scales or at landscapes with a high variability concerning these factors. In contrast, for smaller, local study areas or rather
uniform areas with a low factor variability an inclusion of these factors as variables is less suitableexpedient (Wiesmeier et al.,
2019).

In addition to ereven-instead-ef-these general factors, further parameters describing the soil composition in a more specific way,
become relevant at regional or local scale setting boundaries for SOC accumulation, e.g. by the formation of organo-mineral
associations. For an identification of SOC variations due to site specific characteristics selected parameters are used which are
mostly known as indicators for stabilization of SOC such as content of fine silt, clay and pedogenic oxides or microbial parameters
such as microbial biomass and amino sugars (Angst et al., 2018; Quesada et al., 2020). There are indications that for the explanation

of SOC variability on a local to regional scale soil parameters (e-g-€.9., pedogenic oxides, texture fractions) instead of factors (e.qg.

parent material or climate) are especially suitable. Models based on soil parameters also allow to identify possible drivers of SOC

stabilization while using the above mentioned general factors would not deliver a satisfying result (Wiesmeier et al., 2019; Adhikari
et al., 2020).
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Organo-mineral associations are highly relevant for stabilization and accumulation of SOC and its labile fractions (Lutzow et al.,
2006). It is well known that the different mineral particle size classes vary in their ability to interact with SOC, forming organo-
mineral associations (Arrouays et al., 2006; Litzow et al., 2007). On one hand coarse particle size fractions such as sand, coarse silt
(cSilt) and medium silt (mSilt) contribute less to interactions between SOC and the mineral phase while on the other hand fine silt
(fSilt) and clay dominate such interactions (Ludwig et al., 2003). In addition, the mineral composition of the fine fraction, i.e. types
of clay minerals and pedogenic oxides, is relevant for the interactions of SOC with the mineral phase (Kleber et al., 2015; Porras et
al., 2017). Especially iron and aluminum oxides interact with SOC leading to_its sequestration (Mikutta et al., 2006). Stabilization
of SOC is further enhanced by multivalent cations such as_Ca?* and Mg?* going along with higher soil pH (Kaiser et al., 2012;
O'Brien et al., 2015). Covering on one hand all quantitative relevant cations and on the other hand being an overall measure of soils
sorptive properties the effective cation exchange capacity (ECEC) provides an overall measure to model cation impact on SOC
storage (Kaiser et al., 2012; O'Brien et al., 2015). Rock fragments (soil skeleton) contribute only little to SOC storage (Poeplau et
al., 2017). Anyhow, the fraction of rock fragments is considered as a relevant parameter to assess SOC accumulation due to a
potential saturation effect in soils with a high rock fragment content in consequence of a disproportionately high input of organic
matter in the fine soil fraction (Bornemann et al., 2011).

Consequently, understanding SOC as a dynamic equilibrium of heterogeneous compounds with distinct relationships to various
components of the soil mineral phase (Lehmann and Kleber, 2015) implements that SOC accumulation is best described and
predicted by a variety of soil mineral phase parameters instead of a single predictor. Thereby combinations of parameters or factors
can differ according to the considered scale. Consequently, multivariate approaches better explain the SOC variability (Heinze et
al., 2018; Liddle et al., 2020) compared to bivariate linear regressioncerretation models that are often unsuited at the level of local
and regional soilscapes (Jian-Bing et al., 2006). The latter especially applies for studies that are limited to a single specific location
or only contain a limited number of categorical variables or estimated soil parameters (Liddle et al., 2020). On the other hand,

predictions based on totalglebal models, based on the majoritylargest part of the dataset, are often less site-specific and thus can

possibly lead to an insufficient quantification of SOC at certain sites.
Consequently, it is required to determine parameter sets to estimate SOC and its labile fractions HWEC and MBC at a regional or
landscape scale. It is necessary to identify predictor parameters and categorical environmental factors that are able to predict SOC

as well as its labile fractions by using models based on local and totalglebal datasetsmedels. Differences regarding the relevance of

a predictor in local vs. totalglebal models have to be identified to boost model performance and to fit adequate datasets using the
best set of parameters for the prediction of SOC at the investigated location. This overall aim was investigated in this study using a
dataset from four local agricultural areas in the greater region of Trier (each with a size of 5-10 km?), thus with similarity in the
global factors but distinct local properties such as parent roek material, soil texture and land use. Regarding the composition of the
soil mineral phase the four local areas differ among each other, but as a totalglebal dataset they represent a broad range of soil
properties typical for soils in temperate regions. Therefore, the dataset enables to verify whether the totalglebal dataset is able to
cover the local variability of SOC and its labile fractions. Objectives of this study were, (i) based-en-identified-differences-in-seil
propertiesto determine best fitting factors and parameter combinations, based on identified differences in soil properties, that explain
the variability in SOC and its labile fractions HWEC and MBC. (ii) It was aimed to determine the suitabilityrelevance of local
models in comparison to total-glebal models to achieve an improved-sufficient quantification-en-a-comparablesimiarlevel; of SOC,
HWEC and MBC for local landscapes with distinct properties. To this end, bivariate linear regression, principal component analysis

(PCA) and mixed effect models were used in order to find out whether totalglebat models or local models are better fitting. (iii) It
was assessed if local datasets show a distinct combination of significantly contributing predictor parameters compared to other local

datasets and the entire dataset.
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2 Material and Methods
2.1 Study area

The study was conducted in the greater area of Trier in southwestern Germany (Fig. 1). Bulk samples from topsoil horizons, i.e. O-
25 cm for arable and 0-15 cm for grassland soils, were taken in spring 2017 and 2018 from 199 agricultural sites used as arable land
(150) and grassland (49). Similar numbers of samples were taken from four regional areas with different parent materials. Parent

materials were Devonian clay schist (DCS, n= 50), Luxemburg sandstone (LBS, n= 50), sandy dolomitic limestone (DLS, n= 50)

from the Muschelkalk, and Permian siltstone and fine sandstone (PSS, n= 49) from the Rotliegend (Wagner et al., 2011). Across

the different parent materials, a similar proportion of samples were taken at sites under arable or grassland management. Climatic

conditions in the greater area of Trier are classified as warm-temperate, fully humid with warm summer temperate (Cfb) (Kottek et

al., 2006). According to the German Weather service (DWD) mean annual precipitation is 784 mm and mean annual temperature is

9.8°C. Investigated sites were dominated by the soil groups Regosol and Cambisol. The main cultivated crop plants are wheat,

barley, triticale, maize erand rapeseed.

Fig. 1. Study area in the greater Trier region; sampling sites at the four regions with different parent material are indicated, i.e.
Devonian clay schist (DCS), sandy dolomitic limestone (DLS) from the Muschelkalk, Luxemburg sandstone (LBS), and Permian
siltstone and fine sandstone (PSS) from the Rotliegend (©GeoBasis-DE).
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2.2 Analysis of soil properties

Samples were sieved < 2 mm and the stone content (> 2 mm) was determined gravimetrically. Forfurtheranalysis-Each samples
were-dividedwas split and stored at -20°C on one hand ander air-dried_on the other hand; for subsequently biological and chemical

soil analysis, respectively. Soil pH was measured in 0.01 M CaCl, solution using a pH/Con 340i glass electrode (WTW GmbH,
Weilheim). Particle size distribution was determined by a combination of wet sieving and pipette method according to Blume et al.
(2011). Dithionite-citrate extractable Fe (Feq) was measured according to Mehra and Jackson (1958). To this end, 2 g air-dry soil
were extracted with a mixture of 1 g sodium dithionite, 40 ml sodium citrate and 10 ml NaHCOs3. Oxalate extractable Fe and Al
(Feo, Alo) were determined according to- Schwertmann (1964). For extraction, 1 g air-dry soil was shaken for 2 h in the dark in 50
ml NH,*-oxalate (pH 3) and filtered afterwards. Extraction for the determination of the effective cation exchange capacity (ECEC)
was conducted using 1 M NH.CI. Elemental analyses for pedogenic oxides and ECEC (Na, K, Fe, Mn, Al, Ca, Mg) were done using
atomic absorption spectrometry (Varian AA240 FS Fast Sequential Atomic Absorption Spectrometer; Darmstadt, Germany).

For estimation of total carbon (TC) and nitrogen soil was dried at 105°C, grinded and measured by an Elemental Anabyzer-Analyser
EA3000 Series (HEKAtech GmbH, Wegberg). For carbonate containing soils the inorganic carbon (IC) was determined following
carbonate destruction using phosphoric acid at a temperature of 100°C (I1C Kit combined with Elemental ArahyzerAnalyser EA3000
Series, HEKAtech GmbH, Wegberg). SOC content was calculated as the difference of TC and IC. HWEC and hot water extractable
nitrogen (HWEN) were determined following Kdérschens et al. (1990), using a Gerhardt Turbotherm TT 125 (Gerhardt, Bonn,
Germany) for extraction of 10 g soil with distilled water (50 ml) at 100°C for 1 h. After extracts cooled down 1 ml of 0.2 M MgSQO,
was added and samples were centrifuged at 1476 g for 10 minutes. Microbial biomass was estimated by using chloroform fumigation
extraction according to Joergensen (1995) with 0.01 M CaCl,. Extracts of HWEC, HWEN, microbial biomass carbon (MBC) and
nitrogen (MBN) were analyzed-analysed with a TOC-VCPN anabyzeranalyser (Shimadzu, Duisburg, Germany). For MBC and
MBN correction factors KEC = 0.45 and KEN = 0.4 respectively, were used (Joergensen, 1996; Joergensen and Mueller, 1996). Soil

respiration was measured according to Heinemeyer et al. (1989)-. Following a week of incubation at room temperature (20

°C)Therefore, 25 g dry matter equivalent of sieved field moist soil were weighted in a tube that was flushed with 200 mL min-* of
COy-free, humid air for 24 hours. Evolved CO, was determined by-ain one-hour intervals after the soil passage using an infrared
gas anakyzer-analyser (ADC 225 MK3, The Analytical Development, Hoddesdon, England).

2.3 Data analysis

Principal component analysis (PCA) was carried out to identify clusters within the dataset. For that purpose, 24 parameters
describing the mineral phase as well as SOM were included (Table 1). To conduct the PCA applied variables were log transformed,
centered and scaled to achieve standardized and comparable variables. Ellipses were defined by 95 % of the confidence interval
according to Fox and Weisberg (2019), The cluster of clayey soils was not included in the analysis due to a small number of samples

(n=5). Using single predictors, Llinear regressions were performed to identify significant impact of mineral phase parameters (e.g.

Feo [0 kg™] or fSilt plus clay [%])— on SOC, HWEC and MBC for the entire dataset as well as for the identified clusters. Residues

of the bivariate linear regressions were checked for normality.- -Mixed effect models were determined for the entire dataset and for

identified clusters. To this end, selected soil properties of the mineral phase (Feq.o [0./kg™], Feo [g4kg?], Al [g/ kg], sand [%], cSilt
plus mSilt [%], fSilt plus clay [%], (Ca + Mg)ecec [mmolc/ kg ], stones [%] and pH) were used as fixed effect while, ‘parent
material’, ‘soil texture group’ or ‘land use’ were used as random effect. In general, as random effects only categorical variables
were selected, while for the fixed effects variable mineral phase parameters were selected. Parent material as a random effect
includes the four different soil parent materials that dominate at the four sampling sites. For the soil texture group as random effect
four levels were applied (sandy, silty, clayey and loamy soils). The additional implementation of the soil texture groups was done
to consider the potential different intercepts of the specific groups. Land use as random effect comprised the two management
practices arable and grassland. Restricted Mmaximum likelihood was applied as estimation procedure for the mixed effect models.

At the beginning, all selected soil properties were included in each model. Stepwise removal of the-mest-the least significant
5
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parameters_—was conducted until all properties included in the models significantly contributed to SOC, HWEC or MBC;
respectively.-Additional Additionally, the relevance of variables was visualized by the mean values of the clusters multiplied with
their coefficient received from the mixed effect models. All parameters involved as fixed parameter in the mixed effect models were

checked for collinearity. To avoid collinear behaviour of the soil texture related parameters either ‘sand’ or ‘coarse silt plus medium
silt” (cSilt plus mSilt) were used for model development. The two models received were compared by their Akaike information
criterion (AIC) using ANOVA to identify the best model. Furthermore, ECEC was excluded from mixed effect models to avoid
overfitting due to collinearity with (Ca+Mg)ecec. Residuals of models were examined for homoscedasticity and normality. In case
these criteria were not fulfilled, the response variable was square root transformed to achieve variance homogeneity and normality.

For the mixed effect models a marginal R? (R2marq) and conditional R2 (R%.,,) coefficients was estimated according to Nakagawa and

Schielzeth (2013). Thereby R 2narq €Xaminesa the explained variance of the fixed effects while R2.ong alse-ineludetests the variance

including the effect iof the random effects. Next-to-this; The root mean squared error (RMSE) was estimated as a measure forof the

model performance. For the mixed effect models, RMSE was estimated based on the comparison of predicted and measured values.

To transfer the mixed effect models of a total dataset to a local dataset, predictions were conducted usapplying the-total dataset

models ento a-local datasets. Measures-to-inspect-theseresults{R2and RMSE) were-The received-from-comparisons-of-predicted
values of SOC; HWEC and MBC received from the different mixed effect models were compared with thevs: Mmeasured values

using bivariate linear regressions. This yielded efSOC:HWEGCand-MBCR2 and RMSE as measures of goodness. Fo-examine

erformance-of-mixed-effect mode nredicted-y eswere tested againstmes ed-valueso a H\A nd-MB aspnactivaly

using-bivariate Hnearregressions—Data-All data are shown as mean (+ SE) if not indicated otherwise. Statistical significance was-is
indicated with *p < 0.05, **p < 0.01 and ***p < 0.001. Statistical analyses were carried out using the R statistical package version

4.1.13:6:2 (R Core Team, 2021).
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3 Results

3.1 Soil properties and cluster identification
The dataset covers soilss and-topseil-properties-with broad ranges of 24 parameters and parameter ratios +espectively-of SOM,
soil mineral phase and microbial biomass (Table 1). For example, soil pH ranged from very strongly acidic (pH 3.8) to slightly

alkaline (pH 7.4); soil texture varied from sandy to clayey texture. Fhereby,—Parent materials essentially influenced
characteristics of the mineral phase related parameters such as texture.;-e.g- AsFor example soils developed from sandy parent
material such as LBS had a sandy texture with sand content of up to 91.9 %. Soils developed from DCS and DLS parent material
had elevated contents of fine silt plus clay (33.4-53.3 % and 16.7-44.8 %, respectively). Additionally, high contents of pedogenic
oxides were found in soils from DCS while ECEC and especially the contents of the polyvalent cations (Ca+Mg)ecec were high
in soils developed from DLS (Table 1). Higher contents of SOC, HWEC and MBC were found for all parent material substrates
in grassland soils compared to arable soils (Table 1 and Sk-Table S1A). For the entire dataset, SOC ranged from 0.38 to 5.32 %,
while ranges from 237 to 1889 pg/g and 52.4 to 810 ug/g were determined for HWEC and MBC, respectively. SOC was strongly
correlated with HWEC (R2 = 0.75) while the regressioneerrelation with MBC was substantially lower (R2=0.40). The dissimilar
regressionseerrelations of SOC with the two labile fractions indicate differences between HWEC and MBC, which was further
confirmed by the mediocre correlation-regressions between HWEC and MBC (R2 = 0.55).

To identify possible local clusters due to different sampling sites, parent material or land use systems within the dataset, PCA
was conducted including all 24 soil parameters and parameter ratios (Fig. 2). Principal component (PC) 1 to 3 explained 65 %
of the variance and had eigenvalues > 1 (Table 2). Parameters related to the soil mineral phase loaded on all three PCs.

Additionally, highest loadings on PC 1 were found for parameters describing the composition of SOM such as content of SOC,

nitrogen, hydrogen or oxygen as well as HWEC or MBC. For PC 2 high loadings were further found for parameters related to
soil acidity (pH, IC, ECEC, (Ca+Mg)ecec), as well as for SOC and the microbial ratio MBC/SOC. Fhe-HWEC and respiration

further loaded on PC 3 (Table 2). A plot of the first two PCs shows clear clusters that were strongly related to the parent materials

according to the different sampling sites (Fig. 2 A). In addition, samples clustered semewhat differently when assigned to
different soil texture classes (Fig. 2 B). Land use, however, was insufficient to explain separation into different local clusters
(Fig. S1). Instead, the land use clustersit representeoutd-be-tused-as-a-totalglobal-clusters-covering-covered soils from all sampling

regions and property combinations, and thus represented total clusterswith-a-differentiation-accordingto-ttswith-separated-effects
due-to-land-use-management. Compared to the entire dataset or the land use clusters, the identified clusters based on parent

material and soil texture showed-covered distinct property rangesies of the-SOM-SOC and the mineral phase (Table 1). In

contrast to the local clusters, the totalgtebal cluster according to land use classes showed mostly properties quite similar to the
entire dataset. Overall, identified clusters strongly depended on the composition of SOM as well as on specific properties of the
soil mineral phase, e.g. texture or soil pH related properties. With a smaller relevance, parameters regarding the characteristics

of soil microorganisms separated the dataset into clusters (Table 2).
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237  Table 2. Loadings of the variables on the first three principal components.
238

PC1 PC2 PC3

SOC -0.24 -0.24 -0.19
Nitrogen -0.27 -0.21 -0.04
Hydrogen -0.26 -0.12 0.17
Oxygen -0.26 -0.18 0.07
HWEC -0.22 -0.21 -0.36
HWEN -0.22 -0.04 -0.19
MBC -0.27 0.08 -0.26
MBN -0.24 0.12 -0.26
Respiration -0.18 0.01 -0.36
MBC/SOC -0.09 0.33 -0.12
C/N SOM 0.09 -0.07 -0.36
C/N HWEC 0.06 -0.16 -0.13
C/N MB -0.03 -0.09 0.04
IC -0.09 0.32 -0.09

pH -0.07 0.4 0.03
ECEC -0.22 0.3 0.07
(Ca+Mg)ecec -0.22 0.3 0.06
Feo -0.27 -0.13 0.12
Fed-Feo -0.17 -0.07 0.37
Alo -0.16 -0.34 0.14
Sand 0.27 -0.11 -0.11
cSilt + mSilt -0.21 0.19 0.12
fSilt + clay -0.29 0.03 0.18
Stones -0.13 -0.09 0.29
Proportion of Variance 40.2 175 7.47
Cumulative Proportion 40.2 57.8 65.23
Eigenvalue 9.66 421 1.79
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3.2 Bivariate relationships of mineral phase and SOC and its labile fractions

In order to test whether single parameters are suitable predictors of SOC, HWEC and MBC ten independent parameters

describing the properties of the soil mineral phase were selected from the dataset (Table 1, Table 3). Bivariate linear Rregressions

were calculated based on the total dataset (n = 199), for further totalglebal clusters (e.g. arable or grassland soils) and the local
clusters that were identified in PCA, i.e. subgroups based on the four parent reck-materials and major texture classes (Table 3).
Using the complete dataset, highly significant regressions of SOC, HWEC and MBC to most soil mineral phase parameters were
found, yet predominantly at a low level of explained variance (Table 3). Compared to the complete dataset substantially different
soil parameters explained SOC, HWEC and MBC especially for smaller clusters such as soils from the parent materials DCS or
LBS. Yet, clusters comprising large sample numbers, where soil parameters cover broad ranges such as the clusters of loamy,
arable or grassland soils, showed significantly contributing parameters that were largely in line withmatehed-with -those found
as significant for the complete dataset. All clusters differed in their pattern of significant parameters. However, for the complete
dataset as well as for the clusters the explained variance decreased from SOC to the labile fractions HWEC and MBC (Fig. 3
and Table 3). Only some properties such as sand. ECEC or (Ca+Mg)ecec showed for MBC -a higher explained variance
compared to SOC and HWEC (Table 3). For the entire dataset the content of SOC was best explained by Al, and Fe, as predictor
parameter (R2 = 0.63-58 and 0.56, respectively) while soil texture related properties such as sand or fSilt plus clay explained
SOC on a lower level (Table 3). Other determined mineral phase parameters such as cSilt plus mSilt or ECEC explained variance
to a negligible extent (Table 3). With lower values for Rz, HWEC was explained by similar soil mineral phase parameters, as it
was the case for SOC. With R2 of 0.39 and a variance of 0.38 HWEC was best explained by pedogenic oxides (Fe, and Al,,
Table 3). In contrast, the predictors for MBC were quite distinct. Especially parameters related to soil texture such as fSilt plus
clay (R2=0.43) or sand (R2 = 0.45) better explained the variance of MBC compared to HWEC (R2=0.27 and 0.16, respectively).
Nevertheless, none of the applied parameters could explain in all cases the complete variance of SOC, HWEC or MBC to a
highersufficient extent (R2> 0.75). Explained variance of SOC and its labile fractions varied strongly between the parent material
clusters. In general, the variance in these clusters was explained to a substantially lower extent compared to the whole dataset
(Table 3). In most cases, parameters of soil texture and pedogenic oxides correlated significantly with SOC, HWEC and MBC.
Additional to these parameters, (Ca+Mg)ecec was useful to predict SOC and MBC for some parent material clusters (Table 3).
Highest values of R2 were reached for the regression between SOC and Al, and Fe, (0.47, 0.42) in the cluster DCS and fSilt plus
clay (0.37) in the cluster PSS. R2 was even lower in the clusters LBS and DLS with maximum values of 0.21 and 0.20
respectively. Further, the cluster of loamy soils was also best described by parameters representing pedogenic oxides and texture.
Much lower R2 were found for the sandy and silty soil clusters with Al, and texture parameters (sandy) and additionally Fe,
(silty) as best descriptors. While for SOC, HWEC and MBC maostly the same descriptors were found (yet on different level of
R?), they were partially different for MBC of the clusters silty and loamy soils.

12
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Comprising soils from all identified clusters, the sets of descriptor parameters of the land use clusters were comparable to those
of the totalglebal dataset (Table 3). Yet, the variance of SOC and its labile fractions were explained; by bivariate linear

regressions; to a much higher extent for the totalglebal dataset and the clusters of arable soils and especially grassland soils

compared to the clusters based on parent material and texture_(Table 3). Beth-The clusters of both land use types largely
overlapped and contained a similar proportion of samples from each parent material.irclude-an-egual-weight-ef samplesfrom
each-parentmaterial Therefore they can beregardedact as totalglebal clusters. While SOC was explained by-cemplex interactions
of several-numerous different parameters (up to eight) for the distinct fractiensfactors, less variables showed a significant
contribution to explain the variability of HWEC and MBC (Table 3).

3.3 Estimation of SOC and its labile fractions by mixed effect models

Since bivariate linear models insufficiently explained SOC, HWEC and MBC, respectively, mixed effect models were
developed. In these models, mineral phase parameters were applied as fixed effects, and land use, parent material and texture
were used as random effects (Table 4, Fig. 4 and Fig. 5). Variability of SOC, HWEC and MBC were much better explained than
by linear regressions indicating that organic matter depends on complex interactions of several components of the mineral phase.
In-general-Based on marginal effects,-ef the mixed effect models mosthyr-explained the variance in most cases in the order SOC
> HWEC > MBC (Fig. 3,-and-Table 4 and Table 5). By-tThe mixed effect models:-R2:.nqs reached a higher explained variance
and mostly lower RMSE for SOC (R%ng = 0.39-0.89, RMSE = 0.21 — 0.42 %) compared to the bivariate regressions (R? = 0.00-
0.73, RMSE = 0.27-1.12 %). Data for RMSE are listed in Table SI3. AlseAccordingly, the mixed effect models fer HWEC-and
MBC-vyielded and higher explained variance for HWEC and MBCwas-estimated-by-the-mixed-effect-medels. Representing the
explained variance of the fixed effects, the R%ywaq revealed; for the majority of the clusters; a largerparts-efthe explained variance.
Anyhow.But even in the cases -of low R%marg Several of that clusters providehad a high R2.on-evenH RZmagWastow. This highlights
the everall-importancerelevance of the random effects (Table 4). By-aApplying different random effects resulted in large
differences —explained-varianeein {R%..na}-differedarger for some clusters (e.qg., ‘sandy soils’). In particular, modelling the labile
fractions wereas more affected by the different random effects, showing in-majeritymostly highest R%:nq values if land use was

applied as random effect. RM

Si3):

Independent from the applied random effect, explained variance increased with sample number and width of the data range of

parameters. Consequently, best model performance was achieved for the complete dataset as well as for the total clusters. Similar

model performance was only found for some local clusters (e.qg. DCS), while models for other local clusters such as LBS, DLS

or sandy soils revealed the poorest, yet still sufficient (Reond > 0.39, RMSE < 0.40 %) estimates of SOC (Table 4). In general,

applying random effects such as parent material, land use or texture for mixed effect models led to distinct results for the

prediction of SOC, HWEC or MBC (Table 4). For clusters according to land use variance was explained to a high extent (mean

R%n 0f 0.66 and 0.77 for cluster of arable soils and grassland, respectively). Models using parent material or texture as random

effect mostly showed minor differences for predictions of SOC, HWEC or MBC. Anyhow for some local clusters (e.g. DCS,

LBS and DLS) distinct results were found. Models using land use as random effect were partly distinct, though, indicating the

different influence of land use on SOC and its labile fractions (Table 4).

The different mixed effects models particularly comprised variables (Fig. 4, Fig. 5) that also proved significant in the bivariate

linear regressions (Table 3). Mineral phase parameters contributed with different significance to the models for SOC, HWEC
16
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and MBC. The SOC and HWEC were primarily explained by pedogenic oxides followed by soil texture related parameters. Not

least, soil acidity specified by pH and (Ca+Mg)ecec was also relevant. MBC, compared to SOC or HWEC, was better explained

by parameters linked to soil texture. Contribution of the variables, on SOC and its labile fraction was visualized using the mean

values multiplied with their coefficients (Fig. 4, Fig 5). Distinct significant parameter combinations explaining SOC, HWEC

and MBC were also found between the total data set and local clusters (Table 3, Fig. 4 and Fig. 5, SI Table 2). For example,

within the soil texture related clusters pedogenic oxides, (Ca+Mg)ecec, pH and texture parameters were relevant to estimate
SOC, HWEC and MBC (Table 3, Fig. 4 and Fig. 5). Regarding the random effects, applied mixed effect models using parent
material as random effect explained variability of SOC best (Table 4). For MBC and HWEC, however, highest explained

variance were mostly obtained with land use as random effect (Table 4). Only estimates of HWEC for the texture clusters were

better when parent material was used as random effect.

17
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Fig. 4. Coefficients of the mixed effect models to predict SOC, multiplied with the mean values of the specific cluster indicating

the impact of the applied variables. Differentiation into clusters and used random factors. Variables are scaled from 0 to 1.
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3.4 Comparison of total and local explained variability.

Predictions for SOC, HWEC and MBC were conducted based on the mixed effects models. Subsequent linear regression

between measured and predicted data showed a close relationship along the 1:1 prediction line leading to a high explained

variance (Fig. 3, Table 5). For these regressions the explained variance was mostly cemparablesimilar to R2.,. Especially for

the total clusters, i.e. all-the total dataset and data clustered according to arable or grassland land use, best results were
foundobtained.

arable-or-grassland-land-use—Yet, this was at least partly due to a larger sample size and a broader range of parameter values

compared to the various local clusters. Applying athe totalglebal model for SOC estimation to a smaller local cluster data set

clearly revealed an inferior explained varianceperfermanee of the totalglebal compared to the local model (Fig. 6). Alongside

with decreasing explained variance, RMSE values were mostly increasing if a total model ef-a-total-dataset-was applied to a

local dataset. The higher explained variancebetterperformance of specific local models and parameter combinations was also
found for other local clusters (Table 65 and S| Table 34).

By transferring a total model to local clusters, the explained variance differeds for SOC by up to 20 % while RMSE differed by
up to 0.25 %. mleeal- EvenifAlso in case a total model was transferred to a local dataset to estimate HWEC or MBC, the
explained variance decreased a ased by up to 17 % for HWEC
and MBC. The RMSE increased by up to 0.07 erand 0.06 mg g™* for HWEC and MBC, respectively.:

Table 5. R2 and RMSE of the models for prediction of SOC, HWEC, and MBC based on the results of mixed effect models.
RMSE s given in % for SOC and in gmg/g for HWEC and MBC.

Parent material* Land use* Texture* Mean model prediction
Sample SOC HWEC MBC SOC HWEC MBC SOC HWEC MBC R2

Dataset R2 0.79* 0.63* 0.55* 0.77* 0.68* 0.71* 0.77* 0.61* 0.56* 0.67*

RMSE 0.37 0.19 010 041 0.18 0.08 0.42 0.20 0.10 0.40%/0.14 mg g*t
Land use

Arable R2 0.80* 0.59* 0.70* 0.72* 0.53* 0.71* 0.68*
RMSE 0.33 0.15 0.05 0.39 0.16 0.05 0.36 %/ 0.10 mgf gt

Grassland R2 0.91* 0.78* 0.76* 0.89* 0.67* 0.76* 0.80*
RMSE 0.33 0.19 0.09 0.36 0.24 0.09 0.35%/0.15 mgf gt

Parent Material

DCS R2 0.81* 0.78* 0.79* 0.74* 0.62*  0.55* 0.72

RMSE 0.34 0.17 0.07 0.40 0.22 0.11 0.37 % /0.14 mgf gt

24



LBS R? 0.43* 0.27* 0.48* 041* 0.29* 0.41* 0.38

RMSE 0.30 0.14 0.03 0.30 0.14 0.03 0.30 %/ 0.09 mgf gt

DLS R2 0.50* 0.36* 0.32* 0.50* 0.37*  0.26* 0.39
RMSE 0.35 0,17 0.10 0.35 0.17 0.10 0.35%/0.13mgf gt

PSS R2 0.61* 0.62* 0.74* 0.63* 0.56*  0.60* 0.62
RMSE 0.21 0.16 0.06 0.20 0.16 0.07 0.21 %/0.11 mgf gt

Texture

Sandy R2? 0.79* 0.61* 0.28* 0.54* 0.51* 0.58* - - - 0.55
RMSE 0.21 0.12 0.04 031 0.14 0.03 0.26 %/ 0.08 mgf gt

Silty soils R2 0.74* 0.75* 0.48* 0.72* 0.66* 0.50* - - - 0.64
RMSE 0.39 0.14 0.09 0.40 0.16 0.08 0.40 % /0.12 mgf gt

Loamy R2 0.83* 0.59* 0.41* 0.81* 0.66* 0.64* - - - 0.66
RMSE 0.35 0.20 0.10 0.38 0.19 0.08 0.37 % /0.14 mgf gt

Mean model prediction
Mean R? 0.81 0.66 0.53 0.65 0.57 0.59 0.67 0.52 0.55

\‘
o B

RMSE 0.3 1 08 0.34 0.16 0.07 0.35 0.18 0.08

w
o

381 +Applied random effect; "Not all random effects could applied to this group of clusters because of missing factor levels. *Significant on a
382 level of <0.05

383
384
38|5 Table 56. R2 and RMSE for implementation of the totalglobal dataset to local clusters to estimate SOC.
SOC
Parent material Land use Texture
Cluster  totalGlebal  Cluster  totalGlebal  Cluster  totalGlobal
Sample pecifi del t pecifi del t pecifi del t
subgroups specific model to specific model to specific model to
Mmodel local cluster mModel local cluster mMeodel local cluster
Dataset R2 0.79 0.77 0.77
RMSE 0.37 0.41 0.42
DCS R2 - 0.81 0.69 0.74 0.65
RMSE 0.34 0.44 0.40 0.47
LBS R2 - 0.43 0.23 0.41 0.24
RMSE 0.30 0.41 0.30 0.40
DLS R2 - 0.50 0.30 0.50 0.35
RMSE 0.35 0.42 0.35 0.41
PSS R2 - 0.61 0.57 0.63 0.57
RMSE 0.21 0.38 0.20 0.38
Sandy soils R2 0.79 0.68 0.54 0.37 -
RMSE 0.21 0.26 0.31 0.36
Silty soils R2 0.74 0.65 0.72 0.60 -
RMSE 0.39 0.45 0.40 0.48
Loamy soils R2 0.83 0.83 0.81 0.79 -
RMSE 0.35 0.36 0.38 0.40
Arable R2 0.80 0.80 0.72 0.73
RMSE 0.33 0.34 0.39 0.39
Grassland R2 0.91 0.87 0.89 0.87
RMSE 0.33 0.44 0.36 0.47
386
387
388
389
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4 Discussion

Our study showed that interactions of SOC with the mineral phase are highly relevant for the content of SOC as well as of its
labile fractions HWEC and MBC in soils. High eorrelations-regression coefficients of SOC to fSilt plus clay (Table 3) agree

with reports on the relevance of organo-mineral associations for the stabilization of SOC and related to this the accumulation of

the labile fraction HWEC and MBC (Ltzow et al., 2006). Furthermore, sandy soils contained the lowest content of SOC while
loamy and silty soils had an equally higher content of SOC (Table 1). This is typically expected and confirms numerous previous
reports, e.g. Ludwig et al. (2003) and Vos et al. (2018). In contrast, for the LBS cluster with its very sandy soils; a slightly
positive effect of sand on SOC was found.fer-the-in-total-very-sandy-seilsin-the-parent-material-cluster-of LBS: This, however,

is most likely a consequence of agricultural practice, with high manure application to the LBS soils in the sampled area. This

was further confirmed by a factor of 1.2 higher ratios of SOC/N and HWEC/N as well as by a lower oxygen content of SOM
compared to soils of the other parent material clusters (factor of 0.6; Table 1). Besides parameters directly related to soil texture,
pedogenic Al- and Fe-oxides were found to be strong predictors of SOC in soils. Accordingly, Al- and Fe-oxides were shown
to have a relevant influence on the accumulation the-seguestration and stabilization of SOC (Kaiser and Guggenberger, 2000;
Litzow et al., 2006) as well as to have a high affinity to retain components of the labile SOC fractions (Kaiser and Zech, 1998;
Kaiser et al., 2002). Although soil acidity strongly affects soil processes such as microbial activity and turnover that are relevant
for SOC accumulation (Kemmitt et al., 2006), no clear regressienrelation coefficientscorrelation between pH and SOC or its

labile fractions was found by bivariate linear regression. Yet, soil parameters that are strongly related to soil acidity, i.e. ECEC

as well as the content of exchangeable polyvalent cations such as Ca?* and Mg?*, were suitable predictors for SOC and its labile
fractions in this and previous studies (O'Brien et al., 2015; Rasmussen et al., 2018). This is causally explained by the stabilization
of SOC in organo-mineral associations and the contribution of multivalent cation bridges (Ca?* and Mg?*) to it (Kaiser et al.,

2012). The miner-abitity-of ECEC-and(Ca+Mg)ecec-and-theeven higher ability of the content of pedogenic oxides to explain
variance of SOC and its labile fractions was indicated in this study for several clusters (total and local) by bivariate regressions

(Table 3)-). This corresponds to findings of Rasmussen et al. (2018). They found a prevalence of pedogenic oxides in humid
areas with moderately acidic soils, while exchangeable Ca and clay prevealed—prevailed in soils of dry climates with
circumneutral to alkaline pH. Such a case-specific prevalence of parameters to predict SOC, HWEC or MBC demonstrates that

it is preferred to use specific parameter sets when it is aimed to focus on local areas._In this studyAbHityef ECEC and

(Ca+Maq)ecec were not generally applicable as predictors but it was-further-strongly dependentd on the ebserved-parent material

erand texture cluster. For example, ECEC and (Ca+Mg)ecec were found to be relevant for the clusters of DLS and PSS, while

for DCS they were of minor importance.-Mere
snce-0fSOC, HWEC or MBC better. As-example ECEC and{Ca+Mg)ecec-Was found-as relevant for the clusters of DLS and
PSS, while for DCS-it show-a-minerimportance—The bivariate models revealed that the stone content had only a small impact
on SOC, HWEC and MBC. Hence, a funnel effect of the stone content, by funneling more SOC into the remaining fine textured

soil (Bornemann et al., 2011) was irrelevant. The combinations of factors and soil properties affecting SOC and SOC fractions,
respectively, were dissimilar between the different local areas investigated in this study. The PCA revealed that differences
according to parent material and soil texture were most relevant to separate the dataset into various local clusters based on
different factors (Fig. 2 A and B; Table 2). At the same time, this illustrates the importance of the mineral composition (parent
material) and grain size (soil texture) for the accumulation of SOC as well as its labile fractions HWEC and MBC. In contrast,
land use was not useful for a separation into clusters. This was unexpected because typically topsoils under grassland have
higher SOC contents compared to arable soils (Poeplau et al., 2020), which was largely confirmed for the samples investigated

in this study (Table 1). This went along with differences in the composition of SOM (Table 1 and Table SI). However, data
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ranges of SOC, HWEC and MBC contents were largely overlapping and similarities even increased in PCA when further soil
properties were included._In comparison, mineral phase soil properties clearly separated the dataset-while-compesition-ef SOM
was-less-enabled for this-purpese. Consequently, a broad scatter of the land use clusters was obtained by PCA, suggesting to

treat the land use clusters as totalglebal datasets as well.

Several studies with large datasets covering national or continental scales, e.g. soil inventories, pointed out the relevance of
combinations of multiple factors and parameters instead of using single predictors to estimate SOC or its labile fractions (Wieder
et al., 2015; Vos et al., 2018; Gray et al., 2019) -(Ves-et-ak-2018). Furthermore, local studies covering small areas with narrow
ranges of soil properties often show weak bivariate relationships between SOC and components of the mineral phase or
environmental factors (Jian-Bing et al., 2006; Liddle et al., 2020). Accordingly, models focused on specific local clusters and
combined with multiple parameter sets were superior compared to the totalglebal model that was developed for the totalglobal
{complete)(entire) dataset to estimate SOC, HWEC or MBC (Fig. 6). The different parameter combinations indicate that distinct
properties of the mineral phase control SOC, HWEC and MBC in the soils of the different clusters.
Understanding SOC as continuum (Lehmann and Kleber, 2015) implies that accumulation of SOC is a multidimensional process
with various interacting factors and soil properties, respectively. The substantially lower ability of bivariate models to estimate
SOC compared to multiple parameter models is in line witheenfirmed this assumption. Accordingly, it was superior to use
multiparameter mixed effect models to estimate SOC and the two labile fractions. Especially parameter combinations within the
land use clusters gained a high-explained variance (Table 3, Table 4). A comparison with studies on regional or national scale
(Vos et al., 2018; Mayer et al., 2019) suggests that the importance of factors such as land use, soil texture or parent material
varies with the observed scale. Wiesmeier et al. (2019) reported that soil texture, land use and land management are relevant to
explain SOC variability at all scales. On regional or larger scale, also environmental factors such as climate, geology, soil use,
topography are relevant for SOC. Yet, at a local or smaller scale factors such as climate become less important, while parameters
representing small-scale soil physico-chemical properties gain importance for explaining the variability of SOC. Thereby,
different factor and parameter combinations were identified for the different local clusters by mixed effect modelling. The
prevalence of a parameter for quantification of SOC can differ dependent on environmental factors (Rasmussen et al., 2018).
Consequently, the quality of the multiparameter models was further improved by the implementation of local specific random
effects such as parent material or land use. Dependent on the random factors parent material, soil texture class and land use
different parameter combinations explained SOC, HWEC or MBC (Fig. 4 and Fig. 5). For the totalglobal-{fecemplete} dataset,
nearly all predictor parameters showed a significant contribution to the explanation of SOC. Most of these soil mineral phase
parameters were also significant in linear regression. In contrast to the bivariate models, most mixed effect models revealed
parameters related to soil acidity as significantly important to estimate SOC, HWEC and MBC. This highlights the importance
of soil acidity on SOC dynamics due to its effects on the reactivity of the mineral phase and the activity of microorganisms
(Hillel, 2004). In order to explain the variability of HWEC and MBC for the various local clusters, different combinations of
mineral phase parameters were required that also clearly differed from the parameter combinations used in the models for SOC
(Fig. 4 and Fig. 5). Such differences concerning significantly contributing parameters were also found by other studies for
specific clusters or local sampling sites (Heinze et al., 2018; Quesada et al., 2020). This emphasizes that local models are required
and superior when it is the aim to estimate SOC and SOC fractions on a local scale. The totalglebal models used for the
totalglobal datasets in this study reached the best predictions for SOC, HWEC and MBC. Nevertheless-some-local-cluster
revealed-a-smaler RMSe-than-the total clusters—Yet, this was largely biased by the large samples size; applying the same
totalglebal models to local samples sets produced clearly poorer estimates compared to the more specific local models as
indicated by the explained variance and the RMSE (Fig. 6; Table 45 and Table 65). Fhis-wasfound-even-for the-explained
29
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varianee-as-well-as-for-the RMSE.-Consequently, aggregation of smaller datasets, e.g. from a local scale, to a larger dataset
enables to predict SOC and its labile fractions to a satisfying-higher extent. In opposite a model that was derived from a
totalglebal dataset and is applied to the-a local area—and-its-dataset with defined-smaller ranges of properties is partiaty
practicableless suitable, resulting in a variance explained on a lower level. DependendDependenting on the properties of the sail

mineral phase, each specific cluster was controlled by other properties, which best explain the accumulation of SOC and its
labile fractions. This implies the importance for analysis of local clusters to avoid a subordination by models of totalglebal
datasets.

Comparing the results of mixed effect models using the different random effects (parent material, soil texture, land use), the
models using parent material yielded highest explained variancebestresults for the estimation of SOC. For HWEC and MBC

best predictions at a high sufficient-gquatity level of explained variance were obtained by models using land use as random effect

(Table 4). RMSE was-mostly in-line-with founding-concerning-explained-variance—High explained variance resulted-mostly

nwent along with smaller RMSE values. The parent material predefines the boundaries for accumulation and stabilization of
organic matter (Gray et al., 2015). The importance of land use as random effect especially for the labile fractions results from
the fact that these are especially influenced by soil management (Cardoso et al., 2013; Lal, 2016).

In general, the variance explained by the mixed effect models was not similar, but varied between SOC and its labile fractions
HWEC and MBC. It became clear that SOC and the labile fractions HWEC and MBC are not fully correlated but quantitatively
quite distinct SOM pools with different-annual dynamics (Wander, 2004; Tokarski et al., 2020). Not last, the faster turnover of
the labile fractions is one of the reasons for the lower explained variability by the different models. HWEC is a measure of
bioavailable and degradable organic carbon (Weigel et al., 1998). Although it is closely correlated to SOC (R2 =0.75) it is best
estimated by distinct parameter combinations compared to SOC, which is explained by the substantially higher variability of
HWEC (Table 3 and 4). Changes in HWEC are mostly assigned to inputs of organic fertilizer substrates (Weigel et al., 1998)
and the soil management (Ghani et al., 2003). For MBC especially soil management and factors such as C-input, climate, soil
texture and soil pH are relevant (Wardle, 1992). Accordingly, the effect of land use but also of soil texture was most relevant
for MBC accumulation. Similar to findings of Ludwig et al. (2015), MBC increased with the content of silt and clay but declined
with sand, which is explained amongst other by the contribution of MBC to aggregate formation, the habitable surface and
accessibility of SOC (Totsche et al., 2018). Additionally, management practices such as tillage and the application of organic
fertilizer directly influence MBC _(Liang et al., 1997). Becreasinglower explained variance of HWEC and MBC compared to
SOC were based on a smaller relevance of the mineral phase parameters for their accumulation. Furtherl abile fractions such as
HWEC and MBC, containing larger proportions of bioavailable and easily degradable eempartmentsorganic compounds, leading
te-are subject toa faster turnover (Landgraf et al., 2006; Lorenz et al., 2021)-and-a-lowerability-to-interact-with-the-mineral
phase.

5 Conclusions

The reliable estimation of SOC and of its labile fractions HWEC and MBC is a task of growing importance in order to manage
soil properties and functioning. That task will most often focus on local soilscapes with minor variation range in soil properties.
This study showed that local models are superior to totalglebal models. Mixed parametereffect models combined with random
effects yielded best estimates and highest explained variance for SOC and even its labile and quite dynamic fractions HWEC
and MBC. For this purpose, the application of multivariate approaches to estimate SOC, HWEC and MBC clearly resulted in a
higher explained variance compared toeutperforms models based on bivariate linear regressionseerrelations. Even a reduced
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dataset, representing parameters of the soil mineral phase is suited to estimate contents of SOC as well as HWEC and MBC.

ased—The inclusion of

overall factors such as parent material, soil texture class and land use as random effects further improves the models. {Total
Glebal-or even global models, developed from large-scale studies across countries or continents, often reach best estimates;
however, they are subordinate for the above-mentioned small-scale areas and low sample numbers. Application of total models
to local datasets leads to a smaller explained variance and higher RMSE. Fer-furtherresearch-we suggestto-identify-possible

differentlandseapes—From a practical perspective, the selected set of soil mineral phase parameters can be easily determined by

using well-established methods and the parameters are rather stable over a longer-term. Thus, using such parameters for the
sufficient estimation of SOC, HWEC and MBC is expedient. The presented research will be further enlarged by studying larger

datasets containing more clusters in order to better identify local drivers of SOC and of its labile fractions.-s Our research shows

that local models, considering site-specific parameter combinations, are superior to total models, although they are based on

much smaller datasets. If such local datasets and models are available, they should be preferred. For further research we suggest

to assess even larger datasets, in order to find out whether local subclusters can be identified and to examine if these clusters are

best explained by total or local models. Furthermore, research is needed to determine most relevant parameters for a site adapted

estimation of SOC and its labile fractions on different landscapes.
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